留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维/钢绞线网格增强ECC-RC复合梁抗弯性能试验

武芳文 卞正容 吴健辉 李滋润 陈澳 何岚清

武芳文, 卞正容, 吴健辉, 等. 纤维/钢绞线网格增强ECC-RC复合梁抗弯性能试验[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 武芳文, 卞正容, 吴健辉, 等. 纤维/钢绞线网格增强ECC-RC复合梁抗弯性能试验[J]. 复合材料学报, 2024, 42(0): 1-12.
WU Fangwen, BIAN Zhengrong, WU Jianhui, et al. Experimental study on the flexural behavior of textile/steel wire strand mesh reinforced ECC-RC composite beam[J]. Acta Materiae Compositae Sinica.
Citation: WU Fangwen, BIAN Zhengrong, WU Jianhui, et al. Experimental study on the flexural behavior of textile/steel wire strand mesh reinforced ECC-RC composite beam[J]. Acta Materiae Compositae Sinica.

纤维/钢绞线网格增强ECC-RC复合梁抗弯性能试验

基金项目: 国家自然科学基金项目(52378121);陕西省自然科学基础研究计划重点项目(2022JZ-32);中央高校基本科研业务费专项资金项目(300102212212)
详细信息
    通讯作者:

    何岚清,博士,研究方向为钢混组合结构 E-mail: 2020221009@chd.edu.cn

  • 中图分类号: U443.35

Experimental study on the flexural behavior of textile/steel wire strand mesh reinforced ECC-RC composite beam

Funds: National Natural Science Foundation of China (52378121); The Natural Science Basic Research Program of Shaanxi (2022JZ-32); The Fundamental Research Funds for the Central Universities (300102212212)
  • 摘要: 为探究不同类型网格增强ECC层加固钢筋混凝土梁的抗弯性能,通过四点弯曲试验,分析了纤维网格和钢绞线网格对复合梁承载力、控裂能力、延性和刚度等受弯性能的影响。研究结果表明:与ECC-RC梁相比,采用纤维网格和钢绞线网格增强ECC-RC复合梁裂缝宽度减小, 裂缝数量增加25%~70%,纤维网格和钢绞线网格增强ECC层可提高复合梁的控裂能力,抑制裂缝扩展;纤维网格和钢绞线网格增强ECC层可提高复合梁的开裂荷载、屈服荷载、极限荷载、延性及刚度;受弯过程中,所有ECC-RC复合梁截面满足平截面假设,纤维网格和钢绞线网格增强ECC层与混凝土黏结良好;基于理论分析与试验结果,考虑纤维网格利用率,建立了纤维网格和高强钢绞线网格增强ECC-RC复合梁受弯承载力计算公式,计算结果与试验结果吻合良好。钢绞线网格增强ECC层对ECC-RC复合梁受弯性能加固效果最佳,可显著提高复合梁承载力、延性及抗裂性。

     

  • 图  1  ECC受拉应力-应变曲线

    Figure  1.  Tensile stress-strain curve of ECC

    图  2  试验梁构造图 (单位:mm)

    Figure  2.  Structure diagram of test beams (Unit: mm)

    图  3  网格尺寸示意图

    Figure  3.  Grid size diagram

    图  4  试验加载图(单位:mm)

    Figure  4.  Diagram of test setup (Unit: mm)

    图  5  试验梁破坏形态

    Figure  5.  Failure modes of test beams

    图  6  试验梁荷载-裂缝宽度

    Figure  6.  Load-crack width of test beams

    图  7  试验梁钢筋应变图

    Figure  7.  Steel strain diagram of test beams

    图  8  试验梁荷载-挠度曲线

    Figure  8.  Load-deflection curves of test beams

    图  9  试验梁延性系数对比

    Figure  9.  Ductility index comparison of test beams

    图  10  试验梁截面刚度-挠度曲线对比

    Figure  10.  Comparison of section stiffness-deflection curves of test beams

    图  11  试验梁跨中截面的应变分布

    Figure  11.  Strain distribution along mid-span cross-section of test beams

    图  12  试验梁正截面应力分布简图

    Figure  12.  Distribution of stresses and strains along cross-section of test beam of test beams

    h—Height of beam;b—Width of beam;hg Distance from the grid to the top of the composite beam;asThe distance from the tensile steel bar to the bottom of the composite beam;h0Effective height of composite beam;heECC thickness;AsThe cross section area of tensile reinforcement;$A_{\text{s}}^{'}$The cross section area of compressive steel bar;εcuConcrete ultimate compressive strain;ε'sCompressive steel bar strain;εsTensile steel bar strain;εeECC tensile strain;εtgTextile or the high-strength steel wire strand mesh strain;xcCompression zone height;ycThe distance from the concrete resultant point to the top of the composite beam;σcConcrete compressive stress;σecECC tensile stress;CcConcrete resultant force;$T_{\text{s}}^{\text{'}}$Compressed steel bar resultant force;TsTensile steel bar resultant force;TtgGrid resultant force;MuSection bending moment

    表  1  试件设计参数

    Table  1.   Design parameters of specimens

    Specimen number Thickness of
    ECC/mm
    Distance from
    grid to beam
    bottom/mm
    Grid type
    RC 0 - -
    ECC-RC 60 - -
    CFRP/ECC-RC 60 10 CFRP textile
    BFRP/ECC-RC 60 10 BFRP textile
    HSSWS/ECC-RC 60 10 High-strength steel wire strand mesh
    下载: 导出CSV

    表  2  配合比(单位:kg/m3)

    Table  2.   Mix proportion (Unit: kg/m3)

    Materials Fumed silica/mm P.O 52.5 Sand Water Water
    reducer
    Expansion agent Fiber Silica
    fume
    5-16 16-32.5
    C50 471 706 520 706 161 7.8 - - -
    ECC - - 500 600 190 3 25 23 25
    下载: 导出CSV

    表  3  纤维网格和高强钢绞线网格力学性能

    Table  3.   Mechanical properties of textile and high-strength steel wire strand mesh

    Grid type Ultimate tensile strength/MPa Elastic modulus/GPa Ultimate tensile strain/% The cross-sectional area/mm2
    CFRP textile 4815 252 1.90 0.89
    BFRP textile 3330 90 3.70 0.89
    High-strength steel wire strand mesh 1845 180 2.96 4.71
    下载: 导出CSV

    表  4  试验梁结果

    Table  4.   Results of test beams

    Specimen number Pcr/kN Mcr/(kN·m) Dcr/% Py/kN My/(kN·m) Dy/% Pu/kN Mu/(kN·m) Du/% Δy/mm Δu/mm DΔu/%
    RC 14 5.25 - 104 39.00 - 121 45.38 - 9.99 25.51 -
    ECC-RC 16 6.00 - 113 42.38 - 127 47.63 - 10.05 27.77 -
    CFRP/ECC-RC 27 10.13 68.83 125 46.88 10.62 141 52.88 11.02 10.46 29.39 5.83
    BFRP/ECC-RC 22 8.25 37.50 122 45.75 7.95 139 52.13 9.45 9.78 31.97 15.12
    HSSWS/ECC-RC 28 10.50 75.00 143 53.62 26.52 170 63.75 33.84 10.28 34.36 23.73
    Notes: Pcr−Cracking load;Mcr−Cracking moment;Py−Yielding load;My−Yielding moment;Pu−Ultimate load;Mu−Ultimate moment;Δy−Deflection of the specimen at My;Δu−Deflection of the specimen at MuDcrDyDuDΔu represent the increase of cracking load, yield load, ultimate load and ultimate deflection compared with ECC-RC beam, respectively.
    下载: 导出CSV

    表  5  试验梁延性系数

    Table  5.   Ductility index of test beams

    Specimen number Py/kN Pu/kN Δy/mm Δu/mm μΔ ${D_{{\mu _\Delta }}}$/%
    RC 104 121 9.99 25.51 2.55 -
    ECC-RC 113 127 10.05 27.77 2.76 -
    CFRP/ECC-RC 125 138 10.46 29.39 2.80 2
    BFRP/ECC-RC 122 139 9.78 31.97 3.27 18
    HSSWS/ECC-RC 143 170 10.28 34.36 3.34 21
    Notes: μΔ−Ductility index,${D_{{\mu _\Delta }}}$−Increasing range of grid-reinforced ECC-RC composite beam compared with ECC-RC beam; the meaning of other symbols in the table is the same as that in table 4.
    下载: 导出CSV

    表  6  试验梁受弯承载力计算值和试验值对比

    Table  6.   Comparison of flexural bearing capacity between experimental and theoretical results of test beams

    Specimen number Muc/(kN·m) Mut/(kN·m) Muc/Mut Error/%
    CFRP/ECC-RC 52.00 52.88 0.98 1.7
    BFRP/ECC-RC 51.40 52.13 0.99 1.4
    HSSWS/ECC-RC 61.85 63.75 0.97 3.0
    ECC-RC 49.96 47.63 1.05 4.9
    BA-1[23] 15.75 14.80 1.06 5.7
    BB-1[23] 16.66 15.70 1.06 5.5
    BC-1[23] 17.46 16.60 1.05 4.9
    下载: 导出CSV
  • [1] LI V. C. , STANG H. , KRENCHEL H. Micromechanics of crack bridging in fiber-reinforced concrete[J]. Materials and Structures, 1993, 26(8): 486-494.
    [2] LI V. C. , Y Leung C. K. Steady state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 188(11): 2246-2264.
    [3] SHANOUR Ali S. , SAID Mohamed, ARAFA Alaa Ibrahim, et al. Flexural performance of concrete beams containing engineered cementitious composites[J]. Construction and Building Materials, 2018, 180: 23-34. doi: 10.1016/j.conbuildmat.2018.05.238
    [4] 崔涛, 何浩祥, 闫维明, 等. 带ECC底板的装配式梁受弯性能及损伤分析[J]. 哈尔滨工业大学学报, 2019, 51(12): 104-112. doi: 10.11918/j.issn.0367-6234.201812126

    CUI Tao, HE Haoxiang, YAN Weiming, et al. Bending performance test and damage analysis of precast beams with ECC plate[J]. Journal of Building Structures, 2019, 51(12): 104-112(in Chinese). doi: 10.11918/j.issn.0367-6234.201812126
    [5] 王新玲, 罗鹏程, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料薄板受弯承载力研究[J]. 建筑结构学报, 2022, 43(1): 164-172.

    WANG Xin-ling, LUO Pengcheng, QIAN Wenwen, et al. Study on flexural bearing capacity of high-strength stainless steel wire mesh reinforced ECC thin plate[J]. Journal of Building Structures, 2022, 43(1): 164-172(in Chinese).
    [6] 朱俊涛, 张凯, 王新玲, 等. 高强不锈钢绞线网与ECC黏结-滑移关系模型[J]. 土木工程学报, 2020, 53(4): 83-92.

    ZHU Juntao, ZHANG Kai, WANG Xinling, et al. Bond-slip relational model between high-strength stainless steel wire mesh and ECC[J]. China Civil Engineering Journal, 2020, 53(4): 83-92(in Chinese).
    [7] 王新玲, 陈永杰, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料弯曲性能试验[J]. 复合材料学报, 2021, 38(4): 1292-1301.

    WANG Xin-ling, CHEN Yongjie, QIAN Wenwen, et al. Experiment on bending performance of engineered cementitious composites reinforced by high-strength stainless steel wire strand mesh[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1292-1301(in Chinese).
    [8] 李传秀, 尹世平, 赵俊伶. 纤维编织网增强ECC的拉伸和弯曲性能[J]. 建筑材料学报, 2021, 24(4): 736-741. doi: 10.3969/j.issn.1007-9629.2021.04.009

    LI Chuan-xiu, YIN Shi-ping, ZHAO Jun-ling. Tensile and bending properties of textile reinforced ECC[J]. Journal of Building Materials, 2021, 24(4): 736-741(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.04.009
    [9] 徐世烺, 李庆华, 李贺东. 碳纤维编织网增强超高韧性水泥基复合材料弯曲性能的试验研究[J]. 土木工程学报, 2007, 40(12): 69-76. doi: 10.3321/j.issn:1000-131x.2007.12.009

