留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位生长Ni-Co-B-Yb稀土复合催化剂的制备及其析氢性能

景欣欣 陈必清 翟佳鑫 袁美玲

景欣欣, 陈必清, 翟佳鑫, 等. 原位生长Ni-Co-B-Yb稀土复合催化剂的制备及其析氢性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 景欣欣, 陈必清, 翟佳鑫, 等. 原位生长Ni-Co-B-Yb稀土复合催化剂的制备及其析氢性能[J]. 复合材料学报, 2024, 42(0): 1-11.
JING Xinxin, CHEN Biqing, ZHAI Jiaxin, et al. In situ growth of a Ni-Co-B-Yb rare earth composite electrode: preparation and electrocatalytic hydrogen precipitation performance[J]. Acta Materiae Compositae Sinica.
Citation: JING Xinxin, CHEN Biqing, ZHAI Jiaxin, et al. In situ growth of a Ni-Co-B-Yb rare earth composite electrode: preparation and electrocatalytic hydrogen precipitation performance[J]. Acta Materiae Compositae Sinica.

原位生长Ni-Co-B-Yb稀土复合催化剂的制备及其析氢性能

基金项目: 国家自然科学基金 (22062020)
详细信息
    通讯作者:

    陈必清,硕士,教授,硕士生导师,研究方向电化学 E-mail: chenbq2332@163.com

  • 中图分类号: TQ151; TB333

In situ growth of a Ni-Co-B-Yb rare earth composite electrode: preparation and electrocatalytic hydrogen precipitation performance

Funds: National Natural Science Foundation of China (22062020)
  • 摘要: 探索和开发低成本、高活性的非贵金属析氢反应(Hydrogen Evolution Reaction, HER)电催化剂,对于电解水的实际应用具有重要意义但仍具有挑战性。本文采用化学沉积法在三维的泡沫镍基底上制备了原位生长的稀土(Rare Earth, RE)复合催化电极(Ni-Co-B-Yb/NF),对催化电极的结构和形貌进行了表征,并研究其在1 mol·L−1 KOH溶液中的析氢性能。结果表明,添加Yb可使电极的形貌及电子结构发生改变,改善催化剂材料的HER催化性能。当Yb和Co浓度分别为3 g·L−1和5 g·L−1时,Ni-Co-B-Yb /NF表现出最佳的析氢性能。当电流密度为10 mA·cm−2时,析氢过电位为57 mV,Tafel斜率仅为73 mV·dec−1,此外,经过100 h长期稳定性测试和2000次循环伏安(Cyclic voltammetry,CV)测试后,该催化剂表现出良好的电化学稳定性。实验结果表明:Yb的引入可以提升Ni-Co-B材料的HER催化性能,且Yb和Co浓度的改变对电催化性能影响较大。这项工作丰富了稀土复合催化剂在电解水催化方面的知识。

     

  • 图  1  0-NCBY/NF、2-NCBY/NF、3-NCBY/NF和4-NCBY/NF的(a-d)低倍和(e-h)高倍SEM照片

    Figure  1.  (a-d) Low-magnification and (e-h) high-magnification SEM images of 0-NCBY/NF, 2-NCBY/NF, 3-NCBY/NF and 4-NCBY/NF

    图  2  (a) 0-NCBY/NF、2-NCBY/NF、3-NCBY/NF和4-NCBY/NF样品粉末的XRD谱图; (b) 3-NCBY/NF的EDS谱图

    Figure  2.  (a) XRD patterns of 0-NCBY/NF, 2-NCBY/NF, 3-NCBY/NF and 4-NCBY/NF powders; (b) EDS mappings of 3-NCBY/NF

    图  3  (a) 3-NCBY/NF的TEM和(b) HRTEM照片

    Figure  3.  (a) TEM and (b) HRTEM images of 3-NCBY/NF

    图  4  Ni-Co-B-Yb与Ni-Co-B的XPS光谱图

    Figure  4.  XPS spectra of Ni-Co-B-Yb and Ni-Co-B

    (a) Total survey; (b) B1 s and Yb4 d; (c) Co2 p; (d) Ni2 p

    图  5  0-NCBY/NF、2-NCBY/NF、3-NCBY/NF和4-NCBY/NF电极的(a) LSV曲线, (b) Tafel曲线, (c)交换电流密度(j0), (d)EIS图谱

