留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印连续纤维增强聚碳酸酯复合材料预浸丝制备与性能

杨来侠 刘波 刘腾飞 高扬 田小永

杨来侠, 刘波, 刘腾飞, 等. 3D打印连续纤维增强聚碳酸酯复合材料预浸丝制备与性能[J]. 复合材料学报, 2023, 41(0): 1-13
引用本文: 杨来侠, 刘波, 刘腾飞, 等. 3D打印连续纤维增强聚碳酸酯复合材料预浸丝制备与性能[J]. 复合材料学报, 2023, 41(0): 1-13
Laixia YANG, Bo LIU, Tengfei LIU, Yang GAO, Xiaoyong TIAN. Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments[J]. Acta Materiae Compositae Sinica.
Citation: Laixia YANG, Bo LIU, Tengfei LIU, Yang GAO, Xiaoyong TIAN. Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments[J]. Acta Materiae Compositae Sinica.

3D打印连续纤维增强聚碳酸酯复合材料预浸丝制备与性能

基金项目: 基础加强项目(2017-JCJQ-ZD-035);国家自然科学基金(52205413);中国博士后科学基金(2022M712534)
详细信息
    通讯作者:

    杨来侠,教授,博士生导师,研究方向为快速成形与模具制造, E-mail :1833680962@qq.com

    田小永,教授,博士生导师,研究方向为多材料、复合材料3D打印技术及其应用, E-mail: leoxyt@xjtu.edu.cn

  • 中图分类号: TB332

Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments

Funds: Foundation Strengthening Project(2017-JCJQ-ZD-035); National Natural Science Foundation of China (52205413); China Postdoctoral Science Foundation(2022M712534)
  • 摘要: 连续纤维增强热塑性复合材料具有强度高、可设计性强和抗冲击等优点,成为当下研究的热点。但由于热塑性树脂黏度大,成形过程中的压力小,导致复合材料孔隙率偏大,力学性能不佳。本文通过熔融浸渍制备连续纤维增强聚碳酸酯预浸丝,相比于原位浸渍,解决了打印过程中树脂浸入纤维束阻力大,复合材料孔隙率偏高的问题,探究了熔融浸渍工艺对预浸丝性能的影响,分析了工艺参数、纤维含量和孔隙率三者之间的关系。碳纤维和玻璃纤维表面涂有热塑性上浆剂,能加速树脂与纤维界面结合。因此,制备的连续碳纤维和玻璃纤维增强聚碳酸酯复合材料拉伸强度分别为644.8 MPa和381.4 MPa,复合材料内部孔隙明显减少。图1为不同浸渍温度对预浸丝的拉伸性能影响,图2为连续碳纤维和玻璃纤维增强复合材料的内部孔隙特征。不同浸渍温度对预浸丝拉伸性能连续纤维增强聚碳酸酯内部孔隙结构:碳纤维增强聚碳酸酯(a)玻璃纤维增强聚碳酸酯(b)

     

  • 图  1  纤维预浸丝熔融浸渍原理: (a)熔融浸渍设备实物图(b)

    Figure  1.  Fig. 1 Principle of melt impregnation of fiber prepreg yarn: (a) Physical diagram of melt impregnation equipment (b)

    图  2  拉伸试样:(a)CCF/PC;(b)连续玻璃纤维增强聚碳酸酯(CGF/PC)

    Figure  2.  Tensile specimens: (a)CCF/PC; (b) continuous glass fiber reinforced polycarbonate (CGF/PC)

    图  3  不同浸渍温度对CGF/PC预浸丝拉伸性能影响

    Figure  3.  Effect of different impregnation temperatures on the tensile properties of CGF/PC prepreg wires

    图  4  不同牵引速度对CGF/PC预浸丝拉伸性能影响

    Figure  4.  Effect of different traction speeds on the tensile properties of CGF/PC prepreg wirer

    图  5  不同牵引速度的CGF/PC预浸丝微观形貌

    Figure  5.  Microscopic morphology of CGF/PC prepreg wire with different traction speeds

    图  6  不同进给速率对CGF/PC预浸丝拉伸性能影响

    Figure  6.  Effect of different feed rates on the tensile properties of CGF/PC prepreg wire

    图  7  分层厚度对CCF/PC(a)和CGF/PC(b)复合材料拉伸性能影响

    Figure  7.  Effect of delamination thickness on tensile properties of CCF/PC (a) and CGF/PC (b) composite

    图  8  CCF/PC复合材料纤维线间结合及搭接示意图

    Figure  8.  Schematic diagram of CCF/PC the bond and lap between fiber threads

    图  9  扫描间距对CCF/PC(a)和CGF/PC(b)复合材料拉伸性能影响

    Figure  9.  Effect of scan spacing on tensile properties of CCF/PC (a) and CGF/PC (b) composites

    图  10  打印温度对CCF/PC(a)和CGF/PC(b)复合材料拉伸性能影响

    Figure  10.  Effect of printing temperature on tensile properties of CCF/PC (a) and CGF/PC (b) composites

    图  11  CCF/PC复合材料内部孔隙结构:(a)分层厚度0.10,(b)分层厚度0.16,(c)扫描间距0.8,(d)扫描距1.2;CGF/PC复合材料内部孔隙结构扫描间距: (e)分层厚度0.14,(f)分层厚度0.20,(g)扫描间距1.0,(h)扫描间距1.4

    Figure  11.  Internal pore structure of CCF/PC composites: (a)layered thickness 0.10, (b)layered thickness 0.16, (c)scan spacing 0.8, (d)scan spacing 1.4; Internal pore structure of CGF/PC composites scan spacing: (e)layered thickness 0.14, (f)layered thickness 0.20, (g)scan spacing 1.0, (h)scan spacing 1.4

    图  12  CCF/PC微观形貌: (a)扫描间距0.8; (b)扫描间距1.0; (c)扫描间距1.2;CGF/PC复合材料微观形貌: (e)扫描间距1.0; (f)扫描间距1.2:(g)扫描间距1.4

    Figure  12.  CCF/PC microstructure: (a)scan spacing 0.8; (b) scan spacing 1.0; (c) scan spacing 1.2; CGF/PC composite microstructure: (e) scan spacing 1.0; (f) scan spacing 1.2: (g) scan spacing 1.4

    图  13  CCF/PC复合材料断面微观形貌:(a)分层厚度0.10,(b)分层厚度0.16,(c)扫描间距0.8,(d)扫描距1.2

    Figure  13.  Microscopic morphology of CCF/PC composite cross-section: (a)layered thickness 0.10, (b)layered thickness 0.16, (c)scan spacing 0.8, (d)scan spacing 1.4

    图  14  CGF/PC复合材料断面微观形貌: (a)分层厚度0.14, (b)分层厚度0.20, (c)扫描间距1.0, (d)扫描间距1.4

    Figure  14.  Microscopic morphology of CGF/PC composite section: (a) delamination thickness 0.14, (b)delamination thickness 0.20, (c)scan spacing1.0, (d)scan spacing 1.4

    表  1  连续碳纤维增强聚碳酸酯(CCF/PC)预浸丝的制备工艺参数

    Table  1.   Preparation process parameters of continuous carbon fiber reinforced polycarbonate (CCF/PC) prepreg

    Main process parametersRange of values
    Resin feed rate(E)/(r∙min−1)4.0
    Traction speed(U)/( mm∙min−1)500
    Impregnation temperature(t)/ ℃260
    下载: 导出CSV

    表  2  CGF预浸丝的制备工艺参数

    Table  2.   Preparation process parameters of CGF prepre

    Main process parametersRange of valuesOther process parameters
    Resin feed rate(E)/(r∙min−1)2.0,3.0,4.0,5.0U300,t270
    Traction speed(U)/(mm∙min−1)100,300,500,700,800E3.0,t270
    Impregnation temperature (t)/℃240,250,270,290E3.0,U300
    下载: 导出CSV

