留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁氧体/芦苇秆炭复合吸波材料的制备与性能

简煜 范勋娥 邱柏杨 田迅东 杨喜

简煜, 范勋娥, 邱柏杨, 等. 铁氧体/芦苇秆炭复合吸波材料的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 简煜, 范勋娥, 邱柏杨, 等. 铁氧体/芦苇秆炭复合吸波材料的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-10.
JIAN Yu, FAN Xune, QIU Baiyang, et al. Preparation and microwave absorption properties of ferrite/ reed charcoal composites[J]. Acta Materiae Compositae Sinica.
Citation: JIAN Yu, FAN Xune, QIU Baiyang, et al. Preparation and microwave absorption properties of ferrite/ reed charcoal composites[J]. Acta Materiae Compositae Sinica.

铁氧体/芦苇秆炭复合吸波材料的制备与性能

基金项目: 国家自然科学基金 (31901375);湖南省自然科学基金 (S2022JJQNJJ0900);中南林科大人才启动基金(2018YJ033)
详细信息
    通讯作者:

    杨喜,博士,副教授,硕士生导师,研究方向为竹木材材性及改良、生物质炭材料 E-mail: yangxijy@126.com

  • 中图分类号: TB332

Preparation and microwave absorption properties of ferrite/ reed charcoal composites

Funds: National Natural Science Foundation of China (No. 31901375); The Natural Science Foundation of Hunan Province (No.S2022JJQNJJ0900); The Talent Initiation Fund of Central South University of Forestry and Technology
  • 摘要: 为了解决铁氧体吸波材料密度大、吸收带宽窄等问题,以芦苇茎秆为原料,采用常温浸渍及高温原位生长法制备了铁氧体/芦苇秆炭(Ferrite/RC)复合材料,通过调节碳化温度调控复合材料的电磁特性和电磁波吸收性能。SEM、TEM、XRD及VNA等结果表明:Ferrite/RC复合材料保留了芦苇杆天然的三维蜂窝状网络结构,Fe3O4及铁纳米颗粒均匀分布在芦苇秆炭壁与孔道中;提升碳化温度(650~690℃)可增大复合材料的电导率与介电损耗能力,但温度过高会导致材料阻抗失配从而降低电磁衰减能力。碳化温度为670℃时制备的复合材料(FRC-670)吸波性能最佳,它在匹配厚度仅为1.7 mm时反射损耗达到−45.7 dB,对应有效吸收带宽为3.4 GHz;在厚度为2 mm时有效吸收带宽为5.7 GHz (12.1-17.8 GHz)。其主要的电磁波衰减机制源于复合材料良好的电导损耗、极化弛豫损耗以及电损耗与磁损耗的协同作用。铁氧体/芦苇秆炭复合材料优异的吸波性能在电磁波吸收领域具有良好前景,可促进芦苇资源的高值化与功能化应用。

     

  • 图  1  Ferrite/RC(FRC)复合材料的XRD图谱(a)和FRC-670的热重分析图(b)

    Figure  1.  XRD pattern(a) of Ferrite/RC (FRC) composites and thermogravimetric analysis diagram(b) of FRC-670

    图  2  FRC-670的SEM图像((a)~(d))和TEM图像((e)~(g))

    Figure  2.  SEM ((a)~(d)) and TEM ((e)~(g)) image of FRC-670

    图  3  Ferrite/RC复合材料的磁滞回线

    Figure  3.  Magnetic hysteresis loops of Ferrite/RC composites

    图  4  Ferrite/RC复合材料的电磁参数:复介电常数实部 (a)、虚部 (b) 和介电损耗正切值 (e);复磁导率实部 (c)、虚部 (d) 和磁损耗正切值 (f)

    Figure  4.  Electromagnetic parameters of Ferrite/RC composites: Real part (a), imaginary part (b) and tangent (e) of complex permittivity; Real part (c),imaginary part (d) and tangent (f) of permeability

    图  5  Ferrite/RC复合材料的ε'-ε''曲线图((a)-(c)), C0 (d), α (e), and |Z| (f)

    Figure  5.  ε'-ε'' curve ((a)-(c)), C0 (d), α (e) of Ferrite/RC composites and |Z| (f) of FRC-670

    图  6  FRC-650、FRC-670、RC690和RC-670的反射损耗值((a)~(d))

    Figure  6.  Reflection loss value ((a)~(d)) of FRC-650, FRC-670, FRC-690 and RC-670

    表  1  碳基吸波材料的性能对比

    Table  1.   Comparison of microwave absorption properties of carbon-based materials

    Absorber RLmin/dB EAB/GHz Thickness/mm Filler loading/wt% Ref.
    FRC-670 −45.7 3.4 1.7 35 This work
    FRC-670 −32.1 5.7 2.0 35 This work
    Walnut shell-based porous carbon −42.4 1.8 2.0 70 [35]
    Functionalized loofah sponge −43.8 5.3 3.0 50 [36]
    Rice husk-based porous C/Co −21.8 5.6 1.4 25 [37]
    Fe3O4@lignin −29.5 2.0 4.0 20 [38]
    NiO/porous carbon −33.8 6.7 8.0 30 [39]
    Wheat straw-derived carbon foam −37.0 8.8 2.5 10 [40]
    Shaddock peel-based CA −29.5 5.8 1.7 20 [31]
    BHPC −47.46 3.40 2.8 10 [41]
    Fe3C/biochar −45.6 5.5 4.24 30 [30]
    Cotton-derived porous Fe3O4/C composite −22.1 4.4 2.0 50 [42]
    NC@Fe3O4 −40.3 4.0 2.0 70 [43]
    Notes: RLmin is the minimum reflection loss value; EAB is the effective absorption bandwidth; CA―Carbon aerogel; BHPC―Biomass hierarchical porous carbon; NC―Nanoporous carbon.
    下载: 导出CSV
  • [1] LV H, YAO Y, LI S, et al. Staggered circular nanoporous graphene conerts electromagentic wave into electricity[J]. Nature Communications, 2023, 14: 1982. doi: 10.1038/s41467-023-37436-6
    [2] YANG B, FANG J, XU C, et al. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption[J]. Nano-micro letters, 2022, 14(1): 170. doi: 10.1007/s40820-022-00920-7
    [3] ZHAO X, YAN J, HUANG Y, et al. Magnetic porous CoNi@ C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2021, 595: 78-87. doi: 10.1016/j.jcis.2021.03.109
    [4] 禹刚, 杨嗣星. 移动电话射频电磁辐射对精子质量影响的研究进展[J]. 安全与环境工程, 2022, 29(05): 22-28+45.

    YU Gang, YANG Sixing. Research progress on the effects of radiofrequency electromagnetic radiation from mobile phone on sperm quality[J]. Safety and Environmental Engineering, 2022, 29(05): 22-28+45(in Chinese).
    [5] 叶好, 胡平, 王策, 等. 磁性纤维电磁波吸收剂研究进展[J/OL]. 化工进展: 1-14

    2023-09-25]. YE Hao, HU Ping, WANG Ce, et al. Advances in research on magnetic fibrous electromagnetic wave absorbers [J/OL]. Chemical progress: 1-14[2023-09-25](in Chinese).
    [6] ZHOU X, ZHAO B, LV H. Low-dimensional cobalt doped carbon composite toward electromagnetic dissipation[J]. Nano Research, 2023, 16: 70-79. doi: 10.1007/s12274-022-4950-x
    [7] HUANG X, WANG Y, LOU Z, et al. Porous, magnetic carbon derived from bamboo for microwave absorption[J]. Carbon, 2023, 209: 118005. doi: 10.1016/j.carbon.2023.118005
    [8] 杨喜, 曹敏, 简煜, 等. 多孔木炭/Fe3O4复合吸波材料的制备与性能[J]. 复合材料学报, 2022, 39(10): 4590-4601.

    YANG Xi, CAO Min, JIAN Yu, et al. Preparation and microwave absorption properties of porous charcoal/ Fe3O4 composites[J]. Journal of Composite Materials, 2022, 39(10): 4590-4601(in Chinese).
    [9] GAO X, WU X, QIU J. High electromagnetic waves absorbing performance of a multilayer-like structure absorber containing activated carbon hollow porous fibers–carbon nanotubes and Fe3O4 nanoparticles[J]. Advanced Electronic Materials, 2018, 4(5): 1700565. doi: 10.1002/aelm.201700565
    [10] LIU Y, FU Y, LIU L, et al. Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core-shell nanosheets for improved microwave absorption[J]. ACS applied materials & interfaces, 2018, 10(19): 16511-16520.
    [11] 赵佳, 姚艳青, 杨煊赫, 等. 铁氧体及其复合吸波材料的研究进展[J]. 复合材料学报, 2020, 37(11): 2684-2699.

    ZHAO Jia, YAO Yanqing, YANG Xuanhe et al. Research progress of ferrite and its composite absorbing materials[J]. Journal of Composite Materials, 2020, 37(11): 2684-2699(in Chinese).
    [12] SHAO Y Q, LU W B, CHEN H, et al. Flexible ultra-thinFe3O4/MnO2 coreshell decorated CNT composite with enhanced electromagnetic wave absorption performance[J]. Composites Part B:Engineering, 2018, 144: 111-117. doi: 10.1016/j.compositesb.2018.02.015
    [13] LIU J, LIANG H, WU H. Hierarchical flower-likeFe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance[J]. Composites Part A:Applied Science and Manufacturing, 2020, 130: 105760. doi: 10.1016/j.compositesa.2019.105760
    [14] XU H, YIN X, ZHU M, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption[J]. ACS applied materials & interfaces, 2017, 9(7): 6332-6341.
    [15] LI G, XIE T, YANG S, et al. Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers[J]. The Journal of Physical Chemistry C, 2012, 116(16): 9196-9201. doi: 10.1021/jp300050u
    [16] ZHAO S, GAO Z, CHEN C, et al. Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property[J]. Carbon, 2016, 98: 196-203. doi: 10.1016/j.carbon.2015.10.101
    [17] LI J, DUAN Y, LU W, et al. Polyaniline-stabilized electromagnetic wave absorption composites of reduced graphene oxide on magnetic carbon nanotube film[J]. Nanotechnology, 2018, 29(15): 155201. doi: 10.1088/1361-6528/aaac72
    [18] SHI B, LIU K, CHEN J, et al. Microwave absorption properties of ZnFe2O4/graphite composites prepared by high-temperature ball milling[J]. Journal of Alloys and Compounds, 2022, 905: 164210. doi: 10.1016/j.jallcom.2022.164210
    [19] LV H, GUO Y, YANG Z, et al. A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials[J]. Journal of Materials Chemistry C, 2017, 5(3): 491-512. doi: 10.1039/C6TC03026B
    [20] LI B, ZENG Z, QIAO J, et al. Hollow ZnO/Fe3O4@ C Nanofibers for Efficient Electromagnetic Wave Absorption[J]. ACS Applied Nano Materials, 2022, 5(8): 11617-11626. doi: 10.1021/acsanm.2c02616
    [21] WANG X, HUANG X, CHEN Z, et al. Ferromagnetic hierarchical carbon nanofiber bundles derived from natural collagen fibers: truly lightweight and high-performance microwave absorption materials[J]. Journal of Materials Chemistry C, 2015, 3(39): 10146-10153. doi: 10.1039/C5TC02689J
    [22] ZHANG Z, ZHAO Y, LI Z, et al. Synthesis of carbon/SiO2 core-sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption[J]. Advanced Composites and Hybrid Materials, 2022: 1-12.
    [23] DAI B, DONG F, WANG H, et al. Fabrication of CuS/Fe3O4@ polypyrrole flower-like composites for excellent electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2023, 634: 481-494. doi: 10.1016/j.jcis.2022.12.029
    [24] 程显彬. Fe3O4/介电复合材料的制备与吸波性能研究[D]. 沈阳工业大学, 2019.

    CHENG Xianbin. Preparation and microwave absorption performance of Fe3O4/Dielectric Composites [D]. Shenyang University of Technology, 2019(in Chinese).
    [25] WANG L, SU S, WANG Y. Fe3O4-Graphite Composites as a Microwave Absorber with Bimodal Microwave Absorption[J]. ACS Applied Nano Materials, 2022, 5(12): 17565-17575. doi: 10.1021/acsanm.2c02977
    [26] ZHANG R, WANG L, XU C, et al. Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency[J]. Nano Research, 2022, 15(7): 6743-6750. doi: 10.1007/s12274-022-4401-8
    [27] 白良平. 芦苇多孔材料的水蒸发及水输运机理研究[D]. 南京林业大学, 2023.

    BAI Liang ping. Study on water evaporation and transport mechanism of reed porous materials [D]. Nanjing Forestry University, 2023(in Chinese).
    [28] 赵双双, 田中建, 陈嘉川, 等. 碱浸渍对芦苇茎秆微观结构及其机械浆性能的影响[J]. 中国造纸, 2021, 40(03): 20-26. doi: 10.11980/j.issn.0254-508X.2021.03.004

    ZHAO Shuangshuang, TIAN Zhongjian, CHEN Jiachuan, et al. Effect of alkali impregnation on microstructure and mechanical pulp properties of reed stems[J]. China Paper, 2021, 40(03): 20-26(in Chinese). doi: 10.11980/j.issn.0254-508X.2021.03.004
    [29] YANG X, PANG X, CAO M, et al. Efficient microwave absorption induced by hierarchical pores of reed-derived ultralight carbon materials[J]. Industrial Crops and Products, 2021, 171: 113814. doi: 10.1016/j.indcrop.2021.113814
    [30] LOU Z, WANG Q, SUN W, et al. Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability[J]. Chemical Engineering Journal, 2022, 430: 133178. doi: 10.1016/j.cej.2021.133178
    [31] GU W, SHENG J, HUANG Q, et al. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption[J]. Nano-Micro Letters, 2021, 13: 1-14. doi: 10.1007/s40820-020-00525-y
    [32] HAN M, YANG Y, LIU W, et al. Recent advance in three-dimensional porous carbon materials for electromagnetic wave absorption[J]. Science China Materials, 2022, 65(11): 2911-2935. doi: 10.1007/s40843-022-2153-7
    [33] LIU X, CUI X, CHEN Y, et al. Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly (vinylidene fluoride) composites[J]. Carbon, 2015, 95: 870-878. doi: 10.1016/j.carbon.2015.09.036
    [34] ZHANG X J, LV G C, WANG G S, et al. High-performance microwave absorption of flexible nanocomposites based on flower-like Co superstructures and polyvinylidene fluoride[J]. RSC Advances, 2015, 5: 55468-55473. doi: 10.1039/C5RA06597F
    [35] QIU X, WANG L, ZHU H, et al. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon[J]. Nanoscale, 2017, 9(22): 7408-7418. doi: 10.1039/C7NR02628E
    [36] LIU L, YANG S, HU H, et al. Lightweight and efficient microwave-absorbing materials based on loofah-sponge-derived hierarchically porous carbons[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 1228-1238.
    [37] FANG J, SHANG Y, CHEN Z, et al. Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation[J]. Journal of Materials Chemistry C, 2017, 5(19): 4695-4705. doi: 10.1039/C7TC00987A
    [38] PEI W, SHANG W, LIANG C, et al. Using lignin as the precursor to synthesize Fe3O4@ lignin composite for preparing electromagnetic wave absorbing lignin-phenol-formaldehyde adhesive[J]. Industrial Crops and Products, 2020, 154: 112638. doi: 10.1016/j.indcrop.2020.112638
    [39] WANG H, ZHANG Y, WANG Q, et al. Biomass carbon derived from pine nut shells decorated with NiO nanoflakes for enhanced microwave absorption properties[J]. RSC advances, 2019, 9(16): 9126-9135. doi: 10.1039/C9RA00466A
    [40] ASLAM MA, DING W, UR REHMAN S, et al. Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance[J]. Applied Surface Science, 2021, 543: 148785. doi: 10.1016/j.apsusc.2020.148785
    [41] WU Z, MENG Z, YAO C, et al. Rice husk derived hierarchical porous carbon with lightweight and efficient microwave absorption[J]. Materials Chemistry and Physics, 2022, 275: 125246. doi: 10.1016/j.matchemphys.2021.125246
    [42] FANG Y, XUE W, ZHAO R, et al. Effect of nanoporosity on the electromagnetic wave absorption performance in a biomass-templated Fe3O4/C composite: A small-angle neutron scattering study[J]. Journal of Materials Chemistry C, 2020, 8: 319-327. doi: 10.1039/C9TC04569D
    [43] ZHOU P , WANG X, WANG L, et al. Walnut shell-derived nanoporous carbon@Fe3O4 composites for outstanding microwave absorption performance[J]. Journal of Alloys and Compounds, 2019, 805: 1071-1080.
  • 加载中
计量
  • 文章访问数:  128
  • HTML全文浏览量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-16
  • 修回日期:  2023-12-19
  • 录用日期:  2024-01-08
  • 网络出版日期:  2024-02-01

目录

    /

    返回文章
    返回