    Figure  5.  (a) LSV curves, (b) Tafel curves, (c) exchange current densities(j0), (d) EIS spectra of 0-NCBY/NF, 2-NCBY/NF, 3-NCBY/NF and4-NCBY/NF electrodes

    图  6  (a-d) 0-NCBY/NF、2-NCBY/NF、3-NCBY/NF和4-NCBY/NF电极在不同扫描速率下的CV曲线, (e)充电双电层库仑曲线, (f) ECSA归一化曲线

    Figure  6.  (a-d) CV curves at different scan rates, (e) charge double-layer voltammetry, and (f) ECSA-normalized curves of 0-NCBY/NF, 2-NCBY/NF, 3-NCBY/NF and 4-NCBY/NF electrodes

    图  7  NCBY/NF-x (x = 1,3,5,7)电极的(a)LSV曲线, (b) Tafel曲线, (c)交换电流密度(j0), (d)EIS图谱, 插图为等效电路图

    Figure  7.  (a) LSV curves, (b) Tafel curves, (c) exchange current densities(j0), (d) EIS spectra with inset showing equivalent circuit of NCBY/NF-x (x = 1, 3, 5, 7) electrodes

    图  8  (a-d) NCBY/NF-x (x = 1,3,5,7)电极在不同扫描速率下的CV曲线, (e)充电双电层库仑曲线, (f) ECSA归一化曲线

    Figure  8.  (a-d) CV curves at different scan rates, (e) charge double-layer voltammetry, and (f) ECSA normalized curves of NCBY/NF-x (x = 1,3,5,7) electrodes

    图  9  (a) Ni-Co-B-Yb在100 mV电位下电解100 h的电流-时间曲线; (b) Ni-Co-B-Yb在2000圈循环伏安扫描前后的LSV曲线

    Figure  9.  (a) I-t curve for Ni-Co-B-Yb at a potential of 100 mV for 100 h; (b) Polarization curves of Ni-Co-B-Yb before and after 2000 CV sweeps

    图  10  Ni-Co-B-Gd/NF在I-t 测试后的 (a) XRD图;(b-c) SEM照片

    Figure  10.  Ni-Co-B-Gd/NF after I-t test (a) XRD image; (b-c) SEM images

    表  1  化学镀镀液配方

    Table  1.   Chemical deposition plating solution formula

    Composition of plating solution Concentration/
    (g·L−1)
    Anhydrous nickel chloride (NiCl2) 10.0
    Anhydrous cobalt chloride (CoCl2) 1.0-7.0
    Borane dimethylamine (C2H10BN) 1.0
    Ytterbium Nitrate [Yb(NO3)3] 2.0-4.0
    Adipic acid (C6H10O4) 1.5
    Citric acid (C6H8O7) 1.5
    Malic acid (C4H6O5) 1.5
    下载: 导出CSV

    表  2  Ni-Co-B-Yb/NF与最近报道的电催化剂的 HER 性能进行对比

    Table  2.   Comparison of HER performance of Ni-Co-B-Yb/NF with recently reported electrocatalysts

    Notes Electrocatalysts Electrolyte η10/mV Tafel slop/(mV dec−1) Ref.
    1 Ni-Co-B-Yb/Nickel foam(NF) 1.0 mol/L KOH 57 73 This work
    2 Ni3N/Ni 1.0 mol/L KOH 144 107 [34]
    3 Ni-MgO/ Carbon nanotube (CNT) 1.0 mol/L KOH 117 116 [35]
    4 Co2NiMo-N 1.0 mol/L KOH 69 77.8 [36]
    5 (Ag:Cu)/ Boron nanosheets (BNS) 1.0 mol/L KOH 101 57 [37]
    6 NiCoP 1.0 mol/L KOH 141 66 [38]
    7 Ni-Co/Mo2C/Co6Mo6C2@C 1.0 mol/L KOH 95 99.92 [39]
    8 Ru-NiSe2/ Nickel foam(NF) 1.0 mol/L KOH 39.3 36 [40]
    9 Ni-Ce-Pr-Ho/ Nickel foam(NF) 1.0 mol/L KOH 78 121.6 [41]
    10 Ni2P-Pr 1.0 mol/L KOH 87 65.4 [42]
    11 Ni-La 1.0 mol/L KOH 190 68 [43]
    12 Ni-P-La 1.0 mol/L KOH 139 93 [44]
    下载: 导出CSV
  • [1] ZHU J, HU L S, ZHAO P X, et al. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles[J]. Chemical Reviews, 2020, 120(2): 851-918. doi: 10.1021/acs.chemrev.9b00248
    [2] ZHU P, XIONG X, WANG D S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction[J]. Nano Research, 2022, 15(7): 5792-5815. doi: 10.1007/s12274-022-4265-y
    [3] YANG J S, LI J, WANG Y, et al. Tailoring the Pore Structure of Porous Ni-Sn Alloys for Boosting Hydrogen Evolution Reaction in Alkali Solution[J]. Metals, 2022, 12(12): 13.
    [4] XU B, LIANG J, SUN X P, et al. Designing electrocatalysts for seawater splitting: surface/interface engineering toward enhanced electrocatalytic performance[J]. Green Chemistry, 2023, 25(10): 3767-3790. doi: 10.1039/D2GC03377A
    [5] ZHANG X, JIA F F, SONG S X. Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction[J]. Chemical Engineering Journal, 2021, 405: 16.
    [6] GUO F, MACDONALD T J, SOBRIDO A J, et al. Recent Advances in Ultralow-Pt-Loading Electrocatalysts for the Efficient Hydrogen Evolution [J], 2023, 10(21): 2301098.
    [7] XU H, SHANG H Y, WANG C, et al. Ultrafine Pt-Based Nanowires for Advanced Catalysis[J]. Advanced Functional Materials, 2020, 30(28): 18.
    [8] EL-REFAEI S M, RUSSO P A, PINNA N. Recent Advances in Multimetal and Doped Transition-Metal Phosphides for the Hydrogen Evolution Reaction at Different pH values[J]. Acs Applied Materials & Interfaces, 2021, 13(19): 22077-22097.
    [9] FENG J X, WU J Q, TONG Y X, et al. Efficient Hydrogen Evolution on Cu Nanodots-Decorated Ni3S2 Nanotubes by Optimizing Atomic Hydrogen Adsorption and Desorption[J]. Journal of the American Chemical Society, 2018, 140(2): 610-617. doi: 10.1021/jacs.7b08521
    [10] BARATI Q, HADAVI S M M. Electroless Ni-B and composite coatings: A critical review on formation mechanism, properties, applications and future trends[J]. Surfaces and Interfaces, 2020, 21: 13.
    [11] HAYAT A, SOHAIL M, ALI H, et al. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting[J]. Chemical Record, 2023, 23(2): 64.
    [12] CHEN Z J, DUAN X G, WEI W, et al. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution[J]. Journal of Materials Chemistry A, 2019, 7(25): 14971-15005. doi: 10.1039/C9TA03220G
    [13] ZHANG H Y, WANG Y, SONG D Q, et al. Cerium-Based Electrocatalysts for Oxygen Evolution/Reduction Reactions: Progress and Perspectives[J]. Nanomaterials, 2023, 13(13): 24.
    [14] LI Y F, YUAN X L, WANG P, et al. Rare earth alloy nanomaterials in electrocatalysis[J]. Journal of Energy Chemistry, 2023, 83: 574-594. doi: 10.1016/j.jechem.2023.04.050
    [15] WANG X, TANG Y W, LEE J M, et al. Recent advances in rare-earth-based materials for electrocatalysis[J]. Chem Catalysis, 2022, 2(5): 967-1008. doi: 10.1016/j.checat.2022.02.007
    [16] CARDOSO D S P, AMARAL L, SANTOS D M F, et al. Enhancement of hydrogen evolution in alkaline water electrolysis by using nickel-rare earth alloys[J]. International Journal of Hydrogen Energy, 2015, 40(12): 4295-4302. doi: 10.1016/j.ijhydene.2015.01.174
    [17] LU Y Z, TANG L L, WANG P, et al. Rare Earth-Based Alloy Nanostructure for Hydrogen Evolution Reaction[J]. Acs Catalysis, 2023, 13(20): 13804-13815. doi: 10.1021/acscatal.3c03350
    [18] 景欣欣, 陈必清, 翟佳鑫, 等. Ni-Co-B-RE(Sm、Dy、Tb)复合电极: 化学沉积法制备及电催化析氢性能研究[J]. 无机材料学报, 2024, 39(5): 467-476. doi: 10.15541/jim20230491

