Loading [MathJax]/jax/output/SVG/jax.js

原位生长Ni-Co-B-Yb稀土复合催化剂的制备及其析氢性能

景欣欣, 陈必清, 翟佳鑫, 袁美玲

景欣欣, 陈必清, 翟佳鑫, 等. 原位生长Ni-Co-B-Yb稀土复合催化剂的制备及其析氢性能[J]. 复合材料学报, 2025, 42(5): 2682-2692.
引用本文: 景欣欣, 陈必清, 翟佳鑫, 等. 原位生长Ni-Co-B-Yb稀土复合催化剂的制备及其析氢性能[J]. 复合材料学报, 2025, 42(5): 2682-2692.
JING Xinxin, CHEN Biqing, ZHAI Jiaxin, et al. In situ growth of a Ni-Co-B-Yb rare earth composite electrode: preparation and electrocatalytic hydrogen precipitation performance[J]. Acta Materiae Compositae Sinica, 2025, 42(5): 2682-2692.
Citation: JING Xinxin, CHEN Biqing, ZHAI Jiaxin, et al. In situ growth of a Ni-Co-B-Yb rare earth composite electrode: preparation and electrocatalytic hydrogen precipitation performance[J]. Acta Materiae Compositae Sinica, 2025, 42(5): 2682-2692.

原位生长Ni-Co-B-Yb稀土复合催化剂的制备及其析氢性能

基金项目: 国家自然科学基金 (22062020)
详细信息
    通讯作者:

    陈必清,硕士,教授,硕士生导师,研究方向电化学 E-mail: chenbq2332@163.com

  • 中图分类号: TQ151; TB333

In situ growth of a Ni-Co-B-Yb rare earth composite electrode: preparation and electrocatalytic hydrogen precipitation performance

Funds: National Natural Science Foundation of China (22062020)
  • 摘要:

    探索和开发低成本、高活性的非贵金属析氢反应(Hydrogen Evolution Reaction, HER)电催化剂,对于电解水的实际应用具有重要意义但仍具有挑战性。本文采用化学沉积法在三维的泡沫镍基底上制备了原位生长的稀土(Rare Earth, RE)复合催化电极(Ni-Co-B-Yb/NF),对催化电极的结构和形貌进行了表征,并研究其在1 mol·L−1 KOH溶液中的析氢性能。结果表明,添加Yb可使电极的形貌及电子结构发生改变,改善催化剂材料的HER催化性能。当Yb和Co浓度分别为3 g·L−1和5 g·L−1时,Ni-Co-B-Yb /NF表现出最佳的析氢性能。当电流密度为10 mA·cm−2时,析氢过电位为57 mV,Tafel斜率仅为73 mV·dec−1,此外,经过100 h长期稳定性测试和2000次循环伏安(Cyclic voltammetry,CV)测试后,该催化剂表现出良好的电化学稳定性。实验结果表明:Yb的引入可以提升Ni-Co-B材料的HER催化性能,且Yb和Co浓度的改变对电催化性能影响较大。这项工作丰富了稀土复合催化剂在电解水催化方面的知识。

     

    Abstract:

    The exploration and development of low-cost and highly active non-precious metal hydrogen evolution reaction (HER) electrocatalysts are important but still challenging for practical applications in water electrolysis. In this study, in-situ-grown rare earth (RE) composite catalytic electrodes (Ni-Co-B-Yb/NF) were prepared on a three-dimensional nickel foam (NF) substrate by chemical deposition, and the structure and morphology of the catalytic electrodes were characterized and their hydrogen precipitation performance was investigated in 1 mol·L−1 KOH solution. The results show that the addition of Yb can change the morphology and electronic structure of the electrode and improve the HER catalytic performance of the catalyst material. The Ni-Co-B-Yb /NF exhibited the best hydrogen precipitation performance when the Yb and Co concentrations were 3 g·L−1 and 5 g·L−1, respectively. At a current density of 10 mA·cm−2, the hydrogen precipitation overpotential was 57 mV, and the Tafel slope was only 73 mV·dec−1. In addition, after 100 h of long-term stability test and 2000 cycles of cyclic voltammetry (CV) test, the catalyst showed good electrochemical stability. good electrochemical stability. The experimental results show that the introduction of Yb can enhance the HER catalytic performance of Ni-Co-B materials, and the changes of Yb and Co concentrations have a large effect on the electrocatalytic performance. This work enriches the knowledge of rare-earth composite catalysts for electrolytic water catalysis.

     

  • 可再生能源的间隙性和波动性为能量的安全、高效利用带来较大挑战,已经成为经济可持续发展面临的重要议题[1]。钒液流电池(Vanadium liquid flow battery,VRB)可将电能高效储存,具有本征安全、响应速度快和运行寿命长等特点,相对于其他类型储能技术,钒电池技术在大规模、长时储能领域显示出优越的发展前景[1-3]

    作为钒电池的关键部件,质子交换膜(Proton exchange membrane,PEM)需具有如下特性[4-5]:(1)高离子选择性,即高质子传导率和低钒离子渗透率;(2)高拉伸强度和穿刺强度;(3)良好的理化稳定性;(4)较好的经济性。目前,基于全氟磺酸树脂的PEM在VRB中的应用最为广泛,如杜邦公司Nafion系列膜,但其溶胀性和离子选择性等与VRB的严格要求仍存在差距,优化膜的离子渗透性是本领域的研究热点[6-8]。实验表明,向膜中引入具有适宜孔道结构和表面性质的功能材料是改善其离子选择性的有效手段[5],如金属-有机框架(Metal-organic frameworks,MOFs)材料[9-11]

