留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维三轴机织物/环氧树脂基复合材料的弯折性能

宗香君 焦亚男 杨晓亚 何业茂 陈利

宗香君, 焦亚男, 杨晓亚, 等. 碳纤维三轴机织物/环氧树脂基复合材料的弯折性能[J]. 复合材料学报, 2023, 40(6): 3270-3278. doi: 10.13801/j.cnki.fhclxb.20220907.003
引用本文: 宗香君, 焦亚男, 杨晓亚, 等. 碳纤维三轴机织物/环氧树脂基复合材料的弯折性能[J]. 复合材料学报, 2023, 40(6): 3270-3278. doi: 10.13801/j.cnki.fhclxb.20220907.003
ZONG Xiangjun, JIAO Ya'nan, YANG Xiaoya, et al. Folding properties of carbon fiber triaxial woven fabric/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3270-3278. doi: 10.13801/j.cnki.fhclxb.20220907.003
Citation: ZONG Xiangjun, JIAO Ya'nan, YANG Xiaoya, et al. Folding properties of carbon fiber triaxial woven fabric/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3270-3278. doi: 10.13801/j.cnki.fhclxb.20220907.003

碳纤维三轴机织物/环氧树脂基复合材料的弯折性能

doi: 10.13801/j.cnki.fhclxb.20220907.003
基金项目: 天津市高等学校创新团队项目(TD13-5043)
详细信息
    通讯作者:

    焦亚男,博士,研究员,博士生导师,研究方向为纺织复合材料结构与性能 E-mail:jiaoyn@tiangong.edu.cn

  • 中图分类号: TB332

Folding properties of carbon fiber triaxial woven fabric/epoxy resin composites

Funds: Tianjin University Innovation Team Project (TD13-5043)
  • 摘要: 以碳纤维为增强材料,平面三轴机织物为增强体结构,环氧树脂为基体,通过真空辅助树脂传递模塑技术(Vacuum assisted resin transfer molding ,VARTM)制备了碳纤维三轴机织物增强环氧树脂基(Triaxial woven fabric/epoxy resin,TWF/EP)复合材料。借鉴金属材料薄板弯折性能试验方法,采用万能试验机开展TWF/EP的弯折实验,探究其弯折性能和损伤机制。研究结果表明:TWF/EP复合材料的弯折强度和模量与纤维束规格呈显著正相关性,与角度呈负相关性。在0°~30°范围内,TWF/EP复合材料的弯折性能变化幅度较小,表现出准各向同性。TWF/EP复合材料的力学响应表现为脆断,破坏模式分完全折断和不完全折断,TWF/EP复合材料的弯折断裂机制主要为纯剪切破坏、压剪耦合破坏及拉剪耦合破坏。

     

  • 图  1  试验路线示意图: (a) 三轴机织物(TWF)织造;(b) 复合成型铺层;(c) 弯折试验

    Figure  1.  Schematic diagram of experimental route: (a) Triaxial woven fabric (TWF) weaving; (b) Composite molding layer; (d) Folding test

    L—Spacing between two adjacent carbon fiber bundles in the same set; a—Carbon fiber beam width

    图  2  准静态下碳纤维TWF/环氧树脂(EP)复合材料单层板在不同偏轴角度下的代表性面内弯折载荷-位移曲线

    Figure  2.  Representative in-plane folding load-displacement curves of carbon fiber TWF/epoxy resin (EP) composite monolayers at different off-axis angles under quasi-static conditions

    图  3  碳纤维TWF/EP复合材料在宏观尺度上的弯折过程及其损伤形貌:((a1)~(a7)) TWF/EP复合材料的弯折响应过程;(a8) 不同角度试样的弯折断口走向;(b) 断口的细观形貌;((c1)~(c2)) 断口的微观形貌

    Figure  3.  Folding process of carbon fiber TWF/EP composites on macro scale: ((a1)-(a7)) Folding response process TWF/EP composites; (a8) Trend of folding fracture of samples with different angles; (b) Micro morphology of fracture; ((c1)-(c2)) Micro morphologies of fracture

    Y—Displacement

    图  4  试样在不同角度载荷作用下的弯折受力示意图

    Figure  4.  Schematic diagram of folding force of samples at different angles of load

    F—Load

    图  5  碳纤维TWF/EP复合材料弯折强度(a)和弯折模量(b)测试结果

    Figure  5.  Test results of folding strength (a) and modulus (b) for carbon fiber TWF/EP composites

    图  6  碳纤维TWF/EP复合材料弯折性能变化趋势:(a) 弯折强度;(b) 弯折模量

    Figure  6.  Variation trend of folding properties of carbon fiber TWF/EP composite: (a) Folding strength; (b) Folding modulus

    图  7  碳纤维TWF/EP复合材料最小弯折半径

    Figure  7.  Minimum radium of carbon fiber TWF/EP composite

    图  8  弯折失效后碳纤维TWF/EP复合材料断口处的多尺度损伤形貌:(a) 宏观尺度;(b) 细观尺度;(c) 微观尺度

    Figure  8.  Multi-scale damage morphologies at fracture surface of carbon fiber TWF/EP composites after folding failure: (a) Macro scale; (b) Meso scale; (c) Micro scale