    XU Shilang, LI Qinghu, LI Hedong. An experimental study on the flexural properties of carbon textile reinforced ECC[J]. CHINA CIVIL ENGINEERING JOURNAL, 2007, 40(12): 69-76(in Chinese). doi: 10.3321/j.issn:1000-131x.2007.12.009
    [10] 王新玲, 苏会晓, 李可, 等. FRP网格增强ECC加固素混凝土柱受压性能数值分析[J]. 建筑科学, 2018, 34(3): 22-29.

    WANG Xinling, SU Huixiao, LI Ke, et al. Numerical analysis of compressive performance of plain concrete columns strengthened with FRP-grid and ECC[J]. Building Science, 2018, 34(3): 22-29(in Chinese).
    [11] 郭瑞, 任宇, 顾天宇. 纤维增强复材网格-工程水泥基复合材料加固钢筋混凝土梁的抗剪性能试验研究[J]. 工业建筑, 2019, 49(9): 145-151.

    GUO Rui, REN Yu, GU Tianyu. Experimental research on shear behavior of RC beams reinforced with FRP grid-ECC[J]. Cement Science & Concrete Technology, 2019, 49(9): 145-151(in Chinese).
    [12] ZHENG YuZhou, WANG WenWei, MOSALAM Khalid M. , et al. Experimental investigation and numerical analysis of RC beams shear strengthened with FRP/ECC composite layer[J]. Composite Structures, 2020, 246: 112436. doi: 10.1016/j.compstruct.2020.112436
    [13] GUO Rui, REN Yu, LI Mengqi, et al. Experimental study on flexural shear strengthening effect on low-strength RC beams by using FRP grid and ECC[J]. Engineering Structures, 2021, 227: 111434. doi: 10.1016/j.engstruct.2020.111434
    [14] ZHENG Aohan, LIU Zhenzhen, LI Faping, et al. Experimental investigation of corrosion-damaged RC beams strengthened in flexure with FRP grid-reinforced ECC matrix composites[J]. Engineering Structures, 2021, 244: 112779. doi: 10.1016/j.engstruct.2021.112779
    [15] YANG Xu, GAO WanYang, DAI Jian-Guo, et al. Flexural strengthening of RC beams with CFRP grid-reinforced ECC matrix[J]. Composite Structures, 2018, 189: 9-26. doi: 10.1016/j.compstruct.2018.01.048
    [16] ZHENG YuZhou, WANG WenWei, BRIGHAM John C. Flexural behaviour of reinforced concrete beams strengthened with a composite reinforcement layer: BFRP grid and ECC[J]. Construction and Building Materials, 2016, 115: 424-437. doi: 10.1016/j.conbuildmat.2016.04.038
    [17] 郑宇宙. FRP格栅增强ECC复合加固混凝土梁试验与计算方法研究[D]. 东南大学, 2018.

    ZHENG Yuzhou. Experimental and calculation method research on reinforced concrete (RC) beams strengthened with the composite of FRP grid and ECC[D]. Southeast University, 2018. (in Chinese)
    [18] 郑宇宙, 王文炜. 复材网格-UHTCC复合增强钢筋混凝土梁抗弯性能试验研究[J]. 土木工程学报, 2017, 50(6): 23-32.

    ZHENG Yuzhou, WANG Wenwei. Experimental research on flexural behavior of RC beams strengthened with FRP grid-UHTCC composite[J]. China Civil Engineering Journal, 2017, 50(6): 23-32(in Chinese).
    [19] 张振. 玄武岩纤维网-ECC复合材料加固RC梁抗弯性能研究[D]. 吉林建筑大学, 2022.

    ZHANG Zhen. Study on flexural behavior of RC beams strengthened by basalt fiber grid-ECC composite material[D]. Jilin Jianzhu University, 2022. (in Chinese)
    [20] 李可, 赵佳丽, 李志强, 等. 高强钢绞线网增强ECC抗弯加固无损RC梁试验[J]. 复合材料学报, 2022, 39(7): 3428-3440.

