留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯表面性质对水泥砂浆复合材料力学性能和微观结构的影响

孔祥清 王荣政 高伟 张婷婷 付莹 孙若茜

孔祥清, 王荣政, 高伟, 等. 石墨烯表面性质对水泥砂浆复合材料力学性能和微观结构的影响[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 孔祥清, 王荣政, 高伟, 等. 石墨烯表面性质对水泥砂浆复合材料力学性能和微观结构的影响[J]. 复合材料学报, 2022, 40(0): 1-12
Xiangqing KONG, Rongzheng WANG, Wei GAO, Tingting ZHANG, Ying FU, Ruoixi SUN. Effect of graphene surface properties on mechanical properties and microstructure of cement mortar composites[J]. Acta Materiae Compositae Sinica.
Citation: Xiangqing KONG, Rongzheng WANG, Wei GAO, Tingting ZHANG, Ying FU, Ruoixi SUN. Effect of graphene surface properties on mechanical properties and microstructure of cement mortar composites[J]. Acta Materiae Compositae Sinica.

石墨烯表面性质对水泥砂浆复合材料力学性能和微观结构的影响

基金项目: 国家自然科学基金 (51479168);辽宁省教育厅基本科研面上项目 (LJK20626;LJKQZ2021144)
详细信息
    通讯作者:

    孔祥清,博士,教授,研究方向为石墨烯基复合材料制备及性能 E-mail: xqkong@lnut.edu.cn

  • 中图分类号: TU528

Effect of graphene surface properties on mechanical properties and microstructure of cement mortar composites

  • 摘要: 近年来,利用石墨烯及其衍生物改善水泥基复合材料性能受到了广泛关注。但是,关于石墨烯表面性质对水泥基材料的性能影响却鲜有报道。为此,采用不同浓度的L-抗坏血酸(wt%,10%、20%、30%、50%和 70%)和还原时间(15 min、30 min、45 min和60 min)将氧化石墨烯(GO)转化为还原氧化石墨烯(rGO),然后以相同剂量(水泥质量的0.05%)加入到水泥砂浆复合材料中,研究了不同还原程度的rGO对水泥砂浆力学性能的影响。测试结果表明,通过50wt% L-抗坏血酸还原30min制备的rGO的加入使得水泥砂浆28d 抗压强度和抗折强度相比于普通试样分别提高了36.84%和43.24%。扫描电镜(SEM)等分析表明,GO和不同还原程度的rGO均可促进氢氧化钙(CH)的结晶和水化硅酸钙凝胶(C—S—H)中二氧化硅四面体的形成,形成致密的微观结构。但存在一个最佳阈值(即通过50wt%的L-抗坏血酸还原30 min),在该阈值下,有利于rGO表面官能团与水化产物的结合。

     

  • 图  1  GO和rGO 表面微观形貌:(a)GO;(b)rGO

    Figure  1.  Surface micromorphologies of GO and rGO: (a)GO; (b) rGO

    图  2  GO和rGO的XRD图谱

    Figure  2.  XRD patterns of GO and rGO

    图  3  GO和不同还原条件下rGO的ζ电位绝对值:(a)固定还原时间(30 min),不同L-AA浓度(10 wt%~70 wt%);(b)固定L-AA浓度(50 wt%),不同还原时间(15~60 min)

    Figure  3.  Absolute values of ζ-potential for GO and rGO with different reduction conditions: (a) Fixed reduction time (30 min), different L-AA concentrations (10 wt%-70 wt%); (b) Fixed L-AA concentration (50 wt%), different reduction time (15-60 min)

    图  4  不同还原条件对 rGO/水泥砂浆抗折强度的影响:(a)固定还原时间30 min, 不同L-AA浓度(10 wt%~70 wt%);(b)固定L-AA浓度为50 wt%,不同还原时间(15~60 min)

    Figure  4.  Effect of different reduction conditions on flexural strength of rGO/cement mortar: (a) Fixed 30 min reduction time, different concentrations of L-AA (10 wt%-70 wt%); (b) Fixed L-AA concentration of 50 wt%, different reduction time (15-60 min)

    图  5  不同还原条件对 rGO/水泥砂浆抗压强度的影响:(a)固定还原时间30 min, 不同L-AA浓度(10 wt%~70 wt%);(b)固定L-AA浓度为50 wt%,不同还原时间(15~60 min)