    表  1  三轴机织复合材料结构参数

    Table  1.   Structural parameters of triaxial woven fabric composites

    No.Carbon fiberYarn width/mmYarn center distance/mmPorosity/%Thickness/mmArea density/(g·m−2)Fiber volume/vol%
    3-1T300-3 k1.44.5340.389250.033.3
    3-25.5410.345212.227.9
    6-1T300-6 k2.15.5340.458383.335.7
    6-26370.403330.332.4
    下载: 导出CSV
  • [1] 唐雅琼. 空间网状天线多源误差与形面稳定性研究[D]. 西安: 西安电子科技大学, 2017.

    TANG Yaqiong. Study on multi-source error and shape stability of spatial mesh antenna[D]. Xi'an: Xidian University, 2017(in Chinese).
    [2] 李欣雪, 龙小丽, 訾梦超. 小型基站定向天线性能研究分析[J]. 现代工业经济和信息化, 2011, 11(4):25-27.

    LI Xinxue, LONG Xiaoli, ZI Mengchao. Performance research and analysis of directional antenna for small base station[J]. Modern Industrial Economy and Informatization,2011,11(4):25-27(in Chinese).
    [3] 段宝岩. 大型空间可展开天线的研究现状与发展趋势[J]. 电子机械工程, 2017, 33(1):1-14. doi: 10.3969/j.issn.1008-5300.2017.01.001

    DUAN Baoyan. Research status and development trend of large space deployable antenna[J]. Electro-Mechanical Engineering,2017,33(1):1-14(in Chinese). doi: 10.3969/j.issn.1008-5300.2017.01.001
    [4] 孔令辉, 朱俊杰, 李泽健, 等. 国内外星载ADS-B应用现状及展望[J]. 科技风, 2021(13):20-22.

    KONG Linghui, ZHU Junjie, LI Zejian, et al. Current situation and prospect of spaceborne ADS-B application at home and abroad[J]. Technology Wind,2021(13):20-22(in Chinese).
    [5] BOLLI P, ORFEI A, ZANICHELLI A, et al. An international survey of front-end receivers and observing performance of telescopes for radio astronomy[J]. Publications of the Astronomical Society of the Pacific,2019,131(1002):137-161.
    [6] 魏善祥, 王启明, 孔德庆, 等. 大型双反射面天线指向误差评估算法[J]. 天文研究与技术, 2020, 17(4):513-521.

    WEI Shanxiang, WANG Qiming, KONG Deqing, et al. Evaluation algorithm for pointing error of large dual reflector antenna[J]. Astronomical Research and Technology,2020,17(4):513-521(in Chinese).
    [7] 张华振, 马小飞, 宋燕平, 等. 星载高精度环形网状天线设计方法[J]. 中国空间科学技术, 2013, 33(5):1-6. doi: 10.3780/j.issn.1000-758X.2013.05.001

    ZHANG Huazhen, MA Xiaofei, SONG Yanping, et al. Design method of high precision ring mesh antenna on satellite[J]. Chinese Space Science and Technology,2013,33(5):1-6(in Chinese). doi: 10.3780/j.issn.1000-758X.2013.05.001
    [8] 万小平, 杨粉莉, 杨军刚. 空间大型可展开高精度天线的应用现状及发展趋势[J]. 空间电子技术, 2020, 17(6):1-7. doi: 10.3969/j.issn.1674-7135.2020.06.001

    WAN Xiaoping, YANG Fenli, YANG Jungang. Application status and development trend of large deployable high precision antenna in space[J]. Space Electronic Technology,2020,17(6):1-7(in Chinese). doi: 10.3969/j.issn.1674-7135.2020.06.001
    [9] 田大可, 范小东, 郑夕健, 等. 空间可展开天线微重力环境模拟研究现状与展望[J]. 机械工程学报, 2021, 57(3):11-25. doi: 10.3901/JME.2021.03.011

    TIAN Dake, FAN Xiaodong, ZHENG Xijian, et al. Research status and Prospect of microgravity environment simulation for space deployable antenna[J]. Journal of Mechanical Engineering,2021,57(3):11-25(in Chinese). doi: 10.3901/JME.2021.03.011
    [10] SOYKASAP O, KARAKAYA S. Analysis and testing of ultrathin shell 2 m diameter reflector demonstrator[J]. Journal of Reinforced Plastics and Composites,2013,32(7):450-462. doi: 10.1177/0731684412465778
    [11] DATASHVILI L. Multifunctional and dimensionally stable flexible fibre composites for space applications[J]. Acta Astronautica,2010,66(7):1081-1086.
    [12] TYLER T. Developments in triaxial woven fabrics[M]. London: Woodhead Publishing, 2011: 141-163.
    [13] RAO Y, ZHNAG C, LI W. Structural analysis for triaxial woven fabric composites of carbon fiber[J]. Composite Structures,2019,219:42-50. doi: 10.1016/j.compstruct.2019.03.013
    [14] DATASHVILI, LERI S. Multi-scale analysis of structures made of triaxially woven fabric composites with stiff and flexible matrix materials[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Colorado: AIAA, 2011.
    [15] 易淼. 三向织物织造及其复合材料拉伸机理研究[D]. 上海: 东华大学, 2019.

    YI Miao. Study on the tensile mechanism of triaxial woven fabric weaving and its composites[D]. Shanghai: Donghua University, 2019(in Chinese).
    [16] 沙迪, 禹旭敏, 赵将, 等. 碳纤维三向织物/环氧树脂复合材料的制备与力学性能[J]. 高等学校化学学报, 2020, 41(4):838-845. doi: 10.7503/cjcu20190513

    SHA Di, YU Xumin, ZHAO Jiang, et al. Preparation and mechanical properties of carbon fiber triaxial woven fabric/epoxy resin composites[J]. Chemical Journal of Chinese Universities,2020,41(4):838-845(in Chinese). doi: 10.7503/cjcu20190513
    [17] 毕华阳. 碳纤维三向织物复合材料拉伸性能及拉伸破坏模式研究[D]. 上海: 东华大学, 2018.

    BI Huayang. Study on tensile properties and tensile failure mode of carbon fiber triaxial woven fabric composites[D]. Shanghai: Donghua University, 2018(in Chinese).
    [18] ZHOU X, MA X. Tensile and bending behavior of thin-walled triaxial weave fabric composites[J]. Journal of Engineered Fibers and Fabrics,2019,14:1-10.
    [19] 张平, 桂良进, 范子杰. 三向编织复合材料弹性性能研究[J]. 工程力学, 2009, 26(1):31-36.

    ZHANG Ping, GUI Liangjin, FAN Zijie. Study on the elastic properties of trixially braided composites[J]. Engineering Mechanics,2009,26(1):31-36(in Chinese).
    [20] KUEH A, PELLEGRINO S. Thermo-elastic behaviour of single ply triaxial woven fabric composites[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Rhode Island: AIAA, 2006.
    [21] AOKI T, YOSHIDA K, WATANABE A. Feasibility study of triaxially-woven fabric composite for deployable structures[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Hawaii: AIAA, 2007.
    [22] 贾明皓, 裴佳慧, 肖学良, 等. 基于三向交织结构玄武岩纤维增强水泥基复合材料力学性能研究[J]. 硅酸盐通报, 2019, 38(2):517-521.

    JIA Minghao, PEI Jiahui, XIAO Xueliang, et al. Study on mechanical properties of basalt fiber reinforced cement-based composites based on three-dimensional interlaced structure[J]. Bulletin of the Chinese Ceramic Society,2019,38(2):517-521(in Chinese).
    [23] SOYKASAP O. Folding design of composite structures[J]. Composite Structures,2007,79(2):280-287. doi: 10.1016/j.compstruct.2006.01.008
    [24] ZHAO Q, HOA S V, OUELLETTE P. Progressive failure of triaxial woven fabric (TWF) composites with open holes[J]. Composite Structures,2004,65(3-4):419-431. doi: 10.1016/j.compstruct.2003.12.004
    [25] 中国钢铁工业协会. 金属材料—薄板和薄带—弯折性能试验方法: GB/T 38806—2020[S]. 北京: 中国标准出版社, 2020.

    China Iron Steel Association. Metallic materials—Sheet and strip—Test method for bending and folding properties: GB/T 38806—2020[S]. Beijing: Standards Press of China, 2020(in Chinese).
    [26] FUKUDA H, WATANABE T, ITABASHI M, et al. Compression bending test for CFRP pipe[J]. Composites Science and Technology,2002,62(15):2075-2081. doi: 10.1016/S0266-3538(02)00150-1
    [27] 杨晓亚, 焦亚男, 何业茂, 等. 孔洞型碳纤维三轴机织物/环氧树脂复合材料的弯曲和拉伸性能[J]. 复合材料学报, 2022, 39(7):3191-3201.

    YANG Xiaoya, JIAO Ya'nan, HE Yemao, et al. Bending and tensile properties of carbon fiber triaxial woven fabric/epoxy resin composites with holey structure[J]. Acta Materiae Compositae Sinica,2022,39(7):3191-3201(in Chinese).
    [28] 韩帅, 段跃新, 李超, 等. 不同针织结构经编碳纤维复合材料弯曲性能[J]. 复合材料学报, 2011, 28(5):52-57.

    HAN Shuai, DUAN Yuexin, LI Chao, et al. Flexural properties of warp knitted carbon fiber composites with different knitting structures[J]. Acta Materiae Compositae Sinica,2011,28(5):52-57(in Chinese).
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  849
  • HTML全文浏览量:  506
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 修回日期:  2022-08-10
  • 录用日期:  2022-08-20
  • 网络出版日期:  2022-09-08
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回