    在MOFs材料中,UIO-66 (Zr-MOF)由六核氧化锆簇作为二级构建单元和1, 4-苯二甲酸接头构建[12],具有刚性结构和较强的耐酸性,同时拥有介于水和离子(<0.3 nm)和钒离子(>0.6 nm)的孔道尺寸[13]。UIO-66主要通过水热合成法制备,但在合成过程中,烘箱加热较难提供均匀的受热环境,存在合成时间长、材料结构均一性差等问题[14]。微波加热可促进反应物中分子或离子直接耦合,实现能量的快速传导,具有反应速率快和产率高等优点,已被广泛用于多种纳米材料的合成[14-16]。Zhai等[6]通过在磺化聚醚醚酮(SPEEK)中掺入15wt% 的传统水热法UIO-66-NH2来改善复合膜的质子传导率,在120 mA·cm−2电流密度下,电池的能量效率(Energy efficiency,EE)为77.3%。Lu等[17]制备高质子选择性的聚多巴胺(PDA)@MOF-808,并将其掺入SPEEK中以优化复合膜的性能,在120 mA·cm−2电流密度下,该膜的EE为83.9%。贾儒等[13]和Wan等[14]也分别对UIO-66的合成和应用展开研究,均采用耗时较长的传统水热法。

    鉴于此,本文采用不同加热方式制备氨基官能化的UIO-66 (UIO-66-NH2),验证微波加热在UIO-66-NH2材料的合成效率、结构优化方面的优势,并将其与Nafion 掺杂,通过溶液浇筑法制备复合膜,对膜的理化性质和电池性能进行表征,探讨新型膜材料对钒电池性能的影响。

    氯化锆(ZrCl4,98%)、2-氨基对苯二甲酸(BDC-NH2,99%),上海麦克林生化科技有限公司;Nafion溶液(固含量5%),美国杜邦公司;无水乙醇,沈阳试剂二厂;N, N-二甲基甲酰胺(DMF)、MgSO4、硫酸氧钒(VOSO4·5H2O)、浓硫酸(98%)、乙酸(99%),国药集团化学试剂有限公司。

    UIO-66-NH2合成原料摩尔比:ZrCl4∶BDC-NH2 = 1∶1。首先,将二者分别溶于20 mL DMF,再在配体溶液中加入2.3 mL乙酸,超声波辅助下混合20 min后得均匀的合成液。随后,将适量上述合成液倒入微波合成罐中,在不同温度下合成15 min,离心后获得棕黄色粉末。将上述粉末分散在无水乙醇中,多次更新乙醇下保持48 h,完成产物清洗。最后,在60℃下干燥12 h,获得产物UIO-66-NH2,记为M-U66-NH2。作为对比,采用同样的合成液,利用传统烘箱加热,在120℃条件下反应24 h制备UIO-66-NH2,经过相同的清洗、干燥处理,获得产物UIO-66-NH2,记为T-U66-NH2。具体操作流程和样品编号见图1表1

    以溶液浇筑法制备复合膜[18]:称取一定质量的M-U66-NH2,在超声辅助下分散在Nafion树脂溶液(固含量5%)中,在450 r/min下搅拌10 h后获得铸膜液。将适量铸膜液倒入带有凹槽的玻璃板上,在140℃真空烘箱中处理4 h,除去溶剂后得到复合膜,在恒温、恒湿条件下保存、备用。将掺杂M-U66-NH2的复合膜记作M/N-XX=1、2、3、6和9,X表示Nafion树脂中M-U66-NH2的质量分数。将掺杂T-U66-NH2的复合膜记作T/N-XX=3。同时,采用相似工艺制备无M-U66-NH2掺杂的纯树脂膜,记作P-N。具体操作流程和样品编号见图1表1

    图  1  微波合成氨基官能化的UIO-66 (UIO-66-NH2)及Nafion复合膜的制备过程示意图
    Figure  1.  Schematic diagram of the preparation process of UIO-66-NH2 and Nafion composite membrane
    M-U66-NH2—UIO-66-NH2 prepared by microwave assisted method; UIO-66-NH2—Zr-MOF when the preparation method does not need to be distinguished; BDC-NH2—2-aminoterephthalic Acid; DMF—N, N-dimethylformamide; HAc—Acetic acid
    表  1  复合质子交换膜的命名
    Table  1.  Naming of composite proton exchange membranes
    Sample name Instruction
    M-U66-NH2 "M" represents microwave heating; "U66" refers to the metal-organic framework material UIO-66; Overall, it indicates the UIO-66-NH2 sample prepared by microwave heating.
    T-U66-NH2 "T" represents traditional oven heating; Overall, it indicates the UIO-66-NH2 sample prepared by oven heating.
    M/N-X "M/N" represents the composite membrane with M-U66-NH2 and Nafion resin; "X" represents the percentage content of M-U66-NH2 in the membrane.
    T/N-X "T/N" represents the composite membrane with T-U66-NH2 and Nafion resin; "X" represents the percentage content of T-U66-NH2 added to the membrane.
    P-N A pure, unmodified Nafion membrane
    N212 Commercial Nafion 212 membrane from DuPont (USA)
    下载: 导出CSV 
    | 显示表格

    采用X射线衍射仪(XRD,Bruker D8)和傅里叶红外光谱(FTIR,Nicolet 380,扫描范围:4000~750 cm−1)评价粉末结构;扫描电子显微镜(SEM,SU8010,Hitachi)和扫描电子能谱(EDS)表征样品的微观形貌和元素分布;万能拉伸试验机(Instron 1186,加载速度为10 mm/min)检测膜的力学性能。

    膜面积溶胀率的计算公式如下:

    SR = (SwetSdry)Sdry×100% (1)

    式中:Swet为湿膜面积(cm2);Sdry为干膜面积(cm2)。

    吸水率的计算公式如下:

    WU = (WwetWdry)Wdry×100% (2)

    式中:Wwet为湿膜质量(g);Wdry为干膜质量(g)。

    应用紫外分光光度计(TU-1810,Beijing Purcell General Instrument Co., Ltd.)测试膜的VO2+渗透性[7],取样间隔12 h,钒离子渗透率计算公式如下:

    VBd(CB(t))dt=APL(CACB(t)) (3)

    式中:CA为VOSO4溶液侧VO2+浓度;CB(t)t时刻MgSO4溶液侧VO2+浓度;VB为MgSO4溶液体积;P为钒离子渗透率;L为膜厚度;A为膜的有效面积(1.77 cm2)。

    应用电化学工作站(CHI660E,上海辰华)测试膜的离子电导率(σ),计算公式如下:

    σ=DRb (4)

    式中:Rb为膜的面电阻;D为膜厚度。

    采用新威电池测试系统表征VRB的电池性能,电流密度范围为100~200 mA·cm−2。循环测试的电流密度为150 mA·cm−2,循环200次。测试膜的放电容量衰减率,计算公式如下:

    =Qdis200Qdis1×100% (5)

    式中:Qdis200为循环200次后的放电容量;Qdis1为第一次循环前放电容量。

    = (6)

    为了优化UIO-66-NH2的合成参数,考察微波合成温度对材料结构的影响。如图2(a)所示,合成时间为15 min,当温度较低时(60℃),晶体结构较规则,颗粒尺寸约为1 μm,但产率仅为60%。随着合成温度的升高,晶体结构特征逐渐增强。如图2(c)所示,100℃下所合成样品具有明显的近八面体的晶体形貌[18]。当温度升至120℃时,晶体结构更加完整,此时粒径约为200 nm (图2(d)),分散性较好,且产率接近90%。由图2(e)可见,通过普通水热法也可以制备出形貌规则的UIO-66-NH2材料,只是所需的合成时间更长[19]

    图  2  不同温度下微波加热15 min ((a)~(d))、烘箱加热24 h (e)制备UIO-66-NH2的SEM图像及微波加热15 min样品的XRD图谱(f)
    Figure  2.  SEM images of UIO-66-NH2 by microwave heating for 15 min ((a)-(d)), oven heating for 24 h (e) and XRD patterns of UIO-66-NH2 by microwave heating for 15 min (f)

    XRD图谱反映样品的结晶度,如图2(f)所示,样品在2θ=7.40°和8.66°处出现了较明显的衍射峰,对应UIO-66-NH2的(111)和(002)晶面,在2θ=26.22°和31.86°等处出现强度略低的衍射峰,以上峰位置和强度与文献报道结果基本一致[20],证明本实验成功合成出UIO-66-NH2晶体。而且,随着合成温度的升高,晶体的衍射峰强度逐渐增加,即使在60℃下仍能合成出晶体。主要原因在于微波作用下反应釜内晶体前驱体溶液能够快速、均匀受热,微波的折射和反射诱导晶体快速成核、生长[21],合成效率得到显著提高。

    为了更清晰地观察复合膜的微观形貌以及膜厚度,本实验对膜样品进行SEM表征。如图3(a)~3(c)所示,不同膜样品均呈现出较均匀、致密的形貌特征,M-U66-NH2的掺杂量对膜形貌的影响较小。图3(d)~3(f)中,不同膜的厚度相近,约为40 μm。P-N膜的截面更加平滑,随着M-U66-NH2掺杂量的增加,复合膜截面的粗糙度逐渐增加,但晶体的掺入未明显改变复合膜的结构。图3(g)~3(j)清晰地展现出M-U66-NH2在M/N-3膜表面的元素分布情况,与M-U66-NH2相关的Zr、N元素及与Nafion树脂相关的F、S元素在膜表面均匀分布,说明复合膜中M-U66-NH2的分散性良好,未发生明显的团聚现象,这为功能材料充分发挥其表面性质和孔道尺寸等优势提供了条件。

    图  3  P-N (a)、M/N-1 (b)、M/N-3 (c) 膜的表面SEM图像;P-N (d)、M/N-1 (e)、M/N-3 (f)膜的截面SEM图像;M/N-3膜的表面EDS元素分布图((g) N;(h) Zr;(i) F;(j) S)
    Figure  3.  Surface SEM images of P-N (a), M/N-1 (b) and M/N-3 (c); Cross-section SEM images of P-N (d), M/N-1 (e) and M/N-3 (f); EDS element images of M/N-3 ((g) N; (h) Zr; (i) F; (j) S)

    为了探究高M-U66-NH2含量对复合膜结构的影响,本实验制备了M/N-6和M/N-9膜。如图4(a)所示,当掺杂量为6wt%时,复合膜截面出现较多尺寸约为2~3 μm的孔洞,这是由于较高掺杂量下,强相互作用促使M-U66-NH2粒子团聚,导致膜内出现缺陷。当掺杂量增至9wt%时,复合膜截面呈现出非对称结构,膜层中可以观察到大尺寸的M-U66-NH2团聚体。产生该现象的原因在于成膜过程中随着溶剂的缓慢挥发,较大尺寸的团聚体会逐渐下沉,并在玻璃板侧富集,形成高M-U66-NH2含量的多孔、疏松区域,此结构不利于UIO-66-NH2功能的充分发挥。同时,产生的缺陷会加速钒离子的跨膜渗透,降低质子交换膜的离子选择性和力学性能[14]

    图  4  M/N-6 ((a), (c))和M/N-9 ((b), (d))膜的截面SEM图像
    Figure  4.  Cross-sectional SEM images of M/N-6 ((a), (c)) and M/N-9 ((b), (d))

    通过FTIR分析M-U66-NH2、P-N、M/N-3膜样品的结构特征,如图5所示。M-U66-NH2345833561436 cm−1处具有明显的特征峰,分别对应N—H的对称和非对称伸缩振动及N—H的剪切伸缩振动,与文献报道一致[22]。P-N膜在12071151 cm−1处为C—F伸缩振动峰,1053 cm−1处为O=S=O振动峰及980 cm−1处为C—F特征峰,此结果与文献中Nafion树脂的特征峰一致[18]。M/N-3膜的FTIR图谱可以近似为M-U66-NH2和P-N图谱的叠加,表明UIO-66-NH2材料在膜中稳定存在,制膜过程并未破坏其微观结构。

    图  5  M-U66-NH2、P-N膜和M/N-3膜的红外图谱
    Figure  5.  FTIR spectra of M-U66-NH2, P-N and M/N-3 membranes

    吸水率和溶胀率是质子交换膜的重要性能指标。如图6(a)所示,基于M-U66-NH2的亲水性和丰富孔道,复合膜的吸水率和溶胀率均随掺入量的提高而增大[23]。同时,M-U66-NH2的刚性结构赋予膜较低的溶胀率(<4%)[24]。膜的吸水率和溶胀率直接影响其离子传导性能,由图6(b)可见,随着UIO-66-NH2掺杂量的提高,膜的质子传导率逐渐增大,而面电阻逐渐变小,如M/N-3的质子传导率达到122.18 mS·cm−1,此改善效果得益于膜中—NH2和—SO3H形成的酸/碱对及存在的氢键网络[25]。当掺杂量超过6wt%时,M-U66-NH2在膜内团聚而缺陷产生,膜的质子传导率较低。比较可见,M/N-3膜的吸水率、溶胀率和质子传导率均高于T/N-3膜,这与UIO-66-NH2的尺寸均一性和完整结构相关。