    Figure  5.  Effect of different reduction conditions on compressive strength of rGO/cement mortar: (a) Fixed 30 min reduction time, different concentrations of L-AA (10 wt%-70 wt%); (b) Fixed L-AA concentration of 50 wt%, different reduction time (15-60 min)

    图  6  不同还原条件对rGO/水泥砂浆吸水量的影响:(a)固定还原时间30 min, 不同L-AA浓度(10 wt%~70 wt%);(b)固定L-AA浓度为50 wt%,不同还原时间(15~60 min)

    Figure  6.  Effect of different reduction conditions on water absorption of rGO/ cement mortar: (a) Fixed 30 min reduction time, different concentrations of L-AA (10 wt%-70 wt%); (b) Fixed L-AA concentration of 50 wt%, different reduction time (15-60 min)

    图  7  参比样品R和rGO-CM- 0.05-30的毛细管吸水系数线性拟合曲线:(a)初始吸水拟合曲线;(b)二次吸水拟合曲线

    Figure  7.  Linear fitting curves of capillary water absorption coefficients of the reference sample and rGO-CM- 0.05 -30: (a) Initial absorption fitting curves; (b) Secondary absorption fitting curves

    图  8  添加GO和rGO的水泥砂浆在28 d时的XRD图谱:(a)固定还原时间30 min,不同L-AA浓度(10 wt%~70 wt%);(b)固定L-AA浓度为50 wt%,不同还原时间(15~60 min)

    Figure  8.  XRD patterns of cement mortars with GO and rGO added at 28 d: (a) Fixed 30 min reduction time, different concentrations of L-AA (10 wt%-70 wt%); (b) Fixed L-AA concentration of 50 wt%, different reduction time(15-60 min)

    图  9  GO和rGO的水泥砂浆在28 d时的TG/DTA图谱

    Figure  9.  TG/DTG patterns of cement mortars with GO and rGO added at 28 d

    图  10  28 d时水泥砂浆样品的SEM 图像:(a)R;(b)含0.05%的GO;((c)、(d))含0.05%的rGO

    Figure  10.  SEM images of cement mortar samples at 28 d: (a) R; (b) With 0.05% of GO; ((c), (d)) With 0.05% of rGO

    表  1  PO 42.5水泥化学组成(wt%)

    Table  1.   Chemical composition of PO 42.5 cement (wt%)

    CaOSiO2Al2O3Fe2O3SO3MgONa2O
    61.1422.645.182.142.042.220.67
    下载: 导出CSV

    表  2  PO 42.5 水泥物理性能

    Table  2.   Physical performance of PO 42.5 cement

    Ignition loss/%Initial setting time/minFinal setting time/hSpecific surface area /
    (m2·kg−1)
    Flexural strength/
    MPa
    Compressive strength/MPa
    3 d28 d3 d28 d
    ≤ 518063516.08.430.453.6
    下载: 导出CSV

    表  3  氧化石墨烯(GO)中L-抗坏血酸用量

    Table  3.   Amount of L-Ascorbic acid used in graphene oxide (GO)

    No.Mass ratio of

    GO to cement/%
    L-ascorbic acid
    concentration/(mg·mL-1)
    Reaction time
    /min
    1100.1130
    2200.2130
    3300.32530
    4500.5430
    5700.7530
    6500.5415
    7500.5430
    8500.5445
    9500.5460
    下载: 导出CSV

    表  4  水泥砂浆配合比

    Table  4.   Mix proportion of cement mortar composites

    SampleCement/gWater/gSand/gGO/rGO/gNS/g
    R1004820000.2
    GO-CM100482000.050.2
    rGO-0.1 CM-30100482000.050.2
    rGO-0.2 CM-30100482000.050.2
    rGO-0.3 CM-30100482000.050.2
    rGO-0.5 CM-30100482000.050.2
    rGO-0.7 CM-30100482000.050.2
    rGO-0.5 CM-15100482000.050.2
    rGO-0.5 CM-30100482000.050.2
    rGO-0.5 CM-45100482000.050.2
    rGO-0.5 CM-60100482000.050.2
    Notes: GO stands for graphene oxide; rGO stands for reduce graphene oxide; NS stands for naphthalene superplasticizer; CM stands for cement mortar; R stands for blank sample group; GO-CM stands for add 0.05%GO cement mortar sample group; rGO-0.1 CM-30 stands for add 0.05% rGO (by 10 wt% L-ascorbic acid reduction 30 min) cement mortar sample group; rGO-0.5 CM-15 stands for add 0.05% rGO (by 50 wt% L-ascorbic acid reduction 15 min) cement mortar sample group.
    下载: 导出CSV

