留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅烷-纳米SiO2复合表面改性钢纤维超高性能混凝土参数优化及其力学性能

田杰夫 杨贞军 杨国君 姚勇

田杰夫, 杨贞军, 杨国君, 等. 硅烷-纳米SiO2复合表面改性钢纤维超高性能混凝土参数优化及其力学性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 田杰夫, 杨贞军, 杨国君, 等. 硅烷-纳米SiO2复合表面改性钢纤维超高性能混凝土参数优化及其力学性能[J]. 复合材料学报, 2024, 42(0): 1-10.
TIAN Jiefu, YANG Zhenjun, YANG Guojun, et al. Optimization of parameters and mechanical properties of silane-nano SiO2 composite surface modified steel fiber reinforced ultra-high performance concrete[J]. Acta Materiae Compositae Sinica.
Citation: TIAN Jiefu, YANG Zhenjun, YANG Guojun, et al. Optimization of parameters and mechanical properties of silane-nano SiO2 composite surface modified steel fiber reinforced ultra-high performance concrete[J]. Acta Materiae Compositae Sinica.

硅烷-纳米SiO2复合表面改性钢纤维超高性能混凝土参数优化及其力学性能

基金项目: 国家自然科学基金 (52173300)
详细信息
    通讯作者:

    杨贞军,博士,教授(二级),博士生导师,研究方向为复杂材料多尺度随机断裂损伤力学理论、计算模拟和实验验证 E-mail: zhjyang@whu.edu.cn

  • 中图分类号: TU51

Optimization of parameters and mechanical properties of silane-nano SiO2 composite surface modified steel fiber reinforced ultra-high performance concrete

Funds: National Natural Science Foundation of China (52173300)
  • 摘要: 为提升钢纤维增强超高性能混凝土(UHPFRC)的力学性能,提出一种采用氨基丙基三乙氧基硅烷(KH550)和纳米SiO2(Nano-SiO2)对钢纤维表面进行复合改性的新工艺。考虑乙醇和水的质量比(We:Wd)、KH550含量(wt%)、Nano-SiO2含量(wt%)和水浴温度(Twb)共4个参数对配比进行正交设计(L9(34))。首先筛选溶液稳定性较好的4种配比对纤维表面进行改性,然后使用FTIR和SEM分析涂层成分和形貌,最后根据UHPFRC试件28天的抗弯和抗压强度给出最优改性工艺参数。结果表明:(1)最优改性工艺参数为:We:Wd =3,KH550(wt%)=10%,Nano-SiO2(wt%)=0.5% 和Twb =80℃,其中We:Wd是影响溶液稳定性的主要因素;(2) FTIR显示存在Fe-O-Si特征峰,表明KH550和Nano-SiO2成功键合于钢纤维表面;(3) SEM显示最优改性工艺下涂层分布均匀,未见纳米SiO2 颗粒明显团聚;(4)掺入最优改性工艺处理后高强纤维的UHPFRC试件在1%、1.5%和2%纤维体积分数下的抗弯强度(28MPa、30.5MPa和37MPa)比未改性试件分别提升40.4%、28.5%和32.7%,抗压强度(133.3MPa、151.7MPa和163.9MPa)分别提升7.5%、8.3%和13%;(5)复合改性使1.5%和2%纤维体积分数下的试件跨中裂缝形态曲折复杂,显著增强了纤维-基体界面性能。

     

  • 图  1  钢纤维的复合改性处理步骤

    Figure  1.  Flow chart of steel fiber composite modification process

    图  2  力学性能试验

    Figure  2.  Mechanical tests

    图  3  C1~C9溶液稳定性试验

    Figure  3.  Stability test of C1-C9 solution

    图  4  不同涂层钢纤维的红外光谱图

    Figure  4.  FTIR of steel fibers with different coatings

    图  5  复合改性化学反应机理图

    Figure  5.  Chemical reaction mechanism diagram of composite modification

    图  6  纤维表面形貌

    Figure  6.  Surface morphology of steel fibers

    图  7  不同钢纤维含量下抗压试件的抗压强度值及荷载-位移曲线

    Figure  7.  Load-displacement curve and compressive strength of specimens with different steel fiber volume fraction

    图  8  不同钢纤维含量下抗压试件的抗压强度值及荷载-位移曲线

    Figure  8.  Load-deflection curve and bending strength of bending specimens with different steel fiber volume fraction

    图  9  抗弯试件的裂缝形态及局部放大图

    Figure  9.  Crack morphology and local magnification of bending specimens

    表  1  复合改性溶液的正交试验因素水平表

    Table  1.   Orthogonal test factor and level table of composite modified solution

    Level We:Wd KH550/wt% Nano-SiO2/wt% Twb/℃
    1 9:1 8 0.5 50
    2 6:1 10 1 65
    3 3:1 12 1.5 80
    Notes: We:Wd is mass ratio of alcohol to water; The mass fraction of KH550 and nano-SiO2 are both relative to the mass of the composite modified solution; Twb is the temperature of water bath.
    下载: 导出CSV

    表  2  复合改性溶液配比编号

    Table  2.   Name of composite modified solutions

    NameWe:WdKH550/wt%Nano-SiO2/wt%Twb/℃
    C19:180.550
    C29:110165
    C39:1121.580
    C46:18180
    C56:1101.550
    C66:1120.565
    C73:181.565
    C83:1100.580
    C93:112150
    下载: 导出CSV

    表  3  纤维增强混凝土的配比

    Table  3.   Ratio of steel fiber reinforced ultra-high performance concrete

    Name Cement/g Silica fume/g Quartz
    powder/g
    Quartz sand/g Water/g Water reducing agent/g Steel fiber
    (volume fraction)/g
    1 1200 134 320 586 290 10 60(1%)
    2 1200 134 320 586 290 10 90(1.5%)
    3 1200 134 320 586 290 10 120(2%)
    下载: 导出CSV

    表  4  UHPFRC小梁试件编号及数量

    Table  4.   Name and quantity of UHPFRC beam specimens

    NameQuantity per set
    Bending testCompression test
    BF-136
    HF-136
    CaF-136
    BF-1.536
    HF-1.536
    CaF-1.536
    BF-236
    HF-236
    CaF-236
    Notes: The naming rule of specimens: steel fiber type–volume fraction; a=2, 3, 8 and 9 (a is consistent with the subscript number of composite modified solution).
    下载: 导出CSV

    表  5  复合改性液稳定性正交试验结果

    Table  5.   Orthogonal test results of stability of composite modified solutions

    TestFactorTransition
    time/h
    We:WdKH550Nano-SiO2Twb
    C1111146
    C2122296
    C3133388
    C4212328
    C522312
    C6231242
    C7313216
    C83213128
    C9332190
    K1 avg76.7307246 
    K2 avg2475.37151.3
    K3 avg7873.335.381.3
    Range5445.335.335.3
    Optimal mixtureA3B2C1D3 
    Note: Kiavg −Average of level i (i = 1,2,3).
    下载: 导出CSV
  • [1] RICHARD P, CHEYREZY M. Reactive powder concrete[J]. Cement and Concrete Research, 1995, 25(7): 1501-1511. doi: 10.1016/0008-8846(95)00144-2
    [2] LI W W, LI W Y, LU Y, et al. Axial compressive behavior and failure mechanism of CFRP partially confined ultra-high performance concrete (UHPC)[J]. Construction and Building Materials, 2024, 426: 136104. doi: 10.1016/j.conbuildmat.2024.136104
    [3] LI W W, LU Y, WANG P, et al. Comparative study of compressive behavior of confined NSC and UHPC/ UHPFRC cylinders externally wrapped with CFRP jacket[J]. Construction and Building Materials, 2023, 292: 116513.
    [4] ZHANG X, YANG Z J, PANG M, et al. Ex-situ micro X-ray computed tomography tests and image-based simulation of UHPFRC beams under bending[J]. Cement and Concrete Composites, 2021, 123: 104216. doi: 10.1016/j.cemconcomp.2021.104216
    [5] LI J Q, WU Z M, ShI C J, et al. Durability of ultra-high performance concrete–A review[J]. Construction and Building Materials, 2020, 255: 119296. doi: 10.1016/j.conbuildmat.2020.119296
    [6] AITCIN P. Cement of yesterday and today - Concrete of tomorrow[J]. Cement and Concrete Research, 2020, 30(9): 1349-1359.
    [7] VOO Y, POON W, FOSTER S. Shear Strength of Steel Fiber-Reinforced Ultrahigh-Performance Concrete Beams without Stirrups[J]. Journal of Structural Engineering, 2010, 136(11): 1393-1400. doi: 10.1061/(ASCE)ST.1943-541X.0000234
    [8] ZHOU A, WEI H N, LIU T J, et al. Interfacial technology for enhancement in steel fiber reinforced cementitious composite from nano to macroscale[J]. Nanotechnology Reviews, 2021, (1): 636-652.
    [9] DU S, LUAN C Q, YUAN L W, et al. Investigation on the effect of silane coupling agent treatment of steel fibers on the durability of UHPC[J]. Archives of Civil and Mechanical Engineering, 2023, 23(2): 312-321.
    [10] 姚勇, 杨贞军, 张麒. 硅烷涂层提升钢纤维-砂浆界面性能的试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 1-9+30.

    YAO yong, YANG Zhenjun, ZHANG Lin. Experiment research on improving interface performance of steel fiber and mortal by silane coatings[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(1): 1-9+30(in Chinese).
    [11] KOTHA S P, LIEBERMAN M, VICKERS A, et al. Adhesion enhancement of steel fibers to acrylic bone cement through a silane coupling agent[J]. Journal of Biomedical Materials Research Part A, 2010, 76(1): 111-119.
    [12] KIM S , CHOI S , YOO D Y . Surface modification of steel fibers using chemical solutions and their pullout behaviors from ultra-high-performance concrete[J]. Journal of Building Engineering, 2020, 32: 101709.
    [13] PI Z Y, XIAO H G, DU J J, et al. Effect of the water/cement ratio on the improvement of pullout behaviors using nano-SiO2 modified steel fiber and the micro mechanism[J]. Construction and Building Materials, 2022, 338: 127632. doi: 10.1016/j.conbuildmat.2022.127632
    [14] ZHOU A, YU Z C, WEI H N, et al. Understanding the Toughening Mechanism of Silane Coupling Agents in the Interfacial Bonding in Steel Fiber-Reinforced Cementitious Composites[J]. ACS Applied Materials and Interfaces, 2020, 12(39): 114375.
    [15] 钟世云, 付鲸铭. 镀铜钢纤维表面改性及其耐腐蚀性能和黏结性能[J]. 建筑材料学报, 2019, 22(4): 6.

    ZHONG Shiyun, FU Jingming. Surface Modifying of Copper-Plated Steel Fibers and Its Corrosion Resistance and Bond Behavior with Cement Mortar[J]. Journal of building materials, 2019, 22(4): 6 (in Chinese).
    [16] PI Z Y, XIAO H G, LIU R, et al. Combination usage of nano-SiO2-coated steel fiber and silica fume and its improvement effect on SFRCC[J]. Composites Part B Engineering, 2021, 9: 109022.
    [17] TADANO T, ZHU R, MUROGA Y, et al. A new mechanism for the silica nanoparticle dispersion–agglomeration transition in a poly(methyl methacrylate)/silica hybrid suspension[J]. Polymer Journal, 2014, 46(6): 342-348. doi: 10.1038/pj.2014.6
    [18] 刘博文, 焦龙, 闫春华等. 硅烷偶联剂KH-550对纳米二氧化硅的改性及性能评价[J]. 应用化工, 2023, 52(5): 1367-1370.

    LIU Bowen, JIAO Long, YAN Chunhua, et al. Modification and performance evaluation of silane coupling agent KH-550 for nano-silica[J]. Applied chemical industry, 2023, 52(5): 1367-1370(in Chinese).
    [19] 牛永效, 王毅, 王恩德等. 纳米SiO2在水性介质中的分散稳定性研究[J]. 中国粉体技术, 2006, (3): 1-3.

    NIU Yongxiao, WANG Yi, WANG Ende, et al. Study on the dispersion stability of Nano-SiO2 in aqueous medium[J]. China Powder Science and Technology, 2006, (3): 1-3(in Chinese).
    [20] JG/T 472-2015, 钢纤维混凝土[S].

    JG/T 472-2015, Steel fiber reinforced concrete[S] (in Chinese).
    [21] GB/T 17671-2021, 水泥胶砂强度检验方法(ISO法)[S].

    GB/T 17671-2021, Test method for strength of cement mortar(ISO method) [S] (in Chinese).
    [22] HUANG J L, ZHOU Y, YANG X, et al. A Multi-scale Study of Enhancing Mechanical Property in Ultra-High Performance Concrete by Steel-fiber@Nano-silica[J]. Construction and Building Materials, 2022, 342: 128069. doi: 10.1016/j.conbuildmat.2022.128069
    [23] 孙庭超, 曾德明, 曹明莉. 硅烷偶联剂改性钢纤维水泥基复合材料弯曲性能研究[J]. 硅酸盐通报, 2023, 42(7): 2326-2335.

    SUN Tingchao, ZENG Deming, CAO Mingli. Flexural Properties of Silance Coupling Agents Modified Steel Fiber Cement-Based Composites[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2326-2335(in Chinese).
    [24] 董金美, 李颖, 文静, 等. KH550硅烷偶联剂的水解工艺研究[J]. 盐湖研究, 2020, 28(4): 28-33.

    DONG Jinmei, LI Yi, WEN Jing, et al. Study on hydrolysis process of KH550 silane coupling agent[J]. Journal of Salt Lake Research, 2020, 28(4): 28-33(in Chinese).
    [25] PI Z Y, XIAO H G, DU J J, et al. Interfacial microstructure and bond strength of nano-SiO2-coated steel fibers in cement matrix[J]. Cement and Concrete Composites, 2019, 103: 1-10. doi: 10.1016/j.cemconcomp.2019.04.025
    [26] CHUN B, YOO D, BANTHIA N. Achieving slip-hardening behavior of sanded straight steel fibers in ultra-high-performance concrete[J]. Cement and Concrete Composites, 2020, 113: 103669. doi: 10.1016/j.cemconcomp.2020.103669
  • 加载中
计量
  • 文章访问数:  63
  • HTML全文浏览量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-27
  • 修回日期:  2024-06-13
  • 录用日期:  2024-06-22
  • 网络出版日期:  2024-07-10

目录

    /

    返回文章
    返回