    图  6  复合膜的吸水率和溶胀率(a)、面电阻和质子传导率(b)、力学性能(c)和应力-应变曲线(d)
    Figure  6.  Water uptake and swelling ratio (a), area resistance and conductivity (b), mechanical properties (c) and stress-strain curves of different membranes (d)
    N212—Nafion 212 commercial membrane, DuPont, USA

    通过拉伸测试评价膜的机械强度。如图6(c)图6(d)所示,M-U66-NH2掺杂量低于3wt%时,复合膜的拉伸强度均高于P-N膜,如M/N-3膜的强度达到27 MPa,也高于T/N-3膜(22.3 MPa)。主要原因是UIO-66-NH2具有刚性结构,且—NH2基团与Nafion的—SO3H基团可形成共轭酸碱对,其强相互作用促使Nafion的分子链与UIO-66-NH2发生物理交联,从而提高了复合膜的力学性能[26]。同时,尺寸更小、更规则的M-U66-NH2与Nafion树脂间的分散更充分、交联程度更高,表现出更优的强化作用[1]。当UIO-66-NH2掺杂量超过6wt%时,膜中的孔洞缺陷导致其机械强度显著降低。

    本实验选取的UIO-66-NH2的有效孔径为0.52 nm,介于水分子(<0.3 nm)和钒离子(>0.6 nm)之间[14],可通过筛分效应提高膜的离子选择性。如图7(a)所示,M/N-X系列复合膜的阻钒性更好,如M/N-3膜的钒离子渗透浓度最低,仅为P-N膜的23%左右,而M/N-9膜的阻钒性能最差。当测试时间大于48 h,T/N-3膜的表现略差于M/N-3膜,主要原因是传统水热法所制备UIO-66-NH2的晶体结构不够完善。

    图  7  复合膜的钒离子渗透浓度(a)、钒离子渗透率和离子选择性(b)
    Figure  7.  Vanadium ion permeation concentration (a), vanadium ion permeability and ion selectivity (b) of composite membranes

    高钒离子渗透性不利于钒电池长期稳定运行,如图7(b)所示,优化条件下所制备的M/N-3膜的钒离子渗透率最低,仅为8.3×10−8 cm2·min−1,且该膜的离子选择性达到15.6×105 S·min·cm−3,约为P-N膜的30倍。当UIO-66-NH2掺入量过低或过高时,膜的离子选择性均较低。另外,与M/N-3膜相比,掺杂T-U66-NH2的复合膜具有接近的离子选择性,这说明两种方法所制备UIO-66-NH2对复合膜离子选择性的影响较小。有研究结果指出增加厚度会提高膜的钒离子渗透率,进而降低膜的离子选择性[7, 27-29]。因此,本实验在充分参考文献数据的基础上,为了平衡氢离子、钒离子的渗透情况,确定膜厚度为40 μm左右。

    分别将P-N、M/N-X和T/N-3膜组装成模拟电池进行测试,评价不同电池的电压效率(Voltage efficiency,VE)、库伦效率(Coulombic efficiency,CE)和能量效率(EE)。由图8(a)可知,在相同电流密度下,随着M-U66-NH2掺杂量的增加,电池的CE逐渐增大,在100 mA·cm−2电流密度下,M/N-3膜电池的库伦效率达到97.66%,高于P-N膜(95.8%)。因膜内粒子团聚造成了结构缺陷,M/N-6和M/N-9膜电池的CE低于M/N-3膜。图8(b)显示M/N-X复合膜的VE高于P-N膜,且随着电流密度的增加,复合膜所装配电池的VE逐渐减小,该趋势与文献报道相似[5]。能量效率是电池性能的综合体现,由图8(c)可见,在电流密度为100~200 mA·cm−2的范围内,M/N-3膜的电池能量效率均高于P-N膜和N212膜(美国杜邦公司Nafion212商品膜),最高达到83.8%,说明M-U66-NH2的掺入有效提升了Nafion膜的电池性能。图8(d)~8(f)更清晰地显示了P-N膜、M/N-3膜和T/N-3膜的性能。在测试电流密度范围内,M/N-3膜的库伦效率与T/N-3膜相当,而其电压效率和能量效率均高于其他两种类型膜样品。可见,适宜比例M-U66-NH2的引入有利于改善膜性能,进而提升钒电池的充放电效率。

    图  8  不同膜所装配钒液流电池(VRBs)的库伦效率(CE) ((a), (d))、电压效率(VE) ((b), (e))和能量效率(EE) ((c), (f))
    Figure  8.  Coulombic efficiency (CE) ((a), (d)), voltage efficiency (VE) ((b), (e)) and energy efficiency (EE) ((c), (f)) of vanadium liquid flow battery (VRBs) assembled with different membranes

    在150 mA·cm−2电流密度下,对不同膜所装配电池充放电200次,比较其循环稳定性。如图9(a)所示,在200次的充放电测试过程中,M/N-3和T/N-3膜的电池CE、VE和EE相对较稳定,无明显降低,说明UIO-66-NH2的引入有效阻碍了钒离子在膜内的渗透,保证了质子在膜中快速、稳定传输。此外,在测试周期内,M/N-3和T/N-3膜的能量效率分别稳定在77.8%和76.5%,无明显衰减,说明复合膜的理化稳定性可以满足钒电池工作环境的需求。但是,测试周期内不同电池的容量衰减情况差异较大。由图9(b)可见,P-N膜的电池容量衰减了81%,而经过同样测试后,掺杂UIO-66-NH2膜的电池容量衰减率仅为45%左右,其中基于M-U66-NH2的复合膜显示出更低的容量衰减率,单次衰减率仅为0.19%,较T/N-3膜(0.24%)提高0.05%,较P-N膜(0.41%)提高0.22%,同时,图9(c)证明了掺杂M-U66-NH2的确会优化VRBs所用质子交换膜的电池性能。