    表  5  rGO水泥砂浆试样rGO-0.5 CM-30的水化产物元素组成(wt%)

    Table  5.   Elemental composition of hydration products of rGO cement mortar sample rGO-0.5 CM-30 (wt%)

    Crystal shapeCOCaMgAlSiSKFe
    Needle-like product1.1241.435.481.572.629.333.202.662.87
    Lamella product3.6044.1935.660.901.618.922.562.161.20
    Amorphous product3.2443.3935.871.061.608.872.901.521.65
    Rodlike product3.0146.0235.611.271.298.122.391.460.82
    下载: 导出CSV
  • [1] 程志海, 杨森, 袁小亚. 石墨烯及其衍生物掺配水泥基材料研究进展[J]. 复合材料学报, 2021, 38(2):22.

    CHENG Zhihai, YGOANG Sen, YUAN Xiaoya. Research progress of cement-based materials blended with graphene and its derivatives[J]. Acta Materiae Compositae Sinica,2021,38(2):22(in Chinese).
    [2] 杨一凡, 何智海, 詹培敏. 石墨烯及其衍生物在水泥基材料中的应用与研究进展[J]. 硅酸盐通报, 2020, 39(3):8.

    YANG Yifan, HE Zhihai, ZHAN Peimin. Application and research progress of graphene and its ramifications in cementitious materials[J]. Bulletin of the Chinese Ceramic Society,2020,39(3):8(in Chinese).
    [3] 梁兴文, 胡翱翔, 于婧等. 钢纤维对超高性能混凝土抗弯力学性能的影响[J]. 复合材料学报, 2018, 35(3):722-731.

    LIANG Xingwen, HU Aoxiang, YU Jing, et al. Effect of steel fibers on the flexural response of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(3):722-731(in Chinese).
    [4] NGUYEN W, DUNCN J F, JEN G, et al. Influence of matrix cracking and hybrid fiber reinforcement on the corrosion initiation and propagation behaviors of reinforced concrete[J]. Corrosion Science,2018,140:168-181. doi: 10.1016/j.corsci.2018.06.004
    [5] YOO D Y, BANTHIA N, FUJIKAKE K, et al. Fiber-reinforced cement composites: mechanical properties and structural implications 2019[J]. Advances in Materials Science and Engineering,2019,2019:1-2.
    [6] WANG B, ZHAO R, ZHANG T. Pore structure and durability of cement-based composites doped with graphene nanoplatelets[J]. Materials Express,2018,8(2):149-156. doi: 10.1166/mex.2018.1421
    [7] NOVOSELOY K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [8] WANG B, JIANG R, WU Z. Investigation of the mechanical properties and microstructure of graphene nanoplatelet-cement composite[J]. Nanomaterials,2016,6(11):200. doi: 10.3390/nano6110200
    [9] LIU J, FU J, YANG Y, et al. Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets[J]. Construction and Building Materials,2019,199:1-11. doi: 10.1016/j.conbuildmat.2018.12.006
    [10] DU H, DAI P S. Enhancement of barrier properties of cement mortar with graphene nanoplatelet[J]. Cement and Concrete Research,2015,76:10-19. doi: 10.1016/j.cemconres.2015.05.007
    [11] KRYSTEK M, CIESIELSKI A, SAMMORÌ P. Graphene-Based Cementitious Composites: Toward Next-Generation Construction Technologies[J]. Advanced Functional Materials,2021:2101887.
    [12] 王悦, 王琴, 郑海宇, 等. 分散剂对石墨烯水泥基复合材料压敏性能的影响研究[J]. 硅酸盐通报, 2021, 40(8):12.

