In situ preparation of VO2@PMMA microcapsule and their thermochromic properties
-
摘要:
球磨法制备二氧化钒粉体工艺设备简单、反应时间短、能耗低、无废液产生适合工业化大规模生产,但由于磨球的强烈冲击使VO2(M)粉体分散性和稳定性较差,且与有机基体相容性不好,导致其涂层太阳光调制能力较差,在实际应用中面临重大挑战。本文利用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)对球磨VO2进行修饰得到VO2-KH570,VO2-KH570粉体均匀分散在低黏度甲基丙烯酸甲酯(MMA)单体中,加热条件下MMA单体原位聚合得到分散性好、平均粒径为55 nm的VO2@PMMA微胶囊,不仅可以利用PMMA的空间阻隔作用防止VO2团聚,而且PMMA具有良好的致密性可以防止空气、湿气等接触VO2,提高其稳定性。除此之外,VO2@PMMA微胶囊表面的PMMA可以与基体中的PMMA发生物理缠绕,提高VO2与有机基体之间的相容性。因此,所制得的VO2@PMMA微胶囊涂层抗酸和抗氧化能力显著提高(> 24 h,而纯VO2 < 30 min),而且光学性质明显改善(Tlum =77.89%,ΔTsol =10.12%,而纯VO2的Tlum =78%,ΔTsol =5.25%)。 VO2@PMMA微胶囊的合成示意图(a)及其涂层紫外-可见-近红外透射光谱(b) Abstract: Vanadium dioxide (VO2) can change infrared transmittance in response to external temperature changes, and has become the preferred material for thermochromic smart windows. The facile ball milling method is simple, easy to operate, short reaction time, less pollution, suitable for industrial production. However, there are still some problems with vanadium dioxide that may hinder large scale production and practical applications, such as poor stability and easily agglomeration. Here we report on the preparation of thermochromic coating based on VO2@PMMA microcapsule synthesized through in-situ polymerized method. Uniform VO2@PMMA microcapsules was obtained by in situ polymerization of double bonds on the surface of VO2 and MMA monomer. The space barrier effect of in-situ polymerized PMMA is used to prevent VO2 agglomeration. With good compactness PMMA prevent air and moisture from contacting VO2, which improve VO2 stability. VO2@PMMA films prepared by a roll coating method not only has good acid resistance and oxidation resistance, but also has excellent optical properties (Tlum =77.89%, ΔTsol =10.12%), which meets the application requirements of smart windows.-
Key words:
- vanadium dioxide /
- polymethyl methacrylate /
- in-situ polymerization /
- stability /
- ball milling /
- dispersibility /
- smart windows
-
图 9 (a)从左向右依次为VO2、VO2-KH570和VO2@PMMA微胶囊在0.5 mol/L的H2SO4溶液中浸泡不同时间的实物照片;(b)VO2@PMMA微胶囊未浸泡和浸泡H2SO4溶液48 h后粉体的XRD花样;(c)VO2和VO2@PMMA微胶囊涂层未浸泡和在0.5 mol/L的H2SO4溶液中浸泡24 h的实物照片;(d)VO2和VO2@PMMA微胶囊涂层浸泡H2SO4溶液24 h后紫外-可见-近红外透射光谱
Figure 9. From left to right pictures of VO2, VO2-KH570 and VO2@PMMA microcapsule nanoparticle (a) and coating (c) dispersed in H2SO4 solution, XRD patterns of VO2@PMMA microcapsule nanoparticle dispersed in H2SO4 solution for 48 h (b), UV–Vis-NIR transmittance spectra of VO2 coating and VO2@PMMA microcapsule coating dispersed in H2SO4 solution for 24 h (d)
图 10 (a)从左向右依次为VO2、VO2-KH570和VO2@PMMA微胶囊在0.1 mol/L的H2O2溶液中浸泡不同时间的实物照片;(b)VO2@PMMA微胶囊未浸泡和浸泡H2O2溶液48 h后粉体的XRD花样;(c)VO2(左)和VO2@PMMA微胶囊(右)涂层未浸泡和在0.1 mol/L的H2O2溶液中浸泡24 h的实物照片;(d)VO2和VO2@PMMA微胶囊涂层浸泡H2O2溶液后紫外-可见-近红外透射光谱
Figure 10. From left to right pictures of VO2, VO2-KH570 and VO2@PMMA microcapsule nanoparticle (a) and coating (c) dispersed in H2O2 solution, XRD patterns of VO2@PMMA microcapsule nanoparticle dispersed in H2O2 solution for 48 h (b), UV–Vis-NIR transmittance spectra of VO2 coating and VO2@PMMA microcapsule coating dispersed in H2O2 solution for 24 h (d)
图 12 从左向右依次为常温放置十个月VO2、VO2-KH570和VO2@PMMA微胶囊涂料(a)和涂层(b)实物照片; VO2(c)、VO2-KH570(d)和VO2@PMMA微胶囊(e)涂层常温放置十个月紫外-可见-近红外透射光谱
Figure 12. From left to right pictures of VO2, VO2-KH570 and VO2@PMMA microcapsule nanoparticle (a) and coating (c) after ageing for 10 months, UV–Vis-NIR transmittance spectra of VO2 coating (c), VO2-KH570 coating (d) and VO2@PMMA microcapsule coating (e) after ageing for 10 months
表 1 VO2、VO2-KH570和VO2@PMMA微胶囊涂层的光学性能
Table 1. Summary of luminous transmittance and solar modulation efficiency for VO2 coating, VO2-KH570 coating and VO2@PMMA microcapsule coating
Luminous transmittance
Tlum/%Solar transmittance
Tsol/%Solar regulation efficiency
ΔTsol/%20℃ 90℃ 20℃ 90℃ VO2-1 77.23 79.22 82.02 76.77 5.25 VO2-2 68.24 68.73 73.53 66.56 6.97 VO2-3 41.16 43.02 50.88 42.03 8.85 VO2-KH570-1 74.74 74.92 80.11 75.12 4.99 VO2-KH570-2 69.97 73.37 77.21 74.02 3.19 VO2-KH570-3 45.04 45.83 56.06 47.22 8.84 VO2@PMMA-1 78.29 77.48 83.16 73.04 10.12 VO2@PMMA-2 64.80 64.07 73.60 60.30 13.30 VO2@PMMA-3 57.29 56.72 68.08 50.58 17.50 表 2 VO2和VO2@PMMA微胶囊涂层耐酸、抗氧化和紫外老化后太阳光调制能力汇总表
Table 2. Summary of solar modulation efficiency of VO2 coating and VO2@PMMA microcapsule coating after acid resistance, oxidation resistance and UV ageing
VO2 VO2@PMMA Before acidification 8.52 9.99 Acidification for 24 h −5.8 9.9 Before oxidation 5.24 11.05 Oxidation for 24 h 1.95 8.63 Before UV ageing 8.2 9.3 UV ageing for 48 h 7.11 10.33 -
[1] LIU M S, SU B, TANG Y, et al. Recent advances in nanostructured vanadium oxides and composites for energy conversion[J]. Advanced Energy Materials,2017,7(23):1700885-1700918. doi: 10.1002/aenm.201700885 [2] CHANG T C, CAO X, BAO S H, et al. Review on thermochromic vanadium dioxide based smart coatings: From lab to commercial application[J]. Advances in Manufacturing,2018,6(1):1-19. doi: 10.1007/s40436-017-0209-2 [3] XU F, CAO X, LUO H J, et al. Recent advances in VO2-based thermochromic composites for smart windows[J]. Journal of Materials Chemistry C,2018,6(8):1903-1919. doi: 10.1039/C7TC05768G [4] 徐 放, 金平实, 罗宏杰, 等. VO2热致变色智能窗: 现状、挑战及展望[J]. 无机材料学报, 2021, 36(10):1013-1021. doi: 10.15541/jim20210070XU Fang, JIN Pingshi, LUO Hongjie, et al. VO2 thermochromic smart window: Status, challenges and prospects[J]. Journal of Inorganic Materials,2021,36(10):1013-1021(in Chinese). doi: 10.15541/jim20210070 [5] WANG C Y, XU H Y, LIU T Y, et al. One-step ball milling synthesis of VO2 (M) nanoparticles with exemplary thermochromic performance[J]. SN Applied Sciences,2021,3(4):436-445. doi: 10.1007/s42452-021-04154-x [6] WANG C, XU H Y, WANG C Y, et al. Preparation of VO2 (M) nanoparticles with exemplary optical performance from VO2 (B) nanobelts by ball milling[J]. Journal of Alloys and Compounds,2021,877:159888-159895. doi: 10.1016/j.jallcom.2021.159888 [7] DOU S, ZHAO J, ZHANG W, et al. A universal approach to achieve high luminous transmittance and solar modulating ability simultaneously for vanadium dioxide smart coatings via double-sided localized surface plasmon resonances[J]. ACS Appl Mater Interfaces,2020,12(6):7302-7309. doi: 10.1021/acsami.9b17923 [8] XU Q Y, KE Y J, FENG C C, et al. Anisotropic localized surface plasmon resonance of vanadium dioxide rods in flexible thermochromic film towards multifunctionality[J]. Solar Energy Materials and Solar Cells,2021,230:111163-111170. doi: 10.1016/j.solmat.2021.111163 [9] LI Y M, JI S D, GAO Y F, et al. Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings[J]. Science Reports,2012,3:1370-1382. [10] ZHU Z Z, ZHU K Z, GUO J H, et al. Preparation and durability evaluation of vanadium dioxide intelligent thermal insulation films[J]. Colloid and Interface Science Communications,2022,48:100619-100626. doi: 10.1016/j.colcom.2022.100619 [11] TONG K, LI R, ZHU J T, et al. Preparation of VO2 /Al-O core-shell structure with enhanced weathering resistance for smart window[J]. Ceramics International,2017,43(5):4055-4061. doi: 10.1016/j.ceramint.2016.11.181 [12] SAINI M, DEHIYA B S, UMAR A. VO2(M)@CeO2 core-shell nanospheres for thermochromic smart windows and photocatalytic applications[J]. Ceramics International,2020,46(1):986-995. doi: 10.1016/j.ceramint.2019.09.062 [13] ZHOU Y, HUANG A, LI Y, et al. Surface plasmon resonance induced excellent solar control for VO2@SiO2 nanorods-based thermochromic foils[J]. Nanoscale,2013,5(19):9208-9213. doi: 10.1039/c3nr02221h [14] LI Y M, JI S D, GAO Y F, et al. Core-regenerated vapor–solid growth of hierarchical stem-like VOx nanocrystals on VO2@TiO2 core–shell nanorods: microstructure and mechanism[J]. CrystEngComm,2013,15(41):8330-8336. doi: 10.1039/c3ce40947c [15] CHEN Y, SHAO Z, YANG Y, et al. Electrons-donating derived dual-resistant crust of VO2 nano-particles via ascorbic acid treatment for highly stable smart windows applications[J]. ACS Appl Mater Interfaces,2019,11(44):41229-41237. doi: 10.1021/acsami.9b11142 [16] EBRAHIMI A K, SHEIKHSHOAIE I, SALIMI S, et al. In-situ facile synthesis of superparamagnetic porous core-shell structure for dye adsorption[J]. Journal of Molecular Structure,2021,1228:129797-129803. doi: 10.1016/j.molstruc.2020.129797 [17] ZHOU J, WANG Y, CHEN Y, et al. Single-crystal red phosphors and their core-shell structure for improved water-resistance for laser diodes applications[J]. Angew Chem Int Ed Engl,2021,60(8):3940-3945. doi: 10.1002/anie.202011022 [18] GAO Y F, WANG S B, LUO H J, et al. