Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments
-
摘要:
连续纤维增强热塑性复合材料具有强度高、可设计性强和抗冲击等优点,成为当下研究的热点。但由于热塑性树脂黏度大,成形过程中的压力小,导致复合材料孔隙率偏大,力学性能不佳。本文通过熔融浸渍制备连续纤维增强聚碳酸酯预浸丝,相比于原位浸渍,解决了打印过程中树脂浸入纤维束阻力大,复合材料孔隙率偏高的问题,探究了熔融浸渍工艺对预浸丝性能的影响,分析了工艺参数、纤维含量和孔隙率三者之间的关系。碳纤维和玻璃纤维表面涂有热塑性上浆剂,能加速树脂与纤维界面结合。因此,制备的连续碳纤维和玻璃纤维增强聚碳酸酯复合材料拉伸强度分别为644.8 MPa和381.4 MPa,复合材料内部孔隙明显减少。 图1 为不同浸渍温度对预浸丝的拉伸性能影响,图2 为连续碳纤维和玻璃纤维增强复合材料的内部孔隙特征。不同浸渍温度对预浸丝拉伸性能 连续纤维增强聚碳酸酯内部孔隙结构:碳纤维增强聚碳酸酯(a)玻璃纤维增强聚碳酸酯(b) Abstract: To reduce the porosity of 3D printing continuous fiber reinforced polymer (CFRP) composites and improve the degree of resin impregnation on fibers, it is of great necessity to conduct research on the preparation and 3D printing performance of melt-impregnated continuous fiber prepreg filaments, as well as develop integrated fiber prepreg equipment. With glass fiber (GF) and carbon fiber (CF) as reinforcement, and polycarbonate (PC) as matrix, this study aims to develop a melt-impregnated prepreg wire preparation process and study the influence of the impregnation process on prepreg wire properties. Besides, using prepreg yarn as the raw material, this study is aimed at studying the effect of 3D printing forming process parameters on the fiber content, porosity and mechanical properties as well. The results indicated that when the tensile strength of continuous glass fiber reinforced polycarbonate (CGF/PC) prepreg filament was 627.8 MPa, the printing temperature was 260°C, the layering thickness was 0.10 mm, the scan spacing was 1.0 mm, the fiber content of continuous carbon fiber reinforced polycarbonate (CCF/PC) composite was 28.66vol%, the tensile strength and modulus were respectively 644.8 MPa and 85.6 GPa, and the optimized porosity was 3.87%. When the printing temperature was 280°C, the layering thickness was 0.14 mm, and the scan spacing was 1.2 mm, the fiber content of continuous glass fiber reinforced polycarbonate (CGF/PC) composite turned out to be 51.35vol%, the tensile strength and modulus were respectively 381.4 MPa and 23.6 GPa, and the optimized porosity was 4.41%.-
Key words:
- continuous fiber /
- polycarbonate /
- porosity /
- prepreg wire /
- mechanical properties /
- 3 D printing
-
图 11 CCF/PC复合材料内部孔隙结构:(a)分层厚度0.10,(b)分层厚度0.16,(c)扫描间距0.8,(d)扫描距1.2;CGF/PC复合材料内部孔隙结构扫描间距: (e)分层厚度0.14,(f)分层厚度0.20,(g)扫描间距1.0,(h)扫描间距1.4
Figure 11. Internal pore structure of CCF/PC composites: (a)layered thickness 0.10, (b)layered thickness 0.16, (c)scan spacing 0.8, (d)scan spacing 1.4; Internal pore structure of CGF/PC composites scan spacing: (e)layered thickness 0.14, (f)layered thickness 0.20, (g)scan spacing 1.0, (h)scan spacing 1.4
表 1 连续碳纤维增强聚碳酸酯(CCF/PC)预浸丝的制备工艺参数
Table 1. Preparation process parameters of continuous carbon fiber reinforced polycarbonate (CCF/PC) prepreg
Main process parameters Range of values Resin feed rate(E)/(r∙min−1) 4.0 Traction speed(U)/( mm∙min−1) 500 Impregnation temperature(t)/ ℃ 260 表 2 CGF预浸丝的制备工艺参数
Table 2. Preparation process parameters of CGF prepre
Main process parameters Range of values Other process parameters Resin feed rate(E)/(r∙min−1) 2.0,3.0,4.0,5.0 U300,t270 Traction speed(U)/(mm∙min−1) 100,300,500,700,800 E3.0,t270 Impregnation temperature (t)/℃ 240,250,270,290 E3.0,U300 表 3 CCF/PC成形工艺参数
Table 3. CCF/PC molding process parameters
Main process parameters Range of values Other process parameters Layering thickness(H)/ mm 0.10,0.13,0.16 S1.0,T260 Scan spacing(S)/ mm 0.8,1.0,1.2 H0.13,T260 Print temperature(T)/℃ 240,260,280 H0.13,S1.0 表 4 CGF/PC成形工艺参数
Table 4. CGF/PC molding process parameters
Main process parameters Range of values Other process parameters Layering thickness(H)/mm 0.14,0.17,0.20 S1.2,T280 Scan spacing(S)/mm 1.0,1.2,1.4 H0.17,T280 Print temperature(T)/℃ 270,280,290 H0.17,S1.2 表 5 不同温度下PC熔融指数(MFR)
Table 5. Melt index of PC at different temperatures (MFR)
Temperature/℃ 250 270 290 MFR/(g/10 min) 5.13 10.20 25.63 表 6 不同工艺参数的CCF/PC复合材料纤维含量
Table 6. Fiber content of CCF/PC composites with different process parameters
Process Parameters Fiber Content/vol% Constants/ mm Variables/ mm S 1.0 H 0.10 28.66 H 0.13 26.78 H 0.16 23.57 H 0.13 S 0.8 28.62 S 1.0 26.78 S 1.2 25.18 表 7 不同工艺参数的CGF/PC复合材料纤维含量
Table 7. Fiber content of CGF/PC composites with different process parameters
Process Parameters Fiber Content/vol% Constants/ mm Variables/ mm S 1.2 H0.14 51.35 H0.17 46.87 H 0.20 43.93 H0.17 S 1.0 50.95 S 1.2 46.87 S 1.4 40.84 表 8 不同工艺参数对应的CCF/PC复合材料孔隙率
Table 8. Porosity of CCF/PC composites corresponding to different process parameters
Process Parameters Porosity% Constants/mm Variables/mm S1.0 H 0.10 3.87 H 0.13 8.64 H 0.16 8.76 H 0.13 S 0.8 7.29 S 1.0 8.64 S 1.2 14.22 表 9 不同工艺参数对应的CGF/PC复合材料孔隙率
Table 9. Porosity of CGF/PC composites corresponding to different process parameters
Process Parameters Porosity/% Constants/mm Variables/mm S 1.2 H 0.14 4.41 H 0.17 5.24 H 0.20 5.56 H 0.17 S 1.0 6.45 S 1.2 5.24 S 1.4 14.44 -
[1] 秦若森, 孙守政, 韩振宇, 等. 3 D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17):200-208.Tai Ruosen, Sun Shouzheng, HAN Zhenyu, et al. 3 D Printing for Continuous Fiber-reinforced Thermoplastic Composites: a Review on Molding Quality[J]. Materials Direct,2022,36(17):200-208(in Chinese). [2] 陈向明, 姚辽军, 果立成, 等. 3 D打印连续纤维增强复合材料研究现状综述[J]. 航空学报, 2021, 42(10):174-198.CHEN Xiangming YAO Liaojun GUO Licheng, et al. 3 D printed continuous fiber-reinforced composites: State of the art and perspectives[J]. Journal of Aeronautics,2021,42(10):174-198(in Chinese). [3] YASSIN K. Processing of thermoplastic matrix composites through automated fiber placement and tape laying methods A review[J]. Journal of Thermoplastic Composite Materials, 2018, 31(12). [4] QURESHI Z, SWAIT T, SCAIFE R, et al. In situ consolidation of thermoplastic prepreg tape using automated tape placement technology: Potential and possibilities[J]. Composites Part B,2014,66(Nov.):255-267. [5] SUN Z, Xiao J, YU X, et al. Vibration Characteristics of Carbon-fiber Reinforced Composite Drive Shafts Fabricated using Filament Winding Technology[J]. Composite Structures,2019,241:111725. [6] MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports,2016,6:23058. doi: 10.1038/srep23058 [7] KABIR S, MATHUR K, SEYAM A. A critical review on 3 D printed continuous fiber-reinforced composites: History, mechanism, materials and properties[J]. Composite Structures,2020,232(Jan.):111476.1-111476.24. [8] 刘玲, 路明坤, 张博明, 等. 孔隙率对碳纤维复合材料超声衰减系数和力学性能的影响[J]. 复合材料学报, 2004(5):116-121. doi: 10.3321/j.issn:1000-3851.2004.05.022LIU ling, LU mingkun, ZHANG boming, et al. Effects of porosity on the ultrasonic absorption coefficient and mechanical strength of carbon/epoxy composites[J]. Journal of Composite Materials,2004(5):116-121(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.05.022 [9] VAJARI D A, GONZALEZ C, LLORCA J, et al. A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites[J]. Composites Science and Technology,2014,97(16):46-54. [10] 李涤尘, 鲁中良, 田小永, 等. 增材制造-面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4):22-38+3.LI Dichen LUZhongliang TIAN Xiaoyong et al. Additive manufacturing Revolutionary technology for leading aerospace manufacturing[J]. Journal of Aeronautics,2022,43(4):22-38+3(in Chinese). [11] 程平, 彭勇, 汪馗, 等. 3 D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(01): 237-242.CHENG Ping, PENG Yong, WANG Kui, et al. Quasi Static Penetration Property of 3 D Printed Continuous Ramie-fiber Reinforced Polylactic Acid Composites[J/OL], Materials Direct, 2023, 37(01): 237-242(in Chinese). [12] USUN A, GUMRUK R. The mechanical performance of the 3 D printed composites produced with continuous carbon fiber reinforced filaments obtained via melt impregnation[J]. Additive Manufacturing,2021(46-):46. [13] TIAN X, LIU T, YANG C, et al. Interface and performance of 3 D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A:Applied Science and Manufacturing,2016,88:198-205. doi: 10.1016/j.compositesa.2016.05.032 [14] 刘良强, 肖学良, 董科, 等. 3 D打印连续芳纶纤维/聚乳酸波纹夹层结构复合材料的压缩性能研究[J]. 塑料工业, 2020, 48(1):91-95. doi: 10.3969/j.issn.1005-5770.2020.01.020LIU Liang-qiang XIAO Xue-liang DONG Keet al. Compression Properties of 3 D Printed Continuous Kevlar Fiber/PLA Corrugated Sandwich Composite[J]. Plastics Industry,2020,48(1):91-95(in Chinese). doi: 10.3969/j.issn.1005-5770.2020.01.020 [15] 明越科, 段玉岗, 王奔, 等. 高性能纤维增强树脂基复合材料3 D打印[J]. 航空制造技术, 2019, 62(4):34-38+46.MING Yueke, DUAN Yugang, WANG Ben, et al. 3 D Printing for High Performance Fiber Reinforced Polymer Composites[J]. Aerospace Manufacturing Technology,2019,62(4):34-38+46(in Chinese). [16] MU A, SK A, MY B, et al. 3 D comp-action printing of a continuous carbon fiber reinforced thermoplastic - ScienceDirect[J]. Composites Part A:Applied Science and Manufacturing,2020:137. [17] 许云鹏, 颜春, 刘东, 等. 连续纤维增强热塑性预浸料制备工艺的研究进展[J]. 复合材料科学与工程, 2020, (08): 123-128.XU Yun-peng YAN Chun LIU Dong et al. Rrogress in preparation technology of contin- uous fiber reinforced thermoplastic prepregs[J]Composites Science and Engineering, 2020, (08): 123-128(in Chinese). [18] 徐奔, 张守玉, 水锋, 等. 连续碳纤维增强聚苯硫醚复合材料的3 D打印及力学性能优化[J]. 高分子材料科学与工程, 2022, 38(7):84-92.XU Ben, ZHANG Shouyu, SHUI Feng, et al. 3 D Printing and Mechanical Properties Optimization of Continuous Carbon Fiber Reinforced Polyphenylene Sulfide Composites[J]. Polymer Materials Science and Engineering,2022,38(7):84-92(in Chinese). [19] 刘国强. 聚合物光纤光栅传感特性研究[D]. 北京邮电大学, 2017.LIU Guoqiang. Research on sensing properties of polymer optical fiber grating[D]Beijing University of Posts and Telecommunications, 2017. (in Chinese). [20] 李杰. 抗氧剂, 光稳定剂在聚碳酸酯和改性材料中应用技术[J]. 塑料助剂, 2021(1):1-6.LI Jie. Application of Antioxidants and Light Stabilizers in Polycarbonate and Modified Materials[J]. Plastics Additives,2021(1):1-6(in Chinese). [21] 王欢. 聚碳酸酯的需求与市场分析[J]. 云南化工, 2021, 48(05): 9-11.WANG Huan. Demand and Market Analysis of Polycarbonate[J]Yunnan Chemical Industry, 2021, 48(05): 9-11(in Chinese). [22] 李慧斌. 3 D打印连续碳纤维丝材制备工艺及性能分析[D]. 大连理工大学, 2021.LI HuiBin. Preparation technology and perfor-mance analysis of 3 Dprinting continuous car-bon fiber wire (in Chinese). [23] JAHANGIR M. N, MM K, et al. Reinforcement of material extrusion 3 D printed polycarbonate using continuous carbon fiber - ScienceDirect[J]. Additive Manufacturing, 2019, 28: 354-364. TIAN Xiaoyong, ZHANG Yayuan, LIU Tengfei, et al. Prepreg Preparation and 3 D Printi-ng of Continuous Carbon Fiber Reinforced Nylon Composite[J]. Aerospace Manufacturin-g Technology, 2021, 64(15): 24-33(in Chinese). [24] 田小永, 张亚园, 刘腾飞, 等. 连续碳纤维增强尼龙复合材料预浸丝制备与3D打印性能研究[J]. 航空制造技术, 2021, 64(15):24-33. [25] 中国国家标准化管理委员会. 碳纤维复丝拉伸性能试验方法: GB/T 3362-2017[S]. 北京: 中国标准出版社, 2017.Standardization Administration of the People’s Republic of China. Test methods for tensile properties of carbon fiber multifilament: GB/T 3362-2017[S]. Beijing: China Standards Press, 2014. [26] 中国国家标准化管理委员会. 定向维增强聚合物基复合材料拉伸性能试验方法. : GB/T 3354-2014[S]. 北京: 中国标准出版社, 2014Standardization Administration of the People’s Republic of China. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials GB/T 3354-2014[S]. Beijing: China Standards Press, 2014. [27] LI H, LIU B, GE L, et al. Mechanical performances of continuous carbon fiber reinforced PLA composites printed in vacuum[J]. Composites, Part B. Engineering,2021(Nov.15):225. -

计量
- 文章访问数: 137
- HTML全文浏览量: 93
- 被引次数: 0