    WANG Yue, WANG Qin, ZHENG Haiyu, et al. Influence of dispersant on pressure-sensitive properties of graphene cement-based composites[J]. Bulletin of the Chinese Ceramic Society,2021,40(8):12(in Chinese).
    [13] ZHAO L, GUO X, SONG L, et al. An intensive review on the role of graphene oxide in cement-based materials[J]. Construction and Building Materials,2020,241:117939. doi: 10.1016/j.conbuildmat.2019.117939
    [14] LI X, LIU Y M, LI W G, et al. Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste[J]. Construction and Building Materials,2017,145:402-410. doi: 10.1016/j.conbuildmat.2017.04.058
    [15] SHARMA S, SUSAN D, KOTHIYAL N C, et al. Graphene oxide prepared from mechanically milled graphite: Effect on strength of novel fly-ash based cementitious matrix[J]. Construction and Building Materials,2018,177:10-22. doi: 10.1016/j.conbuildmat.2018.05.051
    [16] MOHAMMED A, SANJAYAN J G, DUAN W H, et al. Graphene oxide impact on hardened cement expressed in enhanced freeze–thaw resistance[J]. Journal of Materials in Civil Engineering,2016,28(9):04016072. doi: 10.1061/(ASCE)MT.1943-5533.0001586
    [17] 徐凯丽. 石墨烯-水泥基复合材料的制备及其功能性研究[D]. 东南大学, 2018.

    XU Kaili. Preparation and functional study of graphene cement composite[D]. Nanjing: Southeast University, 2018. (in Chinese)
    [18] PRABAVATHY S, JEYASUBRAMANIAN K, PRASANTH S, et al. Enhancement in behavioral properties of cement mortar cubes admixed with reduced graphene oxide[J]. Journal of Building Engineering,2020,28:101082. doi: 10.1016/j.jobe.2019.101082
    [19] MURUGAN M, SANTHANAM M, GUPTA S S, et al. Influence of 2 D rGO nanosheets on the properties of OPC paste[J]. Cement and Concrete Composites,2016,70:48-59. doi: 10.1016/j.cemconcomp.2016.03.005
    [20] GHOLAMPOUR A, VALIZADEH K M, TRAN D N H, et al. From graphene oxide to reduced graphene oxide: impact on the physiochemical and mechanical properties of graphene–cement composites[J]. ACS applied materials & interfaces,2017,9(49):43275-43286.
    [21] GAO J, LIU F, LIU Y, et al. Environment-friendly method to produce graphene that employs vitamin C and amino acid[J]. Chemistry of Materials,2010,22(7):2213-2218. doi: 10.1021/cm902635j
    [22] 彭晖, 戈娅萍, 杨振天, 等. 氧化石墨烯增强水泥基复合材料的力学性能及微观结构[J]. 复合材料学报, 2018, 35(8):2132-2139.

    PENG Hui, GE Yaping, YANG Zhentian, et al. Mechanical properties and microstructure of graphene oxide reinforced cement-based composite[J]. Acta Materiae Compositae Sinica,2018,35(8):2132-2139(in Chinese).
    [23] FERNÁNDEZ-MERINO M J, GUARDIA L, PAREDES J I, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions[J]. The Journal of Physical Chemistry C,2010,114(14):6426-6432. doi: 10.1021/jp100603h
    [24] 何威, 许吉航, 焦志男. 少层石墨烯对水泥净浆流动性能及力学性能的影响[J]. 复合材料学报, 2021, 39:1-13.

    HE Wei, XU Jihang, JIAO Zhinan. Effect of few-layer graphene on the fluidity and mechanical properties of cement paste[J]. Acta Materiae Compositae Sinica,2021,39:1-13(in Chinese).
    [25] WANG Y, YA J, OUYANG D. Effect of graphene oxide on mechanical properties of cement mortar and its strengthening mechanism[J]. Materials,2019,12(22):3753. doi: 10.3390/ma12223753
    [26] 中华人民共和国国家标准. 水泥胶砂强度检验方法 (ISO法): GB/T 17671-1999[S]. 北京: 中国标准出版社, 1999.

    National standard of the People's Republic of China. Testing method of cement mortar strength (ISO method): GB/T 17671-1999 [S]. Beijing: China Standards Press, 1999(in Chinese)
    [27] MUTHU M, YANG E H, UNLUER C. Resistance of graphene oxide-modified cement pastes to hydrochloric acid attack[J]. Construction and Building Materials,2021,273:121990. doi: 10.1016/j.conbuildmat.2020.121990
    [28] MEYER J C, GEIM A K, KATSNELAON M I, et al. The structure of suspended graphene sheets[J]. Nature,2007,446(7131):60-63. doi: 10.1038/nature05545
    [29] KWON M, YANG J, KIM H, et al. Controlling Graphene Wrinkles through the Phase Transition of a Polymer with a Low Critical Solution Temperature[J]. Macromolecular Rapid Communications,2021,42(23):2100489. doi: 10.1002/marc.202100489
    [30] SAMARI-KERMANI M, JAFARI S, RAHNAMA M, et al. Ionic strength and zeta potential effects on colloid transport and retention processes[J]. Colloid and Interface Science Communications,2021,42:100389. doi: 10.1016/j.colcom.2021.100389
    [31] ALKHATEB H, Al-OSTAZ A, ChENG A H D, et al. Materials genome for graphene-cement nanocomposites[J]. Journal of Nanomechanics and Micromechanics,2013,3(3):67-77. doi: 10.1061/(ASCE)NM.2153-5477.0000055
    [32] LI X, LU Z, CHUAH S, et al. Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste[J]. Composites Part A:Applied Science and Manufacturing,2017,100:1-8. doi: 10.1016/j.compositesa.2017.05.002
    [33] KRYSTEK M, PAKULSKI D, GÓRSKI M, et al. Electrochemically exfoliated graphene for high-durability cement composites[J]. ACS Applied Materials & Interfaces,2021,13(19):23000-23010.
    [34] WANG B, DENG S. Effect of graphene nanoplatelets on the properties, pore structure and microstructure of cement composites[J]. Materials Express,2018,8(5):407-416. doi: 10.1166/mex.2018.1447
    [35] MURUGAN M, SANTHANAM M, GUPTA S S, et al. Influence of 2 D rGO nanosheets on the properties of OPC paste[J]. Cement and Concrete Composites,2016,70:48-59. doi: 10.1016/j.cemconcomp.2016.03.005
    [36] YASEEN S A, YISEEN G A, LI Z. Elucidation of calcite structure of calcium carbonate formation based on hydrated cement mixed with graphene oxide and reduced graphene oxide[J]. ACS omega,2019,4(6):10160-10170. doi: 10.1021/acsomega.9b00042
    [37] MENG S, OUYANGU X, FU J, et al. The role of graphene/graphene oxide in cement hydration[J]. Nanotechnology Reviews,2021,10(1):768-778. doi: 10.1515/ntrev-2021-0055
    [38] 吕生华, 张佳, 朱琳琳, 等. 氧化石墨烯对水泥基复合材料微观结构的调控作用及对抗压抗折强度的影响[J]. 化工学报, 2017, 68(6):11.

    LV S H, ZHANG J, ZHU L, et al. Regulation of graphene oxide on microstructure of cement composites and its impact on compressive and flexural strength[J]. CIESC Journal,2017,68(6):11(in Chinese).
    [39] WANG B M, DENG S. Effect and mechanism of graphene nanoplatelets on hydration reaction, mechanical properties and microstructure of cement composites[J]. Construction and Building Materials,2019,228:116720. doi: 10.1016/j.conbuildmat.2019.116720
    [40] DEVI S C, KHAN R A. Effect of graphene oxide on mechanical and durability performance of concrete[J]. Journal of Building Engineering,2020,27:101007. doi: 10.1016/j.jobe.2019.101007
    [41] KRYSTEK M, PAKULAKI D, PATRONIAK V, et al. High-performance graphene-based cementitious composites[J]. Advanced Science,2019,6(9):1801195. doi: 10.1002/advs.201801195
    [42] QURESHI T S, PANESAR D K. Impact of graphene oxide and highly reduced graphene oxide on cement-based composites[J]. Construction and Building Materials,2019,206:71-83. doi: 10.1016/j.conbuildmat.2019.01.176
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04
  • 录用日期:  2022-04-13
  • 修回日期:  2022-04-13
  • 网络出版日期:  2022-04-29

目录

    /

    返回文章
    返回