    图  9  150 mA·cm−2电流密度下复合膜所装配电池的循环效率(a)、容量保持率(b)以及与报道性能的对比(c)
    Figure  9.  Cycle efficiency (a) and capacity retention (b) of composite membranes at 150 mA·cm−2, and comparisons with reported performance (c)
    PBI—Polybenzimidazole; PS—Polystyrene; GO—Graphene oxide; SPEEK—Sulfonated poly(ether ether ketone); 2D-ZMs—Two-dimensional zeolite

    (1)与传统水热法相比,微波加热合成UIO-66-NH2的效率更高,耗时仅为前者的1/96,且所制备晶体的结构更完整、更均匀,粒径约为200 nm,在Nafion溶液中分散性良好。

    (2) UIO-66-NH2可改善复合膜的理化稳定性,且可提高膜的质子传导性和离子选择性,优化条件下复合膜的质子传导率可达122.18 mS·cm−1,离子选择性可达15.6×105 S·min·cm−3

    (3)优化条件下复合膜体现出良好的电池性能。在150 mA·cm−2电流密度下,电池的能量效率大于77%,200次循环周期内单次容量衰减率为0.19%,较纯树脂膜提高0.22%。

    (4)基于微波法的UIO-66-NH2与Nafion形成的复合膜具有良好的理化性质和电池性能,为全钒液流电池用高性能质子交换膜的设计和制备提供了新的策略,具有良好的发展前景。

  • 图  1   0-NCBY/NF、2-NCBY/NF、3-NCBY/NF和4-NCBY/NF的(a-d)低倍和(e-h)高倍SEM照片

    Figure  1.   (a-d) Low-magnification and (e-h) high-magnification SEM images of 0-NCBY/NF, 2-NCBY/NF, 3-NCBY/NF and 4-NCBY/NF

    图  2   (a) 0-NCBY/NF、2-NCBY/NF、3-NCBY/NF和4-NCBY/NF样品粉末的XRD谱图; (b) 3-NCBY/NF的EDS谱图

    Figure  2.   (a) XRD patterns of 0-NCBY/NF, 2-NCBY/NF, 3-NCBY/NF and 4-NCBY/NF powders; (b) EDS mappings of 3-NCBY/NF

    图  3   (a) 3-NCBY/NF的TEM和(b) HRTEM照片

    Figure  3.   (a) TEM and (b) HRTEM images of 3-NCBY/NF

    图  4   Ni-Co-B-Yb与Ni-Co-B的XPS光谱图

    Figure  4.   XPS spectra of Ni-Co-B-Yb and Ni-Co-B

    (a) Total survey; (b) B1 s and Yb4 d; (c) Co2 p; (d) Ni2 p

    图  5   0-NCBY/NF、2-NCBY/NF、3-NCBY/NF和4-NCBY/NF电极的(a) LSV曲线, (b) Tafel曲线, (c)交换电流密度(j0), (d)EIS图谱

    Figure  5.   (a) LSV curves, (b) Tafel curves, (c) exchange current densities(j0), (d) EIS spectra of 0-NCBY/NF, 2-NCBY/NF, 3-NCBY/NF and4-NCBY/NF electrodes

    图  6   (a-d) 0-NCBY/NF、2-NCBY/NF、3-NCBY/NF和4-NCBY/NF电极在不同扫描速率下的CV曲线, (e)充电双电层库仑曲线, (f) ECSA归一化曲线

    Figure  6.   (a-d) CV curves at different scan rates, (e) charge double-layer voltammetry, and (f) ECSA-normalized curves of 0-NCBY/NF, 2-NCBY/NF, 3-NCBY/NF and 4-NCBY/NF electrodes

    图  7   NCBY/NF-x (x = 1,3,5,7)电极的(a)LSV曲线, (b) Tafel曲线, (c)交换电流密度(j0), (d)EIS图谱, 插图为等效电路图

    Figure  7.   (a) LSV curves, (b) Tafel curves, (c) exchange current densities(j0), (d) EIS spectra with inset showing equivalent circuit of NCBY/NF-x (x = 1, 3, 5, 7) electrodes

    图  8   (a-d) NCBY/NF-x (x = 1,3,5,7)电极在不同扫描速率下的CV曲线, (e)充电双电层库仑曲线, (f) ECSA归一化曲线

    Figure  8.   (a-d) CV curves at different scan rates, (e) charge double-layer voltammetry, and (f) ECSA normalized curves of NCBY/NF-x (x = 1,3,5,7) electrodes

    图  9   (a) Ni-Co-B-Yb在100 mV电位下电解100 h的电流-时间曲线; (b) Ni-Co-B-Yb在2000圈循环伏安扫描前后的LSV曲线

    Figure  9.   (a) I-t curve for Ni-Co-B-Yb at a potential of 100 mV for 100 h; (b) Polarization curves of Ni-Co-B-Yb before and after 2000 CV sweeps

    图  10   Ni-Co-B-Gd/NF在I-t 测试后的 (a) XRD图;(b-c) SEM照片

    Figure  10.   Ni-Co-B-Gd/NF after I-t test (a) XRD image; (b-c) SEM images

    表  1   化学镀镀液配方

    Table  1   Chemical deposition plating solution formula

    Composition of plating solution Concentration/
    (g·L−1)
    Anhydrous nickel chloride (NiCl2) 10.0
    Anhydrous cobalt chloride (CoCl2) 1.0-7.0
    Borane dimethylamine (C2H10BN) 1.0
    Ytterbium Nitrate [Yb(NO3)3] 2.0-4.0
    Adipic acid (C6H10O4) 1.5
    Citric acid (C6H8O7) 1.5
    Malic acid (C4H6O5) 1.5
    下载: 导出CSV

    表  2   Ni-Co-B-Yb/NF与最近报道的电催化剂的 HER 性能进行对比

    Table  2   Comparison of HER performance of Ni-Co-B-Yb/NF with recently reported electrocatalysts

