留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电催化与人工光合作用还原CO2研究进展

刘金瑞 张妍 孙诗书 石建军 孙天一 史载锋

刘金瑞, 张妍, 孙诗书, 等. 光电催化与人工光合作用还原CO2研究进展[J]. 复合材料学报, 2024, 42(0): 1-19.
引用本文: 刘金瑞, 张妍, 孙诗书, 等. 光电催化与人工光合作用还原CO2研究进展[J]. 复合材料学报, 2024, 42(0): 1-19.
LIU Jinrui, ZHANG Yan, SUN Shishu, et al. Advances in photoelectrocatalysis and artificial photosynthesis for the reduction of CO2[J]. Acta Materiae Compositae Sinica.
Citation: LIU Jinrui, ZHANG Yan, SUN Shishu, et al. Advances in photoelectrocatalysis and artificial photosynthesis for the reduction of CO2[J]. Acta Materiae Compositae Sinica.

光电催化与人工光合作用还原CO2研究进展

基金项目: 国家自然科学基金(22168017);海南省自然科学基金(420QN259, 222CXTD513, 420QN251)
详细信息
    通讯作者:

    孙天一,博士,讲师,硕士生导师,研究方向:光催化, E-mail:tianyi870328@163.com

    史载锋,博士,教授,博士生导师,研究方向:材料化学。 E-mail:zaifengshi@163.com

  • 中图分类号: TB333

Advances in photoelectrocatalysis and artificial photosynthesis for the reduction of CO2

Funds: National Natural Science Foundation of China (22168017); Hainan Provincial Natural Science Foundation of China (420QN259,222CXTD513, 420QN251)
  • 摘要: 随着工业化的不断发展,化石燃料的过度使用产生的CO2导致了温室效应等问题,已经引起国际社会的高度关注,并制定了一系列应对措施。因此,对大气中CO2的还原回收技术研发具有迫切性和重要意义。光电催化是目前可用于还原CO2的具有良好应用前景的技术之一,为了对该技术进行更深入的研究,推动其实际应用,本文首先阐述了光催化、电催化、光电催化还原CO2的基本原理和优缺点,并举例介绍了各类催化剂还原CO2的效率。因为光催化是光合作用中的重要步骤之一,接着重点分析了光合作用在还原CO2研究现状和前景,提出人工光合作用还原CO2可行性与潜力。本文旨在为人工光合作用还原CO2提供新思路和参考,为减少大气中CO2的积累和应对当前的环境挑战提供新的见解和视角。

     

  • 图  1  用于CO2催化还原/转化为增值产品的常见光催化剂的分类[10]

    Figure  1.  Classification of common photocatalysts for CO2 catalytic reduction / conversion to value-added products[10]

    图  2  用于二氧化碳催化还原/转化为增值产品的常见电催化剂的分类[10]

    Figure  2.  Classification of common electrocatalysts for CO2 catalytic reduction / conversion to value-added products[10]

    图  3  叶绿素a与叶绿素b结构示意图

    Figure  3.  Structure diagram of chlorophyll a and chlorophyll b

    图  4  卟啉-石墨烯复合材料光生电子的转移过程[143]

    Figure  4.  Photogenerated electron transfer process of porphyrin-graphene composites[143]

    图  5  光合作用反应序列—明暗反应

    Figure  5.  Photosynthetic reaction sequence-light-dark reaction

    表  1  部分非金属或金属负载半导体光催化剂复合材料用于CO2还原

    Table  1.   Several non-metallic or metalsupported semiconductor photocatalyst composites for CO2 reduction

    Photocatalyst Main products Photocatalytic activity Ref.
    m-CeO2/g-C3N4 CH4 and CO CH4 13.88 µmol·h−1·g−1; CO 11.8 µmol·h−1·g−1 [56]
    SrCO3/SrTiO3 CO CO 23.82 (100) μmol·h−1·g−1 [57]
    Fe2O3/Cu2O CO 5.0 μmol·g·cat−1 [58]
    Cu2ZnSnS4-ZnO CH4 138.90 μmol·g−1·L−1 [59]
    TiO2-SiO2 CH4 2.42 μmol·g−1 [60]
    Cu/TiO2 CH3OH 1.8 μmol·cm−2·h-1 [61]
    Sulfur-doped g-C3N4 CH3OH 1.12 μmol·g−1 [62]
    ZnPc/TiO2 HCOOH 978.6 μmol·g·cat−1 [63]
    GO-TiO2Composite CH3OH/C2H5OH 47.0 μmol·g−1·h−1/144.7 μmol·g−1·h−1 [64]
    Bi2S3 HC(O)OCH3 300.94 μmol·g−1 [65]
    下载: 导出CSV

    表  2  一些用于二氧化碳还原的选择性电催化剂

    Table  2.   Some selective electrocatalysts for CO2 reduction

    ElectrocatalystElectrolyteMain productsCorresponding overpotentialRef.
    Fe-N4O0.1 mol/L KHCO3,6.8 pHCO470 mV[91]
    In(OH)3-Cu2O0.7 mol/L KHCO3CO290 mV[92]
    BiOI0.5 mol/L NaHCO3,6 pHHCOOH−0.40 V[93]
    Pyridoxine modification
    graphene oxide(GO-VB6-Cu)


    0.1 mol/L KHCO3,6.8 pH


    CH3CH2OH


    0.14 V


    [94]
    Graphite/carbon NPs/Cu/
    polytetrafluoroethylene(PTFE)

    7 mol/L KOH,>14 pH

    C2H4

    −0.63 V

    [95]
    Cu2O/ZnO/Graphene(GN)0.5 mol/L NaHCO3C3H7OH−0.90 V[96]
    Cu/TiO2/Graphene(GN)0.2 mol/L KI, 6.62 pHC2H5OH0.84 V[97]
    Bi nanosheet0.1 mol/L KHCO3, 6.8 pHHCOOH420 mV[98]
    nanoporous Au-Sn(NPAS)0.5 mol/L KHCO3, 7.2 pHCO0.45 V[99]
    下载: 导出CSV