    表  3  CCF/PC成形工艺参数

    Table  3.   CCF/PC molding process parameters

    Main process parametersRange of valuesOther process parameters
    Layering thickness(H)/ mm0.10,0.13,0.16S1.0,T260
    Scan spacing(S)/ mm0.8,1.0,1.2H0.13,T260
    Print temperature(T)/℃240,260,280H0.13,S1.0
    下载: 导出CSV

    表  4  CGF/PC成形工艺参数

    Table  4.   CGF/PC molding process parameters

    Main process parametersRange of valuesOther process parameters
    Layering thickness(H)/mm0.14,0.17,0.20S1.2,T280
    Scan spacing(S)/mm1.0,1.2,1.4H0.17,T280
    Print temperature(T)/℃270,280,290H0.17,S1.2
    下载: 导出CSV

    表  5  不同温度下PC熔融指数(MFR)

    Table  5.   Melt index of PC at different temperatures (MFR)

    Temperature/℃250270290
    MFR/(g/10 min)5.1310.2025.63
    下载: 导出CSV

    表  6  不同工艺参数的CCF/PC复合材料纤维含量

    Table  6.   Fiber content of CCF/PC composites with different process parameters

    Process ParametersFiber Content/vol%
    Constants/ mmVariables/ mm
    S 1.0H 0.1028.66
    H 0.1326.78
    H 0.1623.57
    H 0.13S 0.828.62
    S 1.026.78
    S 1.225.18
    下载: 导出CSV

    表  7  不同工艺参数的CGF/PC复合材料纤维含量

    Table  7.   Fiber content of CGF/PC composites with different process parameters

    Process ParametersFiber Content/vol%
    Constants/ mmVariables/ mm
    S 1.2H0.1451.35
    H0.1746.87
    H 0.2043.93
    H0.17S 1.050.95
    S 1.246.87
    S 1.440.84
    下载: 导出CSV

    表  8  不同工艺参数对应的CCF/PC复合材料孔隙率

    Table  8.   Porosity of CCF/PC composites corresponding to different process parameters

    Process ParametersPorosity%
    Constants/mmVariables/mm
    S1.0H 0.103.87
    H 0.138.64
    H 0.168.76
    H 0.13S 0.87.29
    S 1.08.64
    S 1.214.22
    下载: 导出CSV

    表  9  不同工艺参数对应的CGF/PC复合材料孔隙率

    Table  9.   Porosity of CGF/PC composites corresponding to different process parameters

    Process ParametersPorosity/%
    Constants/mmVariables/mm
    S 1.2H 0.144.41
    H 0.175.24
    H 0.205.56
    H 0.17S 1.06.45
    S 1.25.24
    S 1.414.44
    下载: 导出CSV
  • [1] 秦若森, 孙守政, 韩振宇, 等. 3 D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17):200-208.

    Tai Ruosen, Sun Shouzheng, HAN Zhenyu, et al. 3 D Printing for Continuous Fiber-reinforced Thermoplastic Composites: a Review on Molding Quality[J]. Materials Direct,2022,36(17):200-208(in Chinese).
    [2] 陈向明, 姚辽军, 果立成, 等. 3 D打印连续纤维增强复合材料研究现状综述[J]. 航空学报, 2021, 42(10):174-198.