    Notes Electrocatalysts Electrolyte η10/mV Tafel slop/(mV dec−1) Ref.
    1 Ni-Co-B-Yb/Nickel foam(NF) 1.0 mol/L KOH 57 73 This work
    2 Ni3N/Ni 1.0 mol/L KOH 144 107 [34]
    3 Ni-MgO/ Carbon nanotube (CNT) 1.0 mol/L KOH 117 116 [35]
    4 Co2NiMo-N 1.0 mol/L KOH 69 77.8 [36]
    5 (Ag:Cu)/ Boron nanosheets (BNS) 1.0 mol/L KOH 101 57 [37]
    6 NiCoP 1.0 mol/L KOH 141 66 [38]
    7 Ni-Co/Mo2C/Co6Mo6C2@C 1.0 mol/L KOH 95 99.92 [39]
    8 Ru-NiSe2/ Nickel foam(NF) 1.0 mol/L KOH 39.3 36 [40]
    9 Ni-Ce-Pr-Ho/ Nickel foam(NF) 1.0 mol/L KOH 78 121.6 [41]
    10 Ni2P-Pr 1.0 mol/L KOH 87 65.4 [42]
    11 Ni-La 1.0 mol/L KOH 190 68 [43]
    12 Ni-P-La 1.0 mol/L KOH 139 93 [44]
    下载: 导出CSV
  • [1]

    ZHU J, HU L S, ZHAO P X, et al. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles[J]. Chemical Reviews, 2020, 120(2): 851-918. DOI: 10.1021/acs.chemrev.9b00248

    [2]

    ZHU P, XIONG X, WANG D S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction[J]. Nano Research, 2022, 15(7): 5792-5815. DOI: 10.1007/s12274-022-4265-y

    [3]

    YANG J S, LI J, WANG Y, et al. Tailoring the Pore Structure of Porous Ni-Sn Alloys for Boosting Hydrogen Evolution Reaction in Alkali Solution[J]. Metals, 2022, 12(12): 13.

    [4]

    XU B, LIANG J, SUN X P, et al. Designing electrocatalysts for seawater splitting: surface/interface engineering toward enhanced electrocatalytic performance[J]. Green Chemistry, 2023, 25(10): 3767-3790. DOI: 10.1039/D2GC03377A

    [5]

    ZHANG X, JIA F F, SONG S X. Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction[J]. Chemical Engineering Journal, 2021, 405: 16.

    [6]

    GUO F, MACDONALD T J, SOBRIDO A J, et al. Recent Advances in Ultralow-Pt-Loading Electrocatalysts for the Efficient Hydrogen Evolution [J], 2023, 10(21): 2301098.

    [7]

    XU H, SHANG H Y, WANG C, et al. Ultrafine Pt-Based Nanowires for Advanced Catalysis[J]. Advanced Functional Materials, 2020, 30(28): 18.

    [8]

    EL-REFAEI S M, RUSSO P A, PINNA N. Recent Advances in Multimetal and Doped Transition-Metal Phosphides for the Hydrogen Evolution Reaction at Different pH values[J]. Acs Applied Materials & Interfaces, 2021, 13(19): 22077-22097.

    [9]

    FENG J X, WU J Q, TONG Y X, et al. Efficient Hydrogen Evolution on Cu Nanodots-Decorated Ni3S2 Nanotubes by Optimizing Atomic Hydrogen Adsorption and Desorption[J]. Journal of the American Chemical Society, 2018, 140(2): 610-617. DOI: 10.1021/jacs.7b08521

    [10]

    BARATI Q, HADAVI S M M. Electroless Ni-B and composite coatings: A critical review on formation mechanism, properties, applications and future trends[J]. Surfaces and Interfaces, 2020, 21: 13.

    [11]

    HAYAT A, SOHAIL M, ALI H, et al. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting[J]. Chemical Record, 2023, 23(2): 64.

    [12]

    CHEN Z J, DUAN X G, WEI W, et al. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution[J]. Journal of Materials Chemistry A, 2019, 7(25): 14971-15005. DOI: 10.1039/C9TA03220G

    [13]

    ZHANG H Y, WANG Y, SONG D Q, et al. Cerium-Based Electrocatalysts for Oxygen Evolution/Reduction Reactions: Progress and Perspectives[J]. Nanomaterials, 2023, 13(13): 24.

    [14]

    LI Y F, YUAN X L, WANG P, et al. Rare earth alloy nanomaterials in electrocatalysis[J]. Journal of Energy Chemistry, 2023, 83: 574-594. DOI: 10.1016/j.jechem.2023.04.050

    [15]

    WANG X, TANG Y W, LEE J M, et al. Recent advances in rare-earth-based materials for electrocatalysis[J]. Chem Catalysis, 2022, 2(5): 967-1008. DOI: 10.1016/j.checat.2022.02.007

    [16]

    CARDOSO D S P, AMARAL L, SANTOS D M F, et al. Enhancement of hydrogen evolution in alkaline water electrolysis by using nickel-rare earth alloys[J]. International Journal of Hydrogen Energy, 2015, 40(12): 4295-4302. DOI: 10.1016/j.ijhydene.2015.01.174

    [17]

    LU Y Z, TANG L L, WANG P, et al. Rare Earth-Based Alloy Nanostructure for Hydrogen Evolution Reaction[J]. Acs Catalysis, 2023, 13(20): 13804-13815. DOI: 10.1021/acscatal.3c03350

    [18] 景欣欣, 陈必清, 翟佳鑫, 等. Ni-Co-B-RE(Sm、Dy、Tb)复合电极: 化学沉积法制备及电催化析氢性能研究[J]. 无机材料学报, 2024, 39(5): 467-476. DOI: 10.15541/jim20230491

    JING Xinxin, CHEN Biqing, ZHAI Jiaxin, et al. Ni-Co-B-RE (Sm, Dy, Tb) composite electrodes: preparation by chemical deposition method and electrocatalytic hydrogen evolution performance[J]. Journal of Inorganic Materials, 2024, 39(5): 467-476(in Chinese). DOI: 10.15541/jim20230491

    [19]

    R. R M, G. A E-M M, H. A H, et al. Tailor-designed bimetallic Co/Ni macroporous electrocatalyst for efficient glycerol oxidation and water electrolysis[J]. International Journal of Hydrogen Energy. 2022, 47(75): 32145-32157.

