Optimization of parameters and mechanical properties of silane-nano SiO2 composite surface modified steel fiber reinforced ultra-high performance concrete
-
摘要: 为提升钢纤维增强超高性能混凝土(UHPFRC)的力学性能,提出一种采用氨基丙基三乙氧基硅烷(KH550)和纳米SiO2(Nano-SiO2)对钢纤维表面进行复合改性的新工艺。考虑乙醇和水的质量比(We:Wd)、KH550含量(wt%)、Nano-SiO2含量(wt%)和水浴温度(Twb)共4个参数对配比进行正交设计(L9(34))。首先筛选溶液稳定性较好的4种配比对纤维表面进行改性,然后使用FTIR和SEM分析涂层成分和形貌,最后根据UHPFRC试件28天的抗弯和抗压强度给出最优改性工艺参数。结果表明:(1)最优改性工艺参数为:We:Wd =3,KH550(wt%)=10%,Nano-SiO2(wt%)=0.5% 和Twb =80℃,其中We:Wd是影响溶液稳定性的主要因素;(2) FTIR显示存在Fe-O-Si特征峰,表明KH550和Nano-SiO2成功键合于钢纤维表面;(3) SEM显示最优改性工艺下涂层分布均匀,未见纳米SiO2 颗粒明显团聚;(4)掺入最优改性工艺处理后高强纤维的UHPFRC试件在1%、1.5%和2%纤维体积分数下的抗弯强度(28MPa、30.5MPa和37MPa)比未改性试件分别提升40.4%、28.5%和32.7%,抗压强度(133.3MPa、151.7MPa和163.9MPa)分别提升7.5%、8.3%和13%;(5)复合改性使1.5%和2%纤维体积分数下的试件跨中裂缝形态曲折复杂,显著增强了纤维-基体界面性能。Abstract: To improve the mechanical properties of steel fiber reinforced ultra-high performance concrete (UHPFRC), a new composite modification method of steel fiber surfaces was proposed using silane coupling agent KH550 and nano-SiO2 particles. Four parameters, including the mass ratio of ethanol to water (We:Wd), the content of KH550 (wt%), the content of nano-SiO2 (wt%), and the water bath temperature (Twb), were considered for the orthogonal design of proportions (L9(34)). Firstly, four mixtures with good solution stability were selected for fiber surface modification. The FTIR and SEM were then used to analyze the composition and morphology of the coatings. Finally, the optimal modification process parameters were determined based on the bending and compressive strength of UHPFRC specimens at 28 days. The results show that: (1) the ratio of We:Wd is the main factor affecting the stability of the solution, and the optimal modification parameters are: We:Wd = 3, KH550 (wt%) = 10%, Nano-SiO2 (wt%) = 0.5%, and Twb = 80℃ ; (2) the FTIR results exhibit characteristic peaks of Fe-O-Si, indicating successful bonding of KH550 and Nano-SiO2 on the steel fiber surfaces; (3) the SEM results indicate uniform distributions of composite coatings without aggregation of Nano-SiO2 particles on the fiber surfaces modified by the optimal parameters; (4) for the fiber volume fractions of 1%, 1.5%, and 2%, the bending strength (28MPa, 30.5MPa and 37MPa) and compressive strength (133.3MPa, 151.7MPa and 163.9MPa) of UHPFRC specimens with optimally-modified fibers are increased by 40.4%, 28.5%, 32.7%, and 7.5%, 8.3%, 13%, respectively, compared to the specimens with untreated fibers; (5) the composite modification technique significantly improves the fiber-matrix interfaces, as demonstrated by more tortuous and complex crack morphologies in the specimens with fiber volume fractions of 1.5% and 2%.
-
表 1 复合改性溶液的正交试验因素水平表
Table 1. Orthogonal test factor and level table of composite modified solution
Level We:Wd KH550/wt% Nano-SiO2/wt% Twb/℃ 1 9:1 8 0.5 50 2 6:1 10 1 65 3 3:1 12 1.5 80 Notes: We:Wd is mass ratio of alcohol to water; The mass fraction of KH550 and nano-SiO2 are both relative to the mass of the composite modified solution; Twb is the temperature of water bath. 表 2 复合改性溶液配比编号
Table 2. Name of composite modified solutions
Name We:Wd KH550/wt% Nano-SiO2/wt% Twb/℃ C1 9:1 8 0.5 50 C2 9:1 10 1 65 C3 9:1 12 1.5 80 C4 6:1 8 1 80 C5 6:1 10 1.5 50 C6 6:1 12 0.5 65 C7 3:1 8 1.5 65 C8 3:1 10 0.5 80 C9 3:1 12 1 50 表 3 纤维增强混凝土的配比
Table 3. Ratio of steel fiber reinforced ultra-high performance concrete
Name Cement/g Silica fume/g Quartz
powder/gQuartz sand/g Water/g Water reducing agent/g Steel fiber
(volume fraction)/g1 1200 134 320 586 290 10 60(1%) 2 1200 134 320 586 290 10 90(1.5%) 3 1200 134 320 586 290 10 120(2%) 表 4 UHPFRC小梁试件编号及数量
Table 4. Name and quantity of UHPFRC beam specimens
Name Quantity per set Bending test Compression test BF-1 3 6 HF-1 3 6 CaF-1 3 6 BF-1.5 3 6 HF-1.5 3 6 CaF-1.5 3 6 BF-2 3 6 HF-2 3 6 CaF-2 3 6 Notes: The naming rule of specimens: steel fiber type–volume fraction; a=2, 3, 8 and 9 (a is consistent with the subscript number of composite modified solution). 表 5 复合改性液稳定性正交试验结果
Table 5. Orthogonal test results of stability of composite modified solutions
Test Factor Transition
time/hWe:Wd KH550 Nano-SiO2 Twb C1 1 1 1 1 46 C2 1 2 2 2 96 C3 1 3 3 3 88 C4 2 1 2 3 28 C5 2 2 3 1 2 C6 2 3 1 2 42 C7 3 1 3 2 16 C8 3 2 1 3 128 C9 3 3 2 1 90 K1 avg 76.7 30 72 46 K2 avg 24 75.3 71 51.3 K3 avg 78 73.3 35.3 81.3 Range 54 45.3 35.3 35.3 Optimal mixture A3 B2 C1 D3 Note: Kiavg −Average of level i (i = 1,2,3). -
[1] RICHARD P, CHEYREZY M. Reactive powder concrete[J]. Cement and Concrete Research, 1995, 25(7): 1501-1511. doi: 10.1016/0008-8846(95)00144-2 [2] LI W W, LI W Y, LU Y, et al. Axial compressive behavior and failure mechanism of CFRP partially confined ultra-high performance concrete (UHPC)[J]. Construction and Building Materials, 2024, 426: 136104. doi: 10.1016/j.conbuildmat.2024.136104 [3] LI W W, LU Y, WANG P, et al. Comparative study of compressive behavior of confined NSC and UHPC/ UHPFRC cylinders externally wrapped with CFRP jacket[J]. Construction and Building Materials, 2023, 292: 116513. [4] ZHANG X, YANG Z J, PANG M, et al. Ex-situ micro X-ray computed tomography tests and image-based simulation of UHPFRC beams under bending[J]. Cement and Concrete Composites, 2021, 123: 104216. doi: 10.1016/j.cemconcomp.2021.104216 [5] LI J Q, WU Z M, ShI C J, et al. Durability of ultra-high performance concrete–A review[J]. Construction and Building Materials, 2020, 255: 119296. doi: 10.1016/j.conbuildmat.2020.119296 [6] AITCIN P. Cement of yesterday and today - Concrete of tomorrow[J]. Cement and Concrete Research, 2020, 30(9): 1349-1359. [7] VOO Y, POON W, FOSTER S. Shear Strength of Steel Fiber-Reinforced Ultrahigh-Performance Concrete Beams without Stirrups[J]. Journal of Structural Engineering, 2010, 136(11): 1393-1400. doi: 10.1061/(ASCE)ST.1943-541X.0000234 [8] ZHOU A, WEI H N, LIU T J, et al. Interfacial technology for enhancement in steel fiber reinforced cementitious composite from nano to macroscale[J]. Nanotechnology Reviews, 2021, (1): 636-652. [9] DU S, LUAN C Q, YUAN L W, et al. Investigation on the effect of silane coupling agent treatment of steel fibers on the durability of UHPC[J]. Archives of Civil and Mechanical Engineering, 2023, 23(2): 312-321. [10] 姚勇, 杨贞军, 张麒. 硅烷涂层提升钢纤维-砂浆界面性能的试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 1-9+30.YAO yong, YANG Zhenjun, ZHANG Lin. Experiment research on improving interface performance of steel fiber and mortal by silane coatings[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(1): 1-9+30(in Chinese). [11] KOTHA S P, LIEBERMAN M, VICKERS A, et al. Adhesion enhancement of steel fibers to acrylic bone cement through a silane coupling agent[J]. Journal of Biomedical Materials Research Part A, 2010, 76(1): 111-119. [12] KIM S , CHOI S , YOO D Y . Surface modification of steel fibers using chemical solutions and their pullout behaviors from ultra-high-performance concrete[J]. Journal of Building Engineering, 2020, 32: 101709. [13] PI Z Y, XIAO H G, DU J J, et al. Effect of the water/cement ratio on the improvement of pullout behaviors using nano-SiO2 modified steel fiber and the micro mechanism[J]. Construction and Building Materials, 2022, 338: 127632. doi: 10.1016/j.conbuildmat.2022.127632 [14] ZHOU A, YU Z C, WEI H N, et al. Understanding the Toughening Mechanism of Silane Coupling Agents in the Interfacial Bonding in Steel Fiber-Reinforced Cementitious Composites[J]. ACS Applied Materials and Interfaces, 2020, 12(39): 114375. [15] 钟世云, 付鲸铭. 镀铜钢纤维表面改性及其耐腐蚀性能和黏结性能[J]. 建筑材料学报, 2019, 22(4): 6.ZHONG Shiyun, FU Jingming. Surface Modifying of Copper-Plated Steel Fibers and Its Corrosion Resistance and Bond Behavior with Cement Mortar[J]. Journal of building materials, 2019, 22(4): 6 (in Chinese). [16] PI Z Y, XIAO H G, LIU R, et al. Combination usage of nano-SiO2-coated steel fiber and silica fume and its improvement effect on SFRCC[J]. Composites Part B Engineering, 2021, 9: 109022. [17] TADANO T, ZHU R, MUROGA Y, et al. A new mechanism for the silica nanoparticle dispersion–agglomeration transition in a poly(methyl methacrylate)/silica hybrid suspension[J]. Polymer Journal, 2014, 46(6): 342-348. doi: 10.1038/pj.2014.6 [18] 刘博文, 焦龙, 闫春华等. 硅烷偶联剂KH-550对纳米二氧化硅的改性及性能评价[J]. 应用化工, 2023, 52(5): 1367-1370.LIU Bowen, JIAO Long, YAN Chunhua, et al. Modification and performance evaluation of silane coupling agent KH-550 for nano-silica[J]. Applied chemical industry, 2023, 52(5): 1367-1370(in Chinese). [19] 牛永效, 王毅, 王恩德等. 纳米SiO2在水性介质中的分散稳定性研究[J]. 中国粉体技术, 2006, (3): 1-3.NIU Yongxiao, WANG Yi, WANG Ende, et al. Study on the dispersion stability of Nano-SiO2 in aqueous medium[J]. China Powder Science and Technology, 2006, (3): 1-3(in Chinese). [20] JG/T 472-2015, 钢纤维混凝土[S].JG/T 472-2015, Steel fiber reinforced concrete[S] (in Chinese). [21] GB/T 17671-2021, 水泥胶砂强度检验方法(ISO法)[S].GB/T 17671-2021, Test method for strength of cement mortar(ISO method) [S] (in Chinese). [22] HUANG J L, ZHOU Y, YANG X, et al. A Multi-scale Study of Enhancing Mechanical Property in Ultra-High Performance Concrete by Steel-fiber@Nano-silica[J]. Construction and Building Materials, 2022, 342: 128069. doi: 10.1016/j.conbuildmat.2022.128069 [23] 孙庭超, 曾德明, 曹明莉. 硅烷偶联剂改性钢纤维水泥基复合材料弯曲性能研究[J]. 硅酸盐通报, 2023, 42(7): 2326-2335.SUN Tingchao, ZENG Deming, CAO Mingli. Flexural Properties of Silance Coupling Agents Modified Steel Fiber Cement-Based Composites[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2326-2335(in Chinese). [24] 董金美, 李颖, 文静, 等. KH550硅烷偶联剂的水解工艺研究[J]. 盐湖研究, 2020, 28(4): 28-33.DONG Jinmei, LI Yi, WEN Jing, et al. Study on hydrolysis process of KH550 silane coupling agent[J]. Journal of Salt Lake Research, 2020, 28(4): 28-33(in Chinese). [25] PI Z Y, XIAO H G, DU J J, et al. Interfacial microstructure and bond strength of nano-SiO2-coated steel fibers in cement matrix[J]. Cement and Concrete Composites, 2019, 103: 1-10. doi: 10.1016/j.cemconcomp.2019.04.025 [26] CHUN B, YOO D, BANTHIA N. Achieving slip-hardening behavior of sanded straight steel fibers in ultra-high-performance concrete[J]. Cement and Concrete Composites, 2020, 113: 103669. doi: 10.1016/j.cemconcomp.2020.103669
计量
- 文章访问数: 87
- HTML全文浏览量: 67
- 被引次数: 0