    LI Ke, ZHAO Jiali, LI Zhiqiang, et al. Experiment on non-damaged RC beams strengthened by high-strength steel wire strand meshes reinforced ECC in bending[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3428-3440(in Chinese).
    [21] 李可, 王宇, 李志强, 等. 高强钢绞线网增强ECC加固无损RC梁受弯承载力研究[J]. 建筑结构学报, 2022, 43(12): 82-90.

    LI Ke, WANG Yu, LI Zhiqiang, et al. Research on flexural bearing capacity of non-damaged RC beams strengthened by high-strength steel wire strand mesh-reinforced ECC[J]. Journal of Building Structures, 2022, 43(12): 82-90(in Chinese).
    [22] 李可, 任魁, 李志强, 等. 高强钢绞线网增强ECC加固无损RC梁截面刚度计算[J]. 铁道科学与工程学报, 2022, 19(10): 3046-3054.

    LI Ke, REN Kui, LI Zhiqiang, et al. Calculation of section rigidity of non-damaged RC beams strengthened by high-strength steel wire strand meshes reinforced ECC[J]. Journal of Railway Science and Engineering, 2022, 19(10): 3046-3054(in Chinese).
    [23] 盛杰, 尹世平, 裴浩. 纤维编织网-ECC加固RC梁受弯性能试验[J]. 中国公路学报, 2022, 35(9): 287-297. doi: 10.3969/j.issn.1001-7372.2022.09.022

    SHENG Shijie, YIN Shiping, PEI Hao. Experimental Study on Flexural Behavior of RC Beams Strengthened with Textile and ECC[J]. China Journal of Highway and Transport, 2022, 35(9): 287-297(in Chinese). doi: 10.3969/j.issn.1001-7372.2022.09.022
    [24] 葛文杰, 宗耀锋, 仇胜伟, 等. 碳纤维布粘贴加固BFRP筋-ECC-混凝土组合梁受弯性能研究[J]. 建筑结构学报, 2021, 42(S1): 302-311.

    GE Wenjie, ZONG Yafeng, QIU Shengwei, et al. Study on flexural behavior of BFRP reinforced-ECC-concrete composite beams strengthened with carbon fiber sheets[J]. Journal of Building Structures, 2021, 42(S1): 302-311(in Chinese).
    [25] 高培琦, 葛文杰, 虞佳敏, 等. 碳纤维布加固钢筋ECC/混凝土复合梁受弯性能试验研究[J]. 建筑科学, 2019, 35(11): 103-110.

    GAO Peiqi, GE Wenjie, YU Jiamin, et al. Experimental study on flexural behavior of ECC/concrete composite beams strengthened with carbon fiber sheets[J]. Building Science, 2019, 35(11): 103-110(in Chinese).
    [26] 黄华. 高强钢绞线网—聚合物砂浆加固混凝土梁式桥试验研究与机理分析[D]. 西安: 长安大学, 2008.

    HUANG Hua. Experimental Study and Theoretical Analysis on Strengthening RC Girder Bridge with Steel Wire Mesh and Polymer Mortar[D]. XIan: Chang'an University, 2008. (in Chinese)
    [27] 中华人民共和国住房和城乡建设部. GB510010-2010, 混凝土结构设计规范 [S]. 北京: 中国建筑工业出版社, 2015.

    Code for design of concrete structures: GB 50010—2010[S]. China Architecture & Building Press, 2015. (in Chinese)
    [28] 董志芳, 邓明科, 张聪. 纤维织物增强高延性混凝土单轴拉伸性能试验研究[J]. 土木工程学报, 2020, 53(10): 13-25.

    DONG Zhifang, DENG Mingke, ZHANG Cong. Experimental investigation on uniaxial tension behavior of textile-reinforced highly ductile concrete[J]. China Civil Engineering Journal, 2020, 53(10): 13-25(in Chinese).
  • 加载中
计量
  • 文章访问数:  47
  • HTML全文浏览量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-03-16
  • 录用日期:  2024-04-01
  • 网络出版日期:  2024-04-30

目录

    /

    返回文章
    返回