    [20]

    VESZTERGOM S, DUTTA A, RAHAMAN M, et al. Hydrogen Bubble Templated Metal Foams as Efficient Catalysts of CO2 Electroreduction[J]. Chemcatchem, 2021, 13(4): 1039-1058. DOI: 10.1002/cctc.202001145

    [21]

    ANASTASIADOU D, LIGT B, HE Y Y, et al. Carbon dioxide and nitrate co-electroreduction to urea on CuOxZnOy[J]. Communications Chemistry, 2023, 6(1): 8. DOI: 10.1038/s42004-022-00803-3

    [22] 邱文婕, 胡珍, 周其洪, 等. 稀土氧化铈增强的钴基电解水催化材料及其性能[J]. 复合材料学报, 2024, 41(2): 804-815.

    QIU Wenjie, HU Zhen, ZHU Qihong, et al. Rare earth cerium oxide reinforced cobalt based catalysts for electrolysed water and their properties[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 804-815(in Chinese).

    [23]

    MAREK L, MARIA B, KAROLINA J, et al. Transition metal borides of Ni-B (Co-B) as alternative non-precious catalytic materials: Advances, potentials, and challenges. Short review[J]. Journal of Industrial and Engineering Chemistry, 2022, 116: 75-98. DOI: 10.1016/j.jiec.2022.09.031

    [24] 张士民, 陈必清, 高利霞, 等. 基于Eu-Ni-B稀土-复合电极电催化偏硼酸钠制备硼氢化钠的探索[J]. 功能材料, 2020, 51(4): 4207-4214. DOI: 10.3969/j.issn.1001-9731.2020.04.035

    ZHANG Shimin, CHEN Biqing, GAO Lixia, et al. Exploration of electrocatalytic preparation of sodium borohydride with sodium metaborate based on Eu-Ni-B rare earth-composite electrode[J]. Journal of Functional Materials, 2020, 51(4): 4207-4214(in Chinese). DOI: 10.3969/j.issn.1001-9731.2020.04.035

    [25]

    LI X S, ZHOU J, SHEN L Q, et al. Exceptionally high saturation magnetic flux density and ultralow coercivity via an amorphous-nanocrystalline transitional microstructure in an FeCo-based alloy[J]. Advanced Materials, 2022, 35(50): 2205863.

    [26]

    BHATTACHARYA S, PHATAKE R S, BARNEA S N, et al. Fluorescent Self-Healing Carbon Dot/Polymer Gels[J]. Acs Nano, 2019, 13(2): 1433-1442.

    [27]

    JOKAR A, TOGHRAEI A, MALEKI M, et al. Facile electrochemical synthesis of Ni-Co-B film on Cu sheet for dual-electrocatalysis of hydrogen and oxygen evolution reactions[J]. Electrochimica Acta, 2021, 389: 10.

    [28]

    OHNO Y. XPS studies of the intermediate valence state of Yb in (YbS)1.25CrS2[J]. Journal of Electron Spectroscopy and Related Phenomena, 2008, 165(1-3): 1-4. DOI: 10.1016/j.elspec.2008.05.009

    [29]

    LI D X, GUO Z M, ZHAO R H, et al. An efficient cerium dioxide incorporated nickel cobalt phosphide complex as electrocatalyst for All-pH hydrogen evolution reaction and overall water splitting[J]. Journal of Colloid and Interface Science, 2024, 653: 1725-1742. DOI: 10.1016/j.jcis.2023.09.144

    [30]

    HAOYU L, DUODUO G, PING W, et al. Amorphization-induced reverse electron transfer in NiB cocatalyst for boosting photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2024, 340: 123270. DOI: 10.1016/j.apcatb.2023.123270

    [31]

    GAO W, WEN D, HO J C, et al. Incorporation of rare earth elements with transition metal-based materials for electrocatalysis: a review for recent progress[J]. Materials Today Chemistry, 2019, 12: 266-281. DOI: 10.1016/j.mtchem.2019.02.002

    [32]

    ASGARI M, DARBAND G B, MONIRVAGHEFI M. Electroless deposition of Ni-W-Mo-Co-P films as a binder-free, efficient and durable electrode for electrochemical hydrogen evolution[J]. Electrochimica Acta, 2023, 446: 13.

    [33]

    CHAIKA M, VOVK O, MANCARDI G, et al. Dynamics of Yb2+ to Yb3+ ion valence transformations in Yb: YAG ceramics used for high-power lasers[J]. Optical Materials, 2020, 101: 8.

    [34]

    XIONG L W, QIU Y F, DONG H, et al. Metallic Ni3N/Ni heterostructure for efficient hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2024, 59: 400-407. DOI: 10.1016/j.ijhydene.2024.01.312

    [35]

    MOHANA P, ISACFRANKLIN M, YUVAKKUMAR R, et al. Facile Synthesis of Ni-MgO/CNT Nanocomposite for Hydrogen Evolution Reaction[J]. Nanomaterials, 2024, 14(3): 14.

    [36]

    YU S S, XU J, WANG Q Y, et al. Oxygen-vacancy-enriched Co2NiMo-N hollow polymetallic nitrides for the electrocatalytic hydrogen evolution reaction[J]. Journal of Alloys and Compounds, 2024, 977: 7.

    [37]

    SINGLA A, DHIMAN R, MAHAJAN A. A Bimetallic-doped boron nanosheet electrocatalyst for efficient hydrogen evolution reaction[J]. Journal of Electronic Materials, 2024, 10.1007/s11664-024-11042-8: 9.

    [38]

    BERA C, STRECKOVA M, ORINAKOVA R, et al. NiCoP fibers as novel catalysts for hydrogen evolution in alkali and acidic environment[J]. International Journal of Hydrogen Energy, 2024, 60: 118-132. DOI: 10.1016/j.ijhydene.2024.02.195

    [39]

    GU J X, ZHU Y, ZHENG H Y, et al. Small-sized NiCo/Mo2C/Co6Mo6C2@C for efficient alkaline and acidic hydrogen evolution reaction by an anchoring calcination strategy[J]. Frontiers of Chemical Science and Engineering, 2024, 18(5): 9.