    CHEN Xiangming YAO Liaojun GUO Licheng, et al. 3 D printed continuous fiber-reinforced composites: State of the art and perspectives[J]. Journal of Aeronautics,2021,42(10):174-198(in Chinese).
    [3] YASSIN K. Processing of thermoplastic matrix composites through automated fiber placement and tape laying methods A review[J]. Journal of Thermoplastic Composite Materials, 2018, 31(12).
    [4] QURESHI Z, SWAIT T, SCAIFE R, et al. In situ consolidation of thermoplastic prepreg tape using automated tape placement technology: Potential and possibilities[J]. Composites Part B,2014,66(Nov.):255-267.
    [5] SUN Z, Xiao J, YU X, et al. Vibration Characteristics of Carbon-fiber Reinforced Composite Drive Shafts Fabricated using Filament Winding Technology[J]. Composite Structures,2019,241:111725.
    [6] MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports,2016,6:23058. doi: 10.1038/srep23058
    [7] KABIR S, MATHUR K, SEYAM A. A critical review on 3 D printed continuous fiber-reinforced composites: History, mechanism, materials and properties[J]. Composite Structures,2020,232(Jan.):111476.1-111476.24.
    [8] 刘玲, 路明坤, 张博明, 等. 孔隙率对碳纤维复合材料超声衰减系数和力学性能的影响[J]. 复合材料学报, 2004(5):116-121. doi: 10.3321/j.issn:1000-3851.2004.05.022

    LIU ling, LU mingkun, ZHANG boming, et al. Effects of porosity on the ultrasonic absorption coefficient and mechanical strength of carbon/epoxy composites[J]. Journal of Composite Materials,2004(5):116-121(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.05.022
    [9] VAJARI D A, GONZALEZ C, LLORCA J, et al. A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites[J]. Composites Science and Technology,2014,97(16):46-54.
    [10] 李涤尘, 鲁中良, 田小永, 等. 增材制造-面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4):22-38+3.

    LI Dichen LUZhongliang TIAN Xiaoyong et al. Additive manufacturing Revolutionary technology for leading aerospace manufacturing[J]. Journal of Aeronautics,2022,43(4):22-38+3(in Chinese).
    [11] 程平, 彭勇, 汪馗, 等. 3 D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(01): 237-242.

    CHENG Ping, PENG Yong, WANG Kui, et al. Quasi Static Penetration Property of 3 D Printed Continuous Ramie-fiber Reinforced Polylactic Acid Composites[J/OL], Materials Direct, 2023, 37(01): 237-242(in Chinese).
    [12] USUN A, GUMRUK R. The mechanical performance of the 3 D printed composites produced with continuous carbon fiber reinforced filaments obtained via melt impregnation[J]. Additive Manufacturing,2021(46-):46.
    [13] TIAN X, LIU T, YANG C, et al. Interface and performance of 3 D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A:Applied Science and Manufacturing,2016,88:198-205. doi: 10.1016/j.compositesa.2016.05.032
    [14] 刘良强, 肖学良, 董科, 等. 3 D打印连续芳纶纤维/聚乳酸波纹夹层结构复合材料的压缩性能研究[J]. 塑料工业, 2020, 48(1):91-95. doi: 10.3969/j.issn.1005-5770.2020.01.020

    LIU Liang-qiang XIAO Xue-liang DONG Keet al. Compression Properties of 3 D Printed Continuous Kevlar Fiber/PLA Corrugated Sandwich Composite[J]. Plastics Industry,2020,48(1):91-95(in Chinese). doi: 10.3969/j.issn.1005-5770.2020.01.020
    [15] 明越科, 段玉岗, 王奔, 等. 高性能纤维增强树脂基复合材料3 D打印[J]. 航空制造技术, 2019, 62(4):34-38+46.

    MING Yueke, DUAN Yugang, WANG Ben, et al. 3 D Printing for High Performance Fiber Reinforced Polymer Composites[J]. Aerospace Manufacturing Technology,2019,62(4):34-38+46(in Chinese).
    [16] MU A, SK A, MY B, et al. 3 D comp-action printing of a continuous carbon fiber reinforced thermoplastic - ScienceDirect[J]. Composites Part A:Applied Science and Manufacturing,2020:137.
    [17] 许云鹏, 颜春, 刘东, 等. 连续纤维增强热塑性预浸料制备工艺的研究进展[J]. 复合材料科学与工程, 2020, (08): 123-128.