    表  3  CO2还原的主要产物及其对应电位(pH=7)

    Table  3.   Main products of CO2 reduction and their corresponding potentials(pH=7)

    Reaction Eo(V vs. NHE) Product
    CO2 + e→CO2 −1.90 ·CO- 2 anion radical
    2 CO2 + 2 H+ + 2 e → H2C2O4 −0.87 Oxalate
    CO2 + 2 H+ + 2 e → HCOOH −0.61 Formic acid
    CO2 + 2 H+ + 2 e → CO + H2O −0.53 Carbon monoxide
    CO2 + 4 H+ + 4 e → HCHO + H2O −0.48 Formaldehyde
    CO2 + 6 H+ + 6 e → CH3OH + H2O −0.38 Methanol
    2 CO2 + 12 H+ + 12 e → C2H5OH + 3 H2O −0.33 Ethanol
    2 CO2 + 14 H+ + 14 e → C2H6 + 4 H2O −0.27 Ethane
    CO2 + 8 H+ + 8 e → CH4 + 2 H2O −0.24 Methane
    下载: 导出CSV

    表  4  用于二氧化碳还原的几种光电催化界面

    Table  4.   Several photoelectrocatalytic interfaces for CO2 reduction

    catalystNumber of electrons
    transferred
    Main productsYield
    [μmol/g-cat/h]
    Ref.
    Pt/TiO28CH41361[113]
    Cu@TiO2-Au2HCOOHN.A.[114]
    Au-ZnTe/ZnO2CON.A.[115]
    Rh grain boundaries(GBs)/TiO212C2H5OH12.1[116]
    NH3/g-C3N48, 6CH4, CH3OH1.39, 1.87[117]
    NH2-C/Cu2O2HCOOH138.65[118]
    Co-ZIF9/g-C3N42CO495[119]
    UiO-66/MoS28CH3COOH39[120]
    Ni(II) MOF/g-C3N42, 8CO, CH413.6[121]
    下载: 导出CSV
  • [1] FU J, JIANG K, QIU X, et al. Product selectivity of photocatalytic CO2 reduction reactions[J]. Materials Today, 2020, 32: 222-243. doi: 10.1016/j.mattod.2019.06.009
    [2] JIA C, DASTAFKAN K, ZHAO C. Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction[J]. Current Opinion in Electrochemistry, 2022, 31: 100854. doi: 10.1016/j.coelec.2021.100854
    [3] CHAND S S, WALSH K J E, CAMARGO S J, et al. Declining tropical cyclone frequency under global warming[J]. Nature Climate Change, 2022, 12(7): 655-661. doi: 10.1038/s41558-022-01388-4
    [4] PRABHU P, JOSE V, LEE J M. Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction[J]. Advanced Functional Materials, 2020, 30(24): 1910768. doi: 10.1002/adfm.201910768
    [5] SHANG Z, FENG X, CHEN G, et al. Recent Advances on Single-Atom Catalysts for Photocatalytic CO2 Reduction[J]. Small, 2023, 19(48): 2304975. doi: 10.1002/smll.202304975
    [6] XIONG Z, WANG H, XU N, et al. Photocatalytic reduction of CO2 on Pt2+–Pt0/TiO2 nanoparticles under UV/Vis light irradiation: A combination of Pt2+ doping and Pt nanoparticles deposition[J]. International Journal of Hydrogen Energy, 2015, 40(32): 10049-10062. doi: 10.1016/j.ijhydene.2015.06.075
    [7] ALKHATIB I I, GARLISI C, PAGLIARO M, et al. Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications[J]. Catalysis Today, 2020, 340: 209-224. doi: 10.1016/j.cattod.2018.09.032
    [8] HIRAGOND C B, POWAR N S, LEE J, et al. Single-Atom Catalysts (SACs) for Photocatalytic CO2 Reduction with H2O: Activity, Product Selectivity, Stability, and Surface Chemistry[J]. Small, 2022, 18(29): 2201428. doi: 10.1002/smll.202201428
    [9] VU N N, KALIAGUINE S, DO T O. Critical aspects and recent advances in structural engineering of photocatalysts for sunlight-driven photocatalytic reduction of CO2 into fuels[J]. Advanced Functional Materials, 2019, 29(31): 1901825. doi: 10.1002/adfm.201901825
    [10] OCHEDI F O, LIU D, YU J, et al. Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: a review[J]. Environmental Chemistry Letters, 2021, 19: 941-967. doi: 10.1007/s10311-020-01131-5
    [11] CHANG P Y, TSENG I H. Photocatalytic conversion of gas phase carbon dioxide by graphitic carbon nitride decorated with cuprous oxide with various morphologies[J]. Journal of CO2 Utilization, 2018, 26: 511-521. doi: 10.1016/j.jcou.2018.06.009
    [12] CHENG L, YUE X, FAN J, et al. Site-Specific Electron-Driving Observations of CO2-to-CH4 Photoreduction on Co-Doped CeO2/Crystalline Carbon Nitride S-Scheme Heterojunctions[J]. Advanced Materials, 2022, 34(27): 2200929. doi: 10.1002/adma.202200929
    [13] RAMBABU Y, KUMAR U, SINGHAL N, et al. Photocatalytic reduction of carbon dioxide using graphene oxide wrapped TiO2 nanotubes[J]. Applied Surface Science, 2019, 485: 48-55. doi: 10.1016/j.apsusc.2019.04.041
    [14] NOR NUM, AMIN NAS. Glucose precursor carbon-doped TiO2 heterojunctions for enhanced efficiency in photocatalytic reduction of carbon dioxide to methanol,[J]. Journal of CO2 Utilization, 2019, 33: 372-383. doi: 10.1016/j.jcou.2019.07.002
    [15] HOU W, HUNG W H, PAVASKAR P, et al. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions[J]. Acs Catalysis, 2011, 1(8): 929-936. doi: 10.1021/cs2001434
    [16] LEE B H, GONG E, KIM M, et al. Electronic interaction between transition metal single-atoms and anatase TiO2 boosts CO2 photoreduction with H2O[J]. Energy and Environmental Science, 2022, 15(2): 601-609. doi: 10.1039/D1EE01574E
    [17] TORRES J A, NOGUEIRA A E, SILVA G T S T, et al. Enhancing TiO2 activity for CO2 photoreduction through MgO decoration[J]. Journal of CO2 Utilization, 2020, 35: 106-114. doi: 10.1016/j.jcou.2019.09.008
    [18] WANG J, GUO R, BI Z, et al. A review on TiO2-x-based materials for photocatalytic CO2 reduction[J]. Nanoscale, 2022, 14: 17862-17870. doi: 10.1039/D2NR05316K
    [19] ZHANG X, ZHOU Y, ZHANG H, et al. Tuning the electron structure enables the NiZn alloy for CO2 electroreduction to formate[J]. Journal of Energy Chemistry, 2021, 63: 625-632. doi: 10.1016/j.jechem.2021.08.060
    [20] PÉREZ L C P, CHALKLEY Z, WENDT R, et al. CO2 electroreduction activity and dynamic structural evolution of in situ reduced nickel-indium mixed oxides[J]. Journal of Materials Chemistry A, 2022, 10(38): 20593-20605. doi: 10.1039/D2TA05214H
    [21] JIANG X, LI X, KONG Y, et al. A hierarchically structured tin-cobalt composite with an enhanced electronic effect for high-performance CO2 electroreduction in a wide potential range[J]. Journal of Energy Chemistry, 2023, 76: 462-469. doi: 10.1016/j.jechem.2022.10.008
    [22] FARID M A, IJAZ S, ASHIQ M N, et al. Synthesis of mesoporous zirconium manganese mixed metal oxide nanowires for photocatalytic reduction of CO2[J]. Journal of Materials Research, 2022, 7: 1-11.
    [23] DONG H, ZHANG X, LU Y, et al. Regulation of metal ions in smart metal-cluster nodes of metal-organic frameworks with open metal sites for improved photocatalytic CO2 reduction reaction[J]. Applied Catalysis B:Environmental, 2020, 276: 119173. doi: 10.1016/j.apcatb.2020.119173
    [24] WANG W, DENG C, et al. Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper (I)/copper (II)[J]. Journal of the American Chemical Society, 2021, 143(7): 2984-2993. doi: 10.1021/jacs.1c00206
    [25] JIANG Z, XU X, MA Y, et al. Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction[J]. Nature, 2020, 586(7830): 549-554. doi: 10.1038/s41586-020-2738-2
    [26] LIU Z, SUN L, ZHANG Q, et al. TiO2-supported single-atom catalysts: Synthesis, Structure, and Application[J]. Chemical Research in Chinese Universities, 2022, 38(5): 1123-1138. doi: 10.1007/s40242-022-2224-5
    [27] DONG G X, ZHANG W, MU Y F, et al. A halide perovskite as a catalyst to simultaneously achieve efficient photocatalytic CO2 reduction and methanol oxidation[J]. Chemical Communications, 2020, 56(34): 4664-4667 doi: 10.1039/D0CC01176B
    [28] IDRIS A M, ZHENG S, WU L, et al. A heterostructure of halide and oxide double perovskites Cs2AgBiBr6/Sr2FeNbO6 for boosting the charge separation toward high efficient photocatalytic CO2 reduction under visible-light irradiation[J]. Chemical Engineering Journal, 2022, 446: 137197. doi: 10.1016/j.cej.2022.137197
    [29] TEH Y W, ER C C, KONG X Y, et al. Charge modulation at atomic-level through substitutional sulfur Do into Atomically Thin Bi2WO6 toward promoting photocatalytic CO2 reduction[J]. ChemSusChem, 2022, 15(14): 18.
    [30] XU F, LI Z, ZHU R, et al. Narrow band-gapped perovskite oxysulfide for CO2 photoreduction towards ethane[J]. Applied Catalysis B:Environmental, 2022, 316: 121615. doi: 10.1016/j.apcatb.2022.121615
    [31] RAZIQ F, KHAN K, ALI S, et al. Accelerating CO2 reduction on novel double perovskite oxide with sulfur, carbon incorporation: Synergistic electronic and chemical engineering[J]. Chemical Engineering Journal, 2022, 446: 137161. doi: 10.1016/j.cej.2022.137161
    [32] CAO Y, GUO L, DAN M, et al. Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction[J]. Nature Communications, 2021, 12(1): 1675. doi: 10.1038/s41467-021-21925-7
    [33] CAI S, ZHANG M, LI J, et al. Anchoring Single-Atom Ru on CdS with Enhanced CO2 Capture and Charge Accumulation for High Selectivity of Photothermocatalytic CO2 Reduction to Solar Fuels[J]. Solar RRL, 2021, 5(2): 2000313. doi: 10.1002/solr.202000313
    [34] BI Q Q, WANG J W, LV J X, et al. Selective photocatalytic CO2 reduction in water by electrostatic assembly of CdS nanocrystals with a dinuclear cobalt catalyst[J]. ACS Catalysis, 2018, 8(12): 11815-11821. doi: 10.1021/acscatal.8b03457
    [35] LIU Z, SUN L, ZHANG Q, et al. TiO2-supported Single-atom Catalysts: Synthesis, Structure, and Application[J]. Chemical Research in Chinese Universities, 2022, 38(5): 1123-1138. doi: 10.1007/s40242-022-2224-5
    [36] DONG G X, ZHANG W, MU Y F, et al. A halide perovskite as a catalyst to simultaneously achieve efficient photocatalytic CO2 reduction and methanol oxidation[J]. Chemical Communications, 2020, 56(34): 4664-4667 doi: 10.1039/D0CC01176B
    [37] Ezugwu C I, Liu S, Li C, et al. Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels[J]. Coordination Chemistry Reviews, 2022, 450: 214245. doi: 10.1016/j.ccr.2021.214245
    [38] Dao X Y, Xie X F, Guo J H, et al. Boosting photocatalytic CO2 reduction efficiency by heterostructures of NH2-MIL-101 (Fe)/ g-C3N4[J]. ACS Applied Energy Materials, 2020, 3(4): 3946-3954. doi: 10.1021/acsaem.0c00352
    [39] Ghosh, Utpal, Ankush Majumdar, and Anjali Pal. Photocatalytic CO2 reduction over g-C3N4 based heterostructures: Recent progress and prospects[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104631. doi: 10.1016/j.jece.2020.104631
    [40] HUANG P, HUANG J, PANTOVICH S A, et al. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation[J]. Journal of the American Chemical Society, 2018, 140(47): 16042-16047. doi: 10.1021/jacs.8b10380
    [41] WANG Y, QU Y, QU B, et al. Construction of Six-Oxygen-Coordinated Single Ni Sites on g-C3N4 with Boron-Oxo Species for Photocatalytic Water-Activation-Induced CO2 Reduction[J]. Advanced materials, 2021, 33(48): 2105482. doi: 10.1002/adma.202105482
    [42] Prasad C, Madkhali N, Govinda V, et al. Recent progress on the development of g-C3N4 based composite material and their photocatalytic application of CO2 reductions[J]. Journal of Environmental Chemical Engineering, 2023, 7: 109727.
    [43] ZHANG Q, DUAN Z, LI M, et al. Atomic cobalt catalysts for the oxygen evolution reaction[J]. Chemical Communications, 2020, 56(5): 794-797. doi: 10.1039/C9CC09007J
    [44] ZHAO L, HAN X, KONG W, et al. Graphene supported single metal atom catalysts for the efficient hydrogen oxidation reaction in alkaline media[J]. Catalysis Science & Technology, 2022, 12(2): 530-541.
    [45] REN S, YU Q, YU X, et al. Graphene-supported metal single-atom catalysts: a concise review[J]. Sci. China Mater, 2020, 63(6): 903-920. doi: 10.1007/s40843-019-1286-1
    [46] LIU M, LIU C, PEERA S G, et al. Catalytic oxidation mechanism of CO on FeN2-doped graphene[J]. Chemical Physics, 2022, 559: 111536. doi: 10.1016/j.chemphys.2022.111536
    [47] ZHANG P, ZHAN X, XU L, et al. Mass production of a single-atom cobalt photocatalyst for high-performance visible-light photocatalytic CO2 reduction[J]. Journal of Materials Chemistry A, 2021, 9(46): 26286-26297. doi: 10.1039/D1TA07169F
    [48] LI Y, WANG S, WANG X, et al. Facile top-down strategy for direct metal atomization and coordination achieving a high turnover number in CO2 photoreduction[J]. Journal of the American Chemical Society, 2020, 142(45): 19259-19267. doi: 10.1021/jacs.0c09060
    [49] GAO C, CHEN S, WANG Y, et al. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: the role of electron transfer[J]. Advanced Materials, 2018, 30(13): 1704624. doi: 10.1002/adma.201704624
    [50] ZHANG H, WEI J, DONG J, et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework[J]. Angewandte Chemie, 2016, 128(46): 14522-14526. doi: 10.1002/ange.201608597
    [51] REN J T, ZHENG Y L, YUAN K, et al. Self-templated synthesis of Co3O4 hierarchical nanosheets from a metal–organic framework for efficient visible-light photocatalytic CO2 reduction[J]. Nanoscale, 2020, 12(2): 755-762. doi: 10.1039/C9NR08669B
    [52] WANG L, WAN J, ZHAO Y, et al. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction[J]. Journal of the American Chemical Society, 2019, 141(6): 2238-2241. doi: 10.1021/jacs.8b13528
    [53] LI J, HUANG H, XUE W, et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4[J]. Nature Catalysis, 2021, 4(8): 719-729. doi: 10.1038/s41929-021-00665-3
    [54] WANG R, HU Y, DU J, et al. Boosting the visible-light activity of ZrO2/g-C3N4 by controlling the crystal structure of ZrO2[J]. Journal of Materials Research, 2021, 36: 3086-3095. doi: 10.1557/s43578-021-00309-z
    [55] CHENG L, ZHANG D, LIAO Y, et al. Structural engineering of 3D hierarchical Cd0.8Zn0.2S for selective photocatalytic CO2 reduction[J]. Chinese Journal of Catalysis, 2021, 42(1): 131-140. doi: 10.1016/S1872-2067(20)63623-3
    [56] GUO L, YOU Y, HUANG H, et al. Z-scheme g-C3N4/Bi2O2 [BO2(OH)] heterojunction for enhanced photocatalytic CO2 reduction[J]. Journal of colloid and interface science, 2020, 568: 139-147. doi: 10.1016/j.jcis.2020.02.025
    [57] LI Z, ZHENG P, ZHANG W, et al. Constructing SrCO3/SrTiO3 nanocomposites with highly selective photocatalytic CO2-to-CO reduction[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 650: 129686. doi: 10.1016/j.colsurfa.2022.129686
    [58] WANG J C, ZHANG L, FANG W X, et al. Enhanced photoreduction CO2 activity over direct Z-scheme α-Fe2O3/Cu2O heterostructures under visible light irradiation[J]. ACS applied materials & interfaces, 2015, 7(16): 8631-8639.
    [59] ZUBAIR M, RAZZAQ A, GRIMES C A, et al. Cu2ZnSnS4 (CZTS)-ZnO: A noble metal-free hybrid Z-scheme photocatalyst for enhanced solar-spectrum photocatalytic conversion of CO2 to CH4[J]. Journal of CO2 Utilization, 2017, 20: 301-311. doi: 10.1016/j.jcou.2017.05.021
    [60] DONG C, XING M, ZHANG J. Economic hydrophobicity triggering of CO2 photoreduction for selective CH4 generation on noble-metal-free TiO2–SiO2[J]. The Journal of Physical Chemistry Letters, 2016, 7(15): 2962-2966. doi: 10.1021/acs.jpclett.6b01287
    [61] LIU E, QI L, BIAN J, et al. A facile strategy to fabricate plasmonic Cu modified TiO2 nano-flower films for photocatalytic reduction of CO2 to methanol[J]. Materials Research Bulletin, 2015, 68: 203-209. doi: 10.1016/j.materresbull.2015.03.064
    [62] WANG K, LI Q, LIU B, et al. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance[J]. Applied Catalysis B:Environmental, 2015, 176: 44-52.
    [63] ZHAO Z H, FAN J M, Wang Z Z. Photo-catalytic CO2 reduction using sol–gel derived titania-supported zinc-phthalocyanine[J]. Journal of cleaner production, 2007, 15(18): 1894-1897. doi: 10.1016/j.jclepro.2006.05.003
    [64] PASTRANA-MARTÍNEZ L M, SILVA A M T, Fonseca N N C, et al. Photocatalytic reduction of CO2 with water into methanol and ethanol using graphene derivative–TiO2 composites: effect of pH and copper (I) oxide[J]. Topics in Catalysis, 2016, 59: 1279-1291. doi: 10.1007/s11244-016-0655-2
    [65] CHEN J, QIN S, SONG G, et al. Shape-controlled solvothermal synthesis of Bi2S3 for photocatalytic reduction of CO2 to methyl formate in methanol[J]. Dalton Transactions, 2013, 42(42): 15133-15138. doi: 10.1039/c3dt51887f
    [66] BAGGER A, JU W, VARELA A S, et al. Electrochemical CO2 reduction: a classification problem[J]. ChemPhysChem, 2017, 18(22): 3266-3273. doi: 10.1002/cphc.201700736
    [67] ZHANG W, HUANG C, XIAO Q, et al. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction[J]. Journal of the American Chemical Society, 2020, 142(26): 11417-11427. doi: 10.1021/jacs.0c01562
    [68] YANG Y, TAN Z, WANG S, et al. Cu/Cu2O nanocrystals for electrocatalytic carbon dioxide reduction to multi-carbon products[J]. Chemical Communications, 2023, 59(17): 2445-2448.
    [69] WAN Q, ZHANG J, ZHANG B, et al. Boron-doped CuO nanobundles for electroreduction of carbon dioxide to ethylene[J]. Green Chemistry, 2020, 22(9): 2750-2754. doi: 10.1039/D0GC00730G
    [70] KIM C, CHO K M, PARK K, et al. Cu/Cu2O interconnected porous aerogel catalyst for highly productive electrosynthesis of ethanol from CO2[J]. Advanced Functional Materials, 2021, 31(32): 2102142. doi: 10.1002/adfm.202102142
    [71] YANG Y, TAN Z, WANG S, et al. Cu/Cu2O nanocrystals for electrocatalytic carbon dioxide reduction to multi-carbon products[J]. Chemical Communications, 2023, 59(17): 2445-2448. doi: 10.1039/D2CC06986E
    [72] YUAN X, CHEN S, CHENG D, et al. Controllable Cu0-Cu+ sites for electrocatalytic reduction of carbon dioxide[J]. Angewandte Chemie, 2021, 133(28): 15472-15475. doi: 10.1002/ange.202105118
    [73] ISMAIL A M, SAMU G F, BALOG A, et al. Composition-dependent electrocatalytic behavior of Au–Sn bimetallic nanoparticles in carbon dioxide reduction[J]. ACS Energy Letters, 2018, 4(1): 48-53.
    [74] TAN F, LIU T, LIU E, ET Al. On ZnAlCe-THs Nanocomposites Electrocatalysts for Electrocatalytic Carbon Dioxide Reduction to Carbon Monoxide[J]. Catalysis Letters, 2023: 1-12.
    [75] GONGLACH S, PAUL S, HAAS M, et al. Molecular cobalt corrole complex for the heterogeneous electrocatalytic reduction of carbon dioxide[J]. Nature Communications, 2019, 10(1): 3864. doi: 10.1038/s41467-019-11868-5
    [76] HUANG N, LEE K H, YUE Y, et al. A stable and conductive metallophthalocyanine framework for electrocatalytic carbon dioxide reduction in water[J]. Angewandte Chemie, 2020, 132(38): 16730-16736. doi: 10.1002/ange.202005274
    [77] JIANG X, CAI F, GAO D, et al. Electrocatalytic reduction of carbon dioxide over reduced nanoporous zinc oxide[J]. Electrochemistry Communications, 2016, 68: 67-70. doi: 10.1016/j.elecom.2016.05.003
    [78] ZHANG Y, LAN J, XIE F, et al. Aligned InS nanorods for efficient electrocatalytic carbon dioxide reduction[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25257-25266
    [79] WANG J, LI G, LI Z, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science advances, 2017, 3(10): e1701290. doi: 10.1126/sciadv.1701290
    [80] ZHANG W, QIN Q, DAI L, et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces[J]. Angewandte Chemie International Edition, 2018, 57(30): 9475-9479. doi: 10.1002/anie.201804142
    [81] XUAN X, CHEN S, ZHAO S, et al. Carbon nanomaterials from metal-organic frameworks: A new material horizon for CO2 reduction[J]. Frontiers in Chemistry, 2020, 8: 573797. doi: 10.3389/fchem.2020.573797
    [82] JIANG X, NIE X, GUO X, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034. doi: 10.1021/acs.chemrev.9b00723
    [83] ZHUO L L, CHEN P, ZHENG K, et al. Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO2 reduction with tunable C2H4/CH4 selectivity[J]. Angewandte Chemie International Edition, 2022, 61(28): e202204967. doi: 10.1002/anie.202204967
    [84] YI J D, XIE R, XIE Z L, et al. Highly Selective CO2 Electroreduction to CH4 by In Situ Generated Cu2O Single-Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding[J]. Angewandte Chemie International Edition, 2020, 59(52): 23641-23648. doi: 10.1002/anie.202010601
    [85] ZHOU Y, CHEN S, XI S, et al. Spatial confinement in copper-porphyrin frameworks enhances carbon dioxide reduction to hydrocarbons[J]. Cell Reports Physical Science, 2020, 1(9): 100182. doi: 10.1016/j.xcrp.2020.100182
    [86] ZHAO K, NIE X, WANG H, et al. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon[J]. Nature Communications, 2020, 11(1): 2455. doi: 10.1038/s41467-020-16381-8
    [87] YUAN J, YANG M P, ZHI W Y, et al. Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts[J]. Journal of CO2 Utilization, 2019, 33: 452-460. doi: 10.1016/j.jcou.2019.07.014