    [40]

    MA S, YANG P Y, CHANG J, et al. High-density accessible Ru-Se-Ni moieties boost the hydrogen evolution reaction by optimizing H absorption[J]. Inorganic Chemistry Frontiers, 2024, 11(6): 1733-1741. DOI: 10.1039/D3QI02668J

    [41]

    LIU W, TAN W Y, HE H W, et al. One-step electrodeposition of Ni-Ce-Pr-Ho/NF as an efficient electrocatalyst for hydrogen evolution reaction in alkaline medium[J]. Energy, 2022, 250: 10.

    [42]

    WANG Q, LIU J X, YAN X C, et al. RE-doped (RE = La, Ce and Er) Ni2P porous nanostructures as promising electrocatalysts for hydrogen evolution reaction[J]. Dalton Transactions, 2023, 52(7): 1895-1901. DOI: 10.1039/D2DT03850A

    [43]

    KOPCZYNSKI K, LOTA G. Ni-La composite coating obtained using deep eutectic solvent and its electrocatalytic activity[J]. Chemical Papers, 2020, 74(5): 1691-1696. DOI: 10.1007/s11696-019-00993-6

    [44]

    MADRAM A, MOHEBBI M, NASIRI M, et al. Preparation of Ni-P-La alloy as a novel electrocatalysts for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3940-3947. DOI: 10.1016/j.ijhydene.2019.12.028

  • 其他相关附件

  • 目的 

    在碳达峰、碳中和的目标下,开发可再生能源已成为绿色低碳之路的必然选择。氢气是一种清洁无污染的二次能源,对当下能源体系发展形式的转型至关重要。电解水制氢法具有高纯度、来源广泛和可再生等优势,认为是最有前景的制氢方法。因此,开发一种低成本、高性能的非贵金属催化剂是当前的重要任务。过渡金属硼化物具有特殊的电子性能、高催化活性、高稳定性而引起人们广泛关注,特别是块状和负载型镍钴硼化物,具有耐腐蚀性、高机械强度和独特的电子性能。近年来。稀土元素因独特的4f电子结构已经成为金属催化剂改性的研究热点。但在泡沫镍(NF)基体上制备稀土复合催化剂的方法要求较高,存在成本高、工艺复杂和耗时长等问题。本文通过简单一步化学沉积方法成功制备了原位生长Ni-Co-B-Yb/NF稀土复合催化电极材料。

    方法 

    利用重稀土元素Yb掺杂的方法来改性Ni-Co-B催化剂。首先,对基体NF进行预处理,通过化学腐蚀方法来清洁基体表面,去除表面氧化膜和杂质,提高镀层薄膜的附着力。然后,在无水乙醇(99.8%)体系中配制化学镀液,加入NiCl、CoCl及缓冲剂至充分溶解。接着将100 ml镀液分别倒入10支试管中,各加入适量氢氧化钠调节溶液PH值。随后将活化后的NF放入镀液中,依次加入(CH)NH·BH还原剂。置于35℃恒温条件下,反应完全后将催化剂样品取出并风干。通过改变镀液中稀土浓度及钴浓度,得到不同浓度的催化剂材料。

    结果 

    对催化电极的结构和形貌进行表征得到,Ni-Co-B-Yb与Ni-Co-B相比,其形貌中颗粒尺寸减小,多孔结构增多,能在电解质中捕获氢的中间体,有效提高电极表面的催化表面积,对电子在催化剂表面的电子传输有利,从而加强水分解的催化机制。同时可知随着稀土浓度、钴浓度的改变,表面形貌均发生改变。通过XRD、TEM分析可知,Ni-Co-B-Yb为非晶-纳米晶的过渡态,其大部分为非晶结构。由XPS分析结果可知,Ni-Co-B-Yb与Ni-Co-B相比,Ni2p和B1s的结合能均正移,表明Yb的加入与其他金属产生了电子效应使得电子密度发生改变,并诱导B的电子发生了逆向转移。通过电化学测试,可知随着稀土浓度不断增大,析氢性能呈现先增大后减小的变化趋势,其中当稀土浓度为3 g·L表现出最佳的析氢性能。随着钴浓度不断增大,析氢性能也呈现先增大后减小的变化趋势,当钴浓度为5 g·L表析氢性能最佳。此外,经过100 h长期稳定性测试和2000次循环伏安(测后,Ni-Co-B-Yb催化剂表现出良好的电化学稳定性。

    结论 

    稀土Yb加入的可以改变催化剂的纳米结构,降低过渡金属基电极表面颗粒的平均直径,有利于增加催化活性面积。另外Yb可以调节Ni-Co-B内部电子结构,丰富的价态增加了反应活性位点,提高其对氢离子的吸附和活化能力,增加了各金属元素之间的相互作用,进而提升析氢性能。同时稀土Yb的添加可以优化析氢动力学,降低析氢反应的过电势、提高析氢速率,显著提高了催化剂的本征活性。

  • 过渡金属基电催化剂的改性研究发展迅速,其中稀土元素因其独特的电子结构成为研究热点。但稀土元素具有低的还原电位和强的亲氧性,在泡沫镍基体上制备原位生长的稀土复合催化剂对方法要求较高,存在成本高、工艺复杂和耗时长等问题。

    本文以三维泡沫镍为基体,通过一步化学沉积法将Ni-Co-B-Yb紧密负载于其表面,制备得到Ni-Co-B-Yb/NF复合电极材料。在一步化学沉积的作用下,Ni-Co-B-Yb牢固均匀的生长在NF表面,而且得益于稀土Yb的电子调节能力、金属元素之间的相互作用和三维NF良好的导电性,Ni-Co-B-Yb具有丰富的HER反应位点和低的电荷转移电阻。电化学测试结果表明,Ni-Co-B-Yb在1.0 mol·L–1 KOH中表现出优异的HER活性和稳定性:在10 mA·cm–2的电流密度下过电位为57 mV,Tafel斜率仅为73 mV·dec–1,并且分别在100 mV恒电位下持续电解100 h活性几乎没有衰减。

    Ni-Co-B/NF与不同浓度Ni-Co-B-Yb/NF在 1.0 mol/L KOH 中 LSV 曲线 (a)和 Tafel曲线斜率(b)对比

图(10)  /  表(2)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  79
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-20
  • 修回日期:  2024-07-14
  • 录用日期:  2024-07-25
  • 网络出版日期:  2024-08-06
  • 刊出日期:  2025-05-14

目录

/

返回文章
返回