留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

经纱路径对三维机织复合材料弯曲性能的影响

赵世波 陈利 高梓越 王晶晶

赵世波, 陈利, 高梓越, 等. 经纱路径对三维机织复合材料弯曲性能的影响[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 赵世波, 陈利, 高梓越, 等. 经纱路径对三维机织复合材料弯曲性能的影响[J]. 复合材料学报, 2024, 42(0): 1-9.
ZHAO Shibo, CHEN Li, GAO Ziyue, et al. Effect of warp yarn paths on bending properties of 3D woven composites[J]. Acta Materiae Compositae Sinica.
Citation: ZHAO Shibo, CHEN Li, GAO Ziyue, et al. Effect of warp yarn paths on bending properties of 3D woven composites[J]. Acta Materiae Compositae Sinica.

经纱路径对三维机织复合材料弯曲性能的影响

基金项目: 国家科技重大专项(2017-Ⅶ-0011-0177);航空发动机及燃气轮机基础科学中心项目(P2022-B-IV-014-001);天津市海河实验室项目(22HHXCJC00007)
详细信息
    通讯作者:

    陈利,博士,教授,博士生导师,研究方向为先进纺织增强材料及其复合材料 E-mail: chenli@tiangong.edu.cn

  • 中图分类号: TB332

Effect of warp yarn paths on bending properties of 3D woven composites

Funds: National Science and Technology Major Project of the Ministry of Science and Technology of China (2017-Ⅶ-0011-0177); Basic Scientific Research Center Project of the Aero-engine and Gas Turbine (P2022-B-IV-014-001); Tianjin Haihe Laboratory Project (22HHXCJC00007)
  • 摘要: 设计了三种不同经纱路径的三维机织复合材料(3DWC),利用试验研究,有限元分析,SEM形貌分析相结合的方法,研究了3DWC弯曲性能,损伤机理,断裂形貌特征。研究表明,经纱路径对3DWC弯曲性能有显著影响,相对于衬经平纹机织复合材料(SPWC),随着经纱浮纱长度增加,衬经斜纹和衬经缎纹机织复合材料(STWC和SSWC)弯曲强度分别增加了54.64%和127.61%,弯曲模量分别增加了44.11%和47.11%。SPWC破坏模式为经纱和衬经纱断裂,STWC和SSWC失效模式以纱线断裂和界面脱粘为主。在弯曲载荷加载过程中衬经纱起主要的承载作用,而经纱路径的差异导致三种3DWC应力传递,裂纹扩展,弯曲性能和失效模式发生变化。

     

  • 图  1  三种三维机织复合材料(3DWC)预制体示意图

    Figure  1.  Diagram of three kinds of 3D woven composites(3DWC) preforms

    图  2  衬经平纹机织预制体织造工艺

    Figure  2.  Weaving process of stuffer plain woven preform

    图  3  3DWC三点弯曲试验装置

    Figure  3.  Three-point bending test device of 3DWC

    图  4  3DWC多尺度模型

    Figure  4.  Multi-scale model of 3DWC

    图  5  衬经平纹机织复合材料(SPWC)应力分布

    Figure  5.  Stress distribution of stuffer plain woven composites (SPWC)

    图  6  衬经斜纹机织复合材料(STWC)应力分布

    Figure  6.  Stress distribution of stuffer twill woven composites (STWC)

    图  7  衬经缎纹机织复合材料(SSWC)应力分布

    Figure  7.  Stress distribution of stuffer stain woven composites (SSWC)

    图  8  3DWC弯曲载荷-位移曲线

    Figure  8.  Bending load-displacement curves of 3DWC

    图  9  三种3DWC失效断裂形貌

    Figure  9.  Failure fracture morphologies of three 3DWC

    图  10  三种3DWC弯曲强度和弯曲模量对比

    Figure  10.  Bending strength and bending modulus of three 3DWC

    表  1  3DWC预制体织造参数

    Table  1.   Preform weaving parameter of 3DWC

    Structure Interweaving pattern of
    preform surface
    Warp specification(500 Tex) Stuffer specification
    (1000 Tex)
    Weft specification
    (1000 Tex)
    Unit cell size/mm
    SPWC 1/1 12K 24 K 24 K 5×5×3.5
    STWC 1/3 12K 24 K 24 K 10×10×3.5
    SSWC 8/3 12K 24 K 24 K 20×20×3.5
    Notes: SPWC—Stuffer plain woven composites; STWC—Stuffer twill woven composites; SSWC—Stuffer stain woven composites.
    下载: 导出CSV

    表  2  3DWC三种结构建模参数

    Table  2.   Three structural modeling parameters of 3DWC

    StructureWarp cross-sectionStuffer cross-sectionWeft cross-section
    Height/mmWidth/mmHeight/mmWidth/mmHeight/mmWidth/mm
    SPWC0.321.250.501.250.501.80
    STWC0.301.250.561.250.432.40
    SSWC0.301.250.561.250.433.40
    下载: 导出CSV

    表  3  T800-12K碳纤维工程常数(GPa)

    Table  3.   Engineering constants of T800-12K carbon fiber bundle (GPa)

    E11E22E33G12G13G23v12v13v23
    221.439.129.126.176.173.420.310.310.35
    下载: 导出CSV

    表  4  T800-12K碳纤维和5284环氧树脂材料参数

    Table  4.   Material parameters of T800-12K carbon fiber and 5284 epoxy resin

    Material Modulus of elasticity/GPa Poisson's ratio Density/(g·cm−3) Failure stress/MPa
    Carbon fiber - - 1.79 5700
    Epoxy matrix 3.50 0.34 1.12 60
    下载: 导出CSV

    表  5  3DWC工程常数性能参数(GPa)

    Table  5.   Engineering constant performance parameters of 3DWC (GPa)

    StructuresE11E22E33G12G13G23v12v13v23
    SPWC40.9164.188.263.282.752.460.030.490.35
    STWC47.2664.147.133.292.712.340.020.490.41
    SSWC51.7162.627.113.302.382.290.030.490.43
    下载: 导出CSV
  • [1] LI Z G, Li D S, Zhu H, et al. Mechanical properties prediction of 3D angle-interlock woven composites by finite element modeling method[J]. Materials Today Communications, 2019, 22.
    [2] CADORIN N, ZITOUNE R, SEITIER P, et al. Analysis of damage mechanism and tool wear while drilling of 3D woven composite materials using internal and external cutting fluid[J]. Journal of Composite Materials, 2015, 49(22): 2687-2703. doi: 10.1177/0021998314553045
    [3] HUANG T, WANG Y L, WANG G. Review of the Mechanical Properties of a 3D Woven Composite and Its Applications[J]. Polymer-Plastics Technology and Engineering, 2018, 57(5-8): 740-756.
    [4] JIAO W, CHEN L, XIE J B, et al. Effect of weaving structures on the geometry variations and mechanical properties of 3D LTL woven composites[J]. Composite Structures, 2020, 252.
    [5] WANG T K , LIANG H R, JIANG Z H, et al. Influence of weaving parameters on thermal protection performance of gradient 3D woven composite[J]. POLYMER COMPOSITES, 2020, 44(9), 5381-5395.
    [6] UMAIR M, HUSSAIN M, SHAKER K, et al. Impact Performance of Three-dimensional Woven Composites with Novel Binding Yarn Patterns[J]. Journal of Natural Fibers, 2022, 19(16): 14461-14476. doi: 10.1080/15440478.2022.2064399
    [7] LIU Y, NATSUKI T, HUANG C, et al. Effect of woven structure and aramid binder yarn on the flexural performance of carbon/aramid fiber hybrid three-dimensional woven composites[J]. Polymer Composites, 2022, 43(12): 8831-8849. doi: 10.1002/pc.27065
    [8] YAO L, RONG Q, SHAN Z, et al. Static and bending fatigue properties of ultra-thick 3D orthogonal woven composites[J]. Journal of Composite Materials, 2013, 47(5): 569-577. doi: 10.1177/0021998312443141
    [9] 薛有松, 薛凌明, 孙宝忠, 等. 碳纤维三维角联锁机织复合材料弯曲作用下力阻响应[J]. 复合材料学, 2023, 40(3): 1468-1476.

    XUE Yousong, XUE Lingming, SUN Baozhong et al. Piezoresistive effect of carbon fiber 3D angle-interlock woven composites under bending[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1468-1476(in Chinese).
    [10] LIU Y, HUANG C, XIA H, et al. Research on development of 3D woven textile-reinforced composites and their flexural behavior[J]. Materials & Design, 2021, 212: 110267.
    [11] 冯古雨, 曹海建, 钱坤. 三维浅交弯联机织复合材料弯曲性能的有限元分析[J]. 宇航材料工艺, 2015, 45(6): 22-26. doi: 10.3969/j.issn.1007-2330.2015.06.005

    FENG Guyu, CAO Haijian, QIAN Kun. Finite Element Analysis of 3D Curved Shallow-Crossing Linking Woven Composites on Bending Property[J]. Aerospace Materials & Technology, 2015, 45(6): 22-26 (in Chinese). doi: 10.3969/j.issn.1007-2330.2015.06.005
    [12] 王颖杰, 王海楼, 张伟. 不同衬经纱占比的三维角联锁机织增强复合材料弯曲性能[J]. 复合材料学报, 2023, 40(6): 3291-3301.

    WANG Yingjie, WANG Hailou, ZHANG Wei. Bending properties of three-dimensional angle interlocking woven reinforced compositeswith different proportions of warp insertion[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3291-3301(in Chinese).
    [13] DAI S, CUMNINGHAM PR, MARSHALL S, et al. Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites[J]. Composites Part A:Applied Science and Manufacturing, 2015, 69A: 195-207.
    [14] YANG C Y, ZAN X P, ZHENYING H U. Research of 3D Woven C/C Composites Bending Properties[C]. International Conference on Material Engineering, Architectural Engineering and Informatization. 2012.
    [15] JIN L, HU H, SUN B, et al. Three-point bending fatigue behavior of 3D angle-interlock woven composite[J]. Journal of Composites, 2012, 46(8): 883-894.
    [16] JIN L, NIU Z, JIN B C, et al. Comparisons of static bending and fatigue damage between 3D angle-interlock and 3D orthogonal woven composites[J]. Journal of Reinforced Plastics & Composites, 2012, 31(14): 935-945.
    [17] ZHANG L, QIU R, CHENG J, et al. Experimental investigation and multiscale simulation on the bending fatigue of 2D SiCf/SiC composites[J]. International Journal of Fatigue, 2021, 144: 106051. doi: 10.1016/j.ijfatigue.2020.106051
    [18] ZHONG H, YANG S. Multi-scale modelling of the damage behavior for 3D woven composites with variant structure[J]. Journal of Industrial Textiles, 2021, 51(4): 6211-6235.
    [19] QIAO KAI, XU XIWU, BUI TINH QUOC, et al. Mechanical properties and macro–meso coupled damage behavior of three-dimensional four-directional braided composites under bending loading[J]. Mechanics of Advanced Materials and Structures,DOI: 10.1080/15376494.2023.2185708.
    [20] JIA X, XIA Z, GU B. Numerical analyses of 3D orthogonal woven composite under three-point bending from multi-scale microstructure pproach[J]. Computational Materials Science, 2013, 79: 468-477. doi: 10.1016/j.commatsci.2013.06.050
    [21] ZHANG D Y, WAAS A M, YEN C F, et al. Progressive damage and failure response of hybrid 3D textile composites subjected to flexural loading, part II: Mechanics based multiscale computational modeling of progressive damage and failure[J]. International Journal of Solids & Structures, 2015, 75-76: 321-335.
    [22] American Society for Testing Materials. Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials: ASTM D7264/D7264M– 2007[S], United States: American Society for Testing Materials International, 2007.
    [23] 王翔华. 层联机织复合材料无人机起落架结构设计[D]. 天津工业大学, 2022.

    WANG Xianghua. Structural Design of Layered Woven Composite Material Drone Landing Gear [D]. Tiangong University, 2022 (in Chinese).
    [24] XIA Z H, ZHANG Y F, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures, 2003, 40(8): 1907-1921. doi: 10.1016/S0020-7683(03)00024-6
    [25] OUYANG Y W, SUN B Z, GU B H. Finite element analyses on bending fatigue of 3-D five-directional braided composite T-beam with mixed unit-cell model[J]. Journal of Composite Materials, 2018, 52(9): 1139-1154. doi: 10.1177/0021998317722203
    [26] HASHIN Z. Failure Criteria for Unidirectional Fiber Composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. doi: 10.1115/1.3153664
    [27] WARREN K C, LOPEZ-ANIDO R A , GOERING J. Experimental investigation of three-dimensional woven composites[J]. Composites Part A Applied Science & Manufacturing, 2015, 73: 242-259.
  • 加载中
计量
  • 文章访问数:  125
  • HTML全文浏览量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-25
  • 修回日期:  2024-02-22
  • 录用日期:  2024-02-28
  • 网络出版日期:  2024-03-26

目录

    /

    返回文章
    返回