    [88] ZHANG B, GUO Z, ZUO Z, et al. The ensemble effect of nitrogen doping and ultrasmall SnO2 nanocrystals on graphene sheets for efficient electroreduction of carbon dioxide[J]. Applied Catalysis B:Environmental, 2018, 239: 441-449. doi: 10.1016/j.apcatb.2018.08.044
    [89] HUANG J, GUO X, YUE G, et al. Boosting CH3OH production in electrocatalytic CO2 reduction over partially oxidized 5 nm cobalt nanoparticles dispersed on single-layer nitrogen-doped graphene[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44403-44414.
    [90] HU X M, HVAL H H, BJERGLUND E T, et al. Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts[J]. ACS Catalysis, 2018, 8(7): 6255-6264. doi: 10.1021/acscatal.8b01022
    [91] WANG X, PAN Y, NING H, et al. Hierarchically micro-and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction[J]. Applied Catalysis B:Environmental, 2020, 266: 118630. doi: 10.1016/j.apcatb.2020.118630
    [92] LI T, WEI H, LIU T, et al. Achieving efficient CO2 electrochemical reduction on tunable In (OH)3-Coupled Cu2O-derived hybrid catalysts[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22346-22351.
    [93] HAN N, WANG Y, YANG H, et al. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate[J]. Nature communications, 2018, 9(1): 1320. doi: 10.1038/s41467-018-03712-z
    [94] YUAN J, YANG M P, ZHI W Y, et al. Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts[J]. Journal of CO2 Utilization, 2019, 33: 452-460. doi: 10.1016/j.jcou.2019.07.014
    [95] DINH C T, BURDYNY T, KIBRIA M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018, 360(6390): 783-787. doi: 10.1126/science.aas9100
    [96] GEIOUSHY R A, KHALED M M, ALHOOSHANI K, et al. Graphene/ZnO/Cu2O electrocatalyst for selective conversion of CO2 into n-propanol[J]. Electrochimica Acta, 2017, 245: 456-462. doi: 10.1016/j.electacta.2017.05.185
    [97] YUAN J, YANG M P, HU Q L, et al. Cu/TiO2 nanoparticles modified nitrogen-doped graphene as a highly efficient catalyst for the selective electroreduction of CO2 to different alcohols[J]. Journal of CO2 Utilization, 2018, 24: 334-340. doi: 10.1016/j.jcou.2018.01.021
    [98] ZHAO M, GU Y, GAO W, et al. Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO2 reduction[J]. Applied Catalysis B:Environmental, 2020, 266: 118625. doi: 10.1016/j.apcatb.2020.118625
    [99] LU X, YU T, WANG H, et al. Nanoporous Au-Sn with solute strain for simultaneously enhanced selectivity and durability during electrochemical CO2 reduction[J]. Journal of Materials Science & Technology, 2020, 43: 154-160.
    [100] OCHEDI F O, LIU D, YU J, et al. Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: a review[J]. Environmental Chemistry Letters, 2021, 19: 941-967. doi: 10.1007/s10311-020-01131-5
    [101] XU S, SHEN Q, ZHENG J, et al. Advances in biomimetic photoelectrocatalytic reduction of carbon dioxide[J]. Advanced Science, 2022, 9(31): 2203941. doi: 10.1002/advs.202203941
    [102] ZHOU B, KONG X, VANKA S, et al. A GaN: Sn nanoarchitecture integrated on a silicon platform for converting CO2 to HCOOH by photoelectrocatalysis[J]. Energy & Environmental Science, 2019, 12(9): 2842-2848.
    [103] WEI W, YANG Z, SONG W, et al. Different CdSeTe structure determined photoelectrocatalytic reduction performance for carbon dioxide[J]. Journal of colloid and interface science, 2017, 496: 327-333. doi: 10.1016/j.jcis.2016.11.054
    [104] SHEN Q, HUANG X, LIU J, et al. Biomimetic photoelectrocatalytic conversion of greenhouse gas carbon dioxide: Two-electron reduction for efficient formate production[J]. Applied Catalysis B:Environmental, 2017, 201: 70-76. doi: 10.1016/j.apcatb.2016.08.008
    [105] SHEN Q, MA J, HUANG X, et al. Enhanced carbon dioxide conversion to formate on a multi-functional synergistic photoelectrocatalytic interface[J]. Applied Catalysis B:Environmental, 2017, 219: 45-52. doi: 10.1016/j.apcatb.2017.07.029
    [106] YUAN J, WANG X, GU C, et al. Photoelectrocatalytic reduction of carbon dioxide to methanol at cuprous oxide foam cathode[J]. RSC advances, 2017, 7(40): 24933-24939. doi: 10.1039/C7RA03347H
    [107] REZAUL KARIM K M, TAREK M, ONG H R, et al. Photoelectrocatalytic reduction of carbon dioxide to methanol using CuFe2O4 modified with graphene oxide under visible light irradiation[J]. Industrial & Engineering Chemistry Research, 2018, 58(2): 563-572.
    [108] WANG L, QI G, LIU X. Ag/ɑ-Fe2O3 nanowire arrays enable effectively photoelectrocatalytic reduction of carbon dioxide to methanol[J]. Journal of Power Sources, 2021, 507: 230272. doi: 10.1016/j.jpowsour.2021.230272
    [109] KOBAYASHI K, LOU S N, TAKATSUJI Y, et al. Photoelectrochemical reduction of CO2 using a TiO2 photoanode and a gas diffusion electrode modified with a metal phthalocyanine catalyst[J]. Electrochimica Acta, 2020, 338: 135805. doi: 10.1016/j.electacta.2020.135805
    [110] XIE L, JIANG Y, ZHU W, et al. Cu-based catalyst designs in CO2 electroreduction: precise modulation of reaction intermediates for high-value chemical generation[J]. Chemical Science, 2023, 14(47): 13629-13660. doi: 10.1039/D3SC04353C