    XU Yun-peng YAN Chun LIU Dong et al. Rrogress in preparation technology of contin- uous fiber reinforced thermoplastic prepregs[J]Composites Science and Engineering, 2020, (08): 123-128(in Chinese).
    [18] 徐奔, 张守玉, 水锋, 等. 连续碳纤维增强聚苯硫醚复合材料的3 D打印及力学性能优化[J]. 高分子材料科学与工程, 2022, 38(7):84-92.

    XU Ben, ZHANG Shouyu, SHUI Feng, et al. 3 D Printing and Mechanical Properties Optimization of Continuous Carbon Fiber Reinforced Polyphenylene Sulfide Composites[J]. Polymer Materials Science and Engineering,2022,38(7):84-92(in Chinese).
    [19] 刘国强. 聚合物光纤光栅传感特性研究[D]. 北京邮电大学, 2017.

    LIU Guoqiang. Research on sensing properties of polymer optical fiber grating[D]Beijing University of Posts and Telecommunications, 2017. (in Chinese).
    [20] 李杰. 抗氧剂, 光稳定剂在聚碳酸酯和改性材料中应用技术[J]. 塑料助剂, 2021(1):1-6.

    LI Jie. Application of Antioxidants and Light Stabilizers in Polycarbonate and Modified Materials[J]. Plastics Additives,2021(1):1-6(in Chinese).
    [21] 王欢. 聚碳酸酯的需求与市场分析[J]. 云南化工, 2021, 48(05): 9-11.

    WANG Huan. Demand and Market Analysis of Polycarbonate[J]Yunnan Chemical Industry, 2021, 48(05): 9-11(in Chinese).
    [22] 李慧斌. 3 D打印连续碳纤维丝材制备工艺及性能分析[D]. 大连理工大学, 2021.

    LI HuiBin. Preparation technology and perfor-mance analysis of 3 Dprinting continuous car-bon fiber wire (in Chinese).
    [23] JAHANGIR M. N, MM K, et al. Reinforcement of material extrusion 3 D printed polycarbonate using continuous carbon fiber - ScienceDirect[J]. Additive Manufacturing, 2019, 28: 354-364. TIAN Xiaoyong, ZHANG Yayuan, LIU Tengfei, et al. Prepreg Preparation and 3 D Printi-ng of Continuous Carbon Fiber Reinforced Nylon Composite[J]. Aerospace Manufacturin-g Technology, 2021, 64(15): 24-33(in Chinese).
    [24] 田小永, 张亚园, 刘腾飞, 等. 连续碳纤维增强尼龙复合材料预浸丝制备与3D打印性能研究[J]. 航空制造技术, 2021, 64(15):24-33.
    [25] 中国国家标准化管理委员会. 碳纤维复丝拉伸性能试验方法: GB/T 3362-2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People’s Republic of China. Test methods for tensile properties of carbon fiber multifilament: GB/T 3362-2017[S]. Beijing: China Standards Press, 2014.
    [26] 中国国家标准化管理委员会. 定向维增强聚合物基复合材料拉伸性能试验方法. : GB/T 3354-2014[S]. 北京: 中国标准出版社, 2014

    Standardization Administration of the People’s Republic of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials GB/T 3354-2014[S]. Beijing: China Standards Press, 2014.
    [27] LI H, LIU B, GE L, et al. Mechanical performances of continuous carbon fiber reinforced PLA composites printed in vacuum[J]. Composites, Part B. Engineering,2021(Nov.15):225.
  • 加载中
计量
  • 文章访问数:  137
  • HTML全文浏览量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 修回日期:  2022-12-27
  • 录用日期:  2023-01-22
  • 网络出版日期:  2023-02-16

目录

    /

    返回文章
    返回