    JING Xinxin, CHEN Biqing, ZHAI Jiaxin, et al. Ni-Co-B-RE (Sm, Dy, Tb) composite electrodes: preparation by chemical deposition method and electrocatalytic hydrogen evolution performance[J]. Journal of Inorganic Materials, 2024, 39(5): 467-476(in Chinese). doi: 10.15541/jim20230491
    [19] R. R M, G. A E-M M, H. A H, et al. Tailor-designed bimetallic Co/Ni macroporous electrocatalyst for efficient glycerol oxidation and water electrolysis[J]. International Journal of Hydrogen Energy. 2022, 47(75): 32145-32157.
    [20] VESZTERGOM S, DUTTA A, RAHAMAN M, et al. Hydrogen Bubble Templated Metal Foams as Efficient Catalysts of CO2 Electroreduction[J]. Chemcatchem, 2021, 13(4): 1039-1058. doi: 10.1002/cctc.202001145
    [21] ANASTASIADOU D, LIGT B, HE Y Y, et al. Carbon dioxide and nitrate co-electroreduction to urea on CuOxZnOy[J]. Communications Chemistry, 2023, 6(1): 8. doi: 10.1038/s42004-022-00803-3
    [22] 邱文婕, 胡珍, 周其洪, 等. 稀土氧化铈增强的钴基电解水催化材料及其性能[J]. 复合材料学报, 2024, 41(2): 804-815.

    QIU Wenjie, HU Zhen, ZHU Qihong, et al. Rare earth cerium oxide reinforced cobalt based catalysts for electrolysed water and their properties[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 804-815(in Chinese).
    [23] MAREK L, MARIA B, KAROLINA J, et al. Transition metal borides of Ni-B (Co-B) as alternative non-precious catalytic materials: Advances, potentials, and challenges. Short review[J]. Journal of Industrial and Engineering Chemistry, 2022, 116: 75-98. doi: 10.1016/j.jiec.2022.09.031
    [24] 张士民, 陈必清, 高利霞, 等. 基于Eu-Ni-B稀土-复合电极电催化偏硼酸钠制备硼氢化钠的探索[J]. 功能材料, 2020, 51(4): 4207-4214. doi: 10.3969/j.issn.1001-9731.2020.04.035

    ZHANG Shimin, CHEN Biqing, GAO Lixia, et al. Exploration of electrocatalytic preparation of sodium borohydride with sodium metaborate based on Eu-Ni-B rare earth-composite electrode[J]. Journal of Functional Materials, 2020, 51(4): 4207-4214(in Chinese). doi: 10.3969/j.issn.1001-9731.2020.04.035
    [25] LI X S, ZHOU J, SHEN L Q, et al. Exceptionally high saturation magnetic flux density and ultralow coercivity via an amorphous-nanocrystalline transitional microstructure in an FeCo-based alloy[J]. Advanced Materials, 2022, 35(50): 2205863.
    [26] BHATTACHARYA S, PHATAKE R S, BARNEA S N, et al. Fluorescent Self-Healing Carbon Dot/Polymer Gels[J]. Acs Nano, 2019, 13(2): 1433-1442.
    [27] JOKAR A, TOGHRAEI A, MALEKI M, et al. Facile electrochemical synthesis of Ni-Co-B film on Cu sheet for dual-electrocatalysis of hydrogen and oxygen evolution reactions[J]. Electrochimica Acta, 2021, 389: 10.
    [28] OHNO Y. XPS studies of the intermediate valence state of Yb in (YbS)1.25CrS2[J]. Journal of Electron Spectroscopy and Related Phenomena, 2008, 165(1-3): 1-4. doi: 10.1016/j.elspec.2008.05.009
    [29] LI D X, GUO Z M, ZHAO R H, et al. An efficient cerium dioxide incorporated nickel cobalt phosphide complex as electrocatalyst for All-pH hydrogen evolution reaction and overall water splitting[J]. Journal of Colloid and Interface Science, 2024, 653: 1725-1742. doi: 10.1016/j.jcis.2023.09.144
    [30] HAOYU L, DUODUO G, PING W, et al. Amorphization-induced reverse electron transfer in NiB cocatalyst for boosting photocatalytic H2 production[J]. Applied Catalysis B: Environmental, 2024, 340: 123270. doi: 10.1016/j.apcatb.2023.123270
    [31] GAO W, WEN D, HO J C, et al. Incorporation of rare earth elements with transition metal-based materials for electrocatalysis: a review for recent progress[J]. Materials Today Chemistry, 2019, 12: 266-281. doi: 10.1016/j.mtchem.2019.02.002
    [32] ASGARI M, DARBAND G B, MONIRVAGHEFI M. Electroless deposition of Ni-W-Mo-Co-P films as a binder-free, efficient and durable electrode for electrochemical hydrogen evolution[J]. Electrochimica Acta, 2023, 446: 13.
    [33] CHAIKA M, VOVK O, MANCARDI G, et al. Dynamics of Yb2+ to Yb3+ ion valence transformations in Yb: YAG ceramics used for high-power lasers[J]. Optical Materials, 2020, 101: 8.
    [34] XIONG L W, QIU Y F, DONG H, et al. Metallic Ni3N/Ni heterostructure for efficient hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2024, 59: 400-407. doi: 10.1016/j.ijhydene.2024.01.312
    [35] MOHANA P, ISACFRANKLIN M, YUVAKKUMAR R, et al. Facile Synthesis of Ni-MgO/CNT Nanocomposite for Hydrogen Evolution Reaction[J]. Nanomaterials, 2024, 14(3): 14.
    [36] YU S S, XU J, WANG Q Y, et al. Oxygen-vacancy-enriched Co2NiMo-N hollow polymetallic nitrides for the electrocatalytic hydrogen evolution reaction[J]. Journal of Alloys and Compounds, 2024, 977: 7.
    [37] SINGLA A, DHIMAN R, MAHAJAN A. A Bimetallic-doped boron nanosheet electrocatalyst for efficient hydrogen evolution reaction[J]. Journal of Electronic Materials, 2024, 10.1007/s11664-024-11042-8: 9.
    [38] BERA C, STRECKOVA M, ORINAKOVA R, et al. NiCoP fibers as novel catalysts for hydrogen evolution in alkali and acidic environment[J]. International Journal of Hydrogen Energy, 2024, 60: 118-132. doi: 10.1016/j.ijhydene.2024.02.195
    [39] GU J X, ZHU Y, ZHENG H Y, et al. Small-sized NiCo/Mo2C/Co6Mo6C2@C for efficient alkaline and acidic hydrogen evolution reaction by an anchoring calcination strategy[J]. Frontiers of Chemical Science and Engineering, 2024, 18(5): 9.
    [40] MA S, YANG P Y, CHANG J, et al. High-density accessible Ru-Se-Ni moieties boost the hydrogen evolution reaction by optimizing H absorption[J]. Inorganic Chemistry Frontiers, 2024, 11(6): 1733-1741. doi: 10.1039/D3QI02668J
    [41] LIU W, TAN W Y, HE H W, et al. One-step electrodeposition of Ni-Ce-Pr-Ho/NF as an efficient electrocatalyst for hydrogen evolution reaction in alkaline medium[J]. Energy, 2022, 250: 10.
    [42] WANG Q, LIU J X, YAN X C, et al. RE-doped (RE = La, Ce and Er) Ni2P porous nanostructures as promising electrocatalysts for hydrogen evolution reaction[J]. Dalton Transactions, 2023, 52(7): 1895-1901. doi: 10.1039/D2DT03850A
    [43] KOPCZYNSKI K, LOTA G. Ni-La composite coating obtained using deep eutectic solvent and its electrocatalytic activity[J]. Chemical Papers, 2020, 74(5): 1691-1696. doi: 10.1007/s11696-019-00993-6
    [44] MADRAM A, MOHEBBI M, NASIRI M, et al. Preparation of Ni-P-La alloy as a novel electrocatalysts for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3940-3947. doi: 10.1016/j.ijhydene.2019.12.028
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-21
  • 修回日期:  2024-07-15
  • 录用日期:  2024-07-26
  • 网络出版日期:  2024-08-07

目录

    /

    返回文章
    返回