    [111] YUAN L, WAN Q, JIANG W, et al. Converting CO2 to multi-carbon products at> 1 A/cm2 using gas diffusion electrode based on commercial materials via transfer process engineering[J]. Electrochimica Acta, 2023, 6: 143662.
    [112] ZHONG W, HUANG W, RUAN S, et al. Electrocatalytic Reduction of CO2 Coupled with Organic Conversion to Selectively Synthesize High-Value Chemicals[J]. Chemistry–A European Journal, 2023, 29(20): e202203228. doi: 10.1002/chem.202203228
    [113] WANG W N, AN W J, RAMALINGAM B, et al. Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals[J]. Journal of the American chemical society, 2012, 134(27): 11276-11281. doi: 10.1021/ja304075b
    [114] SHEN Q, MA J, HUANG X, et al. Enhanced carbon dioxide conversion to formate on a multi-functional synergistic photoelectrocatalytic interface[J]. Applied Catalysis B:Environmental, 2017, 219: 45-52. doi: 10.1016/j.apcatb.2017.07.029
    [115] JANG Y J, JANG J W, LEE J, et al. Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system[J]. Energy & Environmental Science, 2015, 8(12): 3597-3604.
    [116] ZHU Y, XU Z, LANG Q, et al. Grain boundary engineered metal nanowire cocatalysts for enhanced photocatalytic reduction of carbon dioxide[J]. Applied Catalysis B:Environmental, 2017, 206: 282-292. doi: 10.1016/j.apcatb.2017.01.035
    [117] XIA P, ZHU B, YU J, et al. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction[J]. Journal of Materials Chemistry A, 2017, 5(7): 3230-3238. doi: 10.1039/C6TA08310B
    [118] ZHU Q, CAO Y, TAO Y, et al. CO2 reduction to formic acid via NH2-C@Cu2O photocatalyst in situ derived from amino modified Cu-MOF[J]. Journal of CO2 Utilization, 2021, 54: 101781. doi: 10.1016/j.jcou.2021.101781
    [119] WANG S, LIN J, WANG X. Semiconductor–redox catalysis promoted by metal–organic frameworks for CO2 reduction[J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14656-14660. doi: 10.1039/c4cp02173h
    [120] YU F, JING X, WANG Y, et al. Hierarchically porous metal–organic framework/MoS2interface for selective photocatalytic conversion of CO2 with H2O into CH3COOH[J]. Angewandte Chemie International Edition, 2021, 60(47): 24849-24853. doi: 10.1002/anie.202108892
    [121] DES Marais. When did photosynthesis emerge on Earth?[J]. Science, 2000, 289(5485): 1703-1705. doi: 10.1126/science.289.5485.1703
    [122] Zhou Y, Chen S, Xi S, et al. Spatial confinement in copper-porphyrin frameworks enhances carbon dioxide reduction to hydrocarbons[J]. Cell Reports Physical Science, 2020, 1(9): 100182. doi: 10.1016/j.xcrp.2020.100182
    [123] El-Khouly M E, El-Mohsnawy E, FUKUZUMI S. Solar energy conversion: From natural to artificial photosynthesis[J]. Journal of photochemistry and photobiology C:Photochemistry Reviews, 2017, 31: 36-83. doi: 10.1016/j.jphotochemrev.2017.02.001
    [124] KUMAR A, HASIJA V, SUDHAIK A, et al. Artificial leaf for light-driven CO2 reduction: Basic concepts, advanced structures and selective solar-to-chemical products[J]. Chemical Engineering Journal, 2022, 430: 133031. doi: 10.1016/j.cej.2021.133031
    [125] ZHAO L, ZHAO Z, LI Y, et al. The synthesis of interface-modulated ultrathin Ni (ii) MOF/g-C3N4 heterojunctions as efficient photocatalysts for CO2 reduction[J]. Nanoscale, 2020, 12(18): 10010-10018. doi: 10.1039/D0NR02551H
    [126] YORIFUJI R, OBARA S. Economic design of artificial light plant factories based on the energy conversion efficiency of biomass[J]. Applied Energy, 2022, 305: 117850. doi: 10.1016/j.apenergy.2021.117850
    [127] WHITE J L, BARUCH M F, PANDER III J E, et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes[J]. Chemical reviews, 2015, 115(23): 12888-12935. doi: 10.1021/acs.chemrev.5b00370
    [128] APPEL A M, BERCAW J E, BOCARSLY A B, et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J]. Chemical reviews, 2013, 113(8): 6621-6658. doi: 10.1021/cr300463y
    [129] LIM R J, XIE M, SK M A, et al. A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts[J]. Catalysis Today, 2014, 233: 169-180. doi: 10.1016/j.cattod.2013.11.037
    [130] XIE S, ZHANG Q, LIU G, et al. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures[J]. Chemical Communications, 2016, 52(1): 35-59. doi: 10.1039/C5CC07613G
    [131] WON D I, LEE J S, JI J M, et al. Highly robust hybrid photocatalyst for carbon dioxide reduction: tuning and optimization of catalytic activities of dye/TiO2/Re (I) organic–inorganic ternary systems[J]. Journal of the American Chemical Society, 2015, 137(42): 13679-13690. doi: 10.1021/jacs.5b08890
    [132] QIU J, ZENG G, HA M A, et al. Artificial photosynthesis on TiO2-passivated InP nanopillars[J]. Nano letters, 2015, 15(9): 6177-6181. doi: 10.1021/acs.nanolett.5b02511
    [133] KANG Q, WANG T, LI P, et al. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au–Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays[J]. Angewandte Chemie, 2015, 127(3): 855-859. doi: 10.1002/ange.201409183
    [134] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. doi: 10.1038/nmat2317
    [135] LIU H, CHEN S, ZHANG Y, et al. An effective Z-scheme hybrid photocatalyst based on zinc porphyrin derivative and anatase titanium dioxide microsphere for carbon dioxide reduction[J]. Materials Today Sustainability, 2022, 19: 100164. doi: 10.1016/j.mtsust.2022.100164
    [136] ZHANG S, WANG S, GUO L, et al. An artificial photosynthesis system comprising a covalent triazine framework as an electron relay facilitator for photochemical carbon dioxide reduction[J]. Journal of Materials Chemistry C, 2020, 8(1): 192-200. doi: 10.1039/C9TC05297F
    [137] RAO H, SCHMIDT L C, BONIN J, et al. Visible-light-driven methane formation from CO2 with a molecular iron catalyst[J]. Nature, 2017, 548(7665): 74-77. doi: 10.1038/nature23016
    [138] YUAN H, CHENG B, LEI J, et al. Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore[J]. Nature Communications, 2021, 12(1): 1835. doi: 10.1038/s41467-021-21923-9
    [139] 孙晓丽. 基于细菌叶绿素衍生物/Ti3C2Tx MXene复合物的光催化产氢研究[D]. 吉林大学, 2022. DOI: 10.27162/d.cnki.gjlin.2022.001435
    [140] WU T, ZHU C, HAN D, et al. Highly selective conversion of CO2 to C2H6 on graphene modified chlorophyll Cu through multi-electron process for artificial photosynthesis[J]. Nanoscale, 2019, 11(47): 22980-22988. doi: 10.1039/C9NR07824J
    [141] XIAO D, JIANG M, LUO X, et al. Sustainable carbon dot-based AIEgens: promising light-harvesting materials for enhancing photosynthesis[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(11): 4139-4145.
    [142] LI D, LI W, ZHANG H, et al. Far-red carbon dots as efficient light-harvesting agents for enhanced photosynthesis[J]. ACS applied materials & interfaces, 2020, 12(18): 21009-21019.
    [143] WU T, ZOU L, HAN D, et al. A carbon-based photocatalyst efficiently converts CO2 to CH4 and C2H2 under visible light[J]. Green Chemistry, 2014, 16(4): 2142-2146 doi: 10.1039/C3GC42454E
    [144] PIAO M, LIU N, WANG Y, et al. Efficiently Converting CO2 into C2H4 using a Porphyrin–Graphene Composite Photocatalyst[J]. Australian Journal of Chemistry, 2015, 69(1): 27-32.
    [145] ZHANG C, DUAN S, ZHOU M, et al. Electropolymerized chlorophyll derivative biopolymers for supercapacitors[J]. Chemical Engineering Journal, 2022, 450: 138000. doi: 10.1016/j.cej.2022.138000
    [146] GAUT N J, Adamala K P. Toward artificial photosynthesis[J]. Science, 2020, 368(6491): 587-588. doi: 10.1126/science.abc1226
    [147] SCHMERMUND L, JURKAŠ V, ÖZGEN F F, et al. Photo-biocatalysis: biotransformations in the presence of light[J]. Acs Catalysis, 2019, 9(5): 4115-4144. doi: 10.1021/acscatal.9b00656
    [148] JACOBS M, Lopez-Garcia M, Phrathep O, et al. Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency[J]. Nature Plants, 2016, 2(11): 1-6.
    [149] ZHOU J, LI J, KAN L, et al. Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O[J]. Nature Communications, 2022, 13(1): 4681. doi: 10.1038/s41467-022-32449-z
    [150] BUKHANOV E, SHABANOV A V, Volochaev M N, et al. The role of periodic structures in light harvesting[J]. Plants, 2021, 10(9): 1967. doi: 10.3390/plants10091967
    [151] LIU J, ZHAO H, WU M, et al. Slow photons for photocatalysis and photovoltaics[J]. Advanced Materials, 2017, 29(17): 1605349. doi: 10.1002/adma.201605349
    [152] WU S, YANG W, MENG Z, et al. Photonic Crystals Assembled by SiO2@ Ni/TiO2 for Photocatalytic Reduction of CO2[J]. Catalysis Letters, 2020, 150: 3598-3607. doi: 10.1007/s10562-020-03263-3
    [153] LIN H, LIU Y, YANG C, et al. Microfluidic artificial photosynthetic system for continuous NADH regeneration and l-glutamate synthesis[J]. Catalysis Science & Technology, 2022, 12(12): 4057-4065.
    [154] ZHAO Y, LIU H, WU C, et al. Fully conjugated two-dimensional sp2-carbon covalent organic frameworks as artificial photosystem I with high efficiency[J]. Angewandte Chemie International Edition, 2019, 58(16): 5376-5381. doi: 10.1002/anie.201901194
    [155] WANG Y, LIU J, WANG Y, et al. Efficient solar-driven electrocatalytic CO2 reduction in a redox-medium-assisted system[J]. Nature Communications, 2018, 9(1): 5003. doi: 10.1038/s41467-018-07380-x
    [156] SON E J, LEE Y W, KO J W, et al. Amorphous carbon nitride as a robust photocatalyst for biocatalytic solar-to-chemical conversion[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(2): 2545-2552.
    [157] YU S, HOU Y, JIN Q, et al. Biomimetic chlorophyll derivatives-based photocatalytic fabric for highly efficient O2 production via CO2 and H2O photoreaction[J]. Chemical Engineering Journal, 2023, 472: 145103. doi: 10.1016/j.cej.2023.145103
    [158] MILLER T E, BENEYTON T, SCHWANDER T, et al. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts[J]. Science, 2020, 368(6491): 649-654. doi: 10.1126/science.aaz6802
  • 加载中
计量
  • 文章访问数:  83
  • HTML全文浏览量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-13
  • 修回日期:  2024-01-16
  • 录用日期:  2024-01-20
  • 网络出版日期:  2024-02-28

目录

    /

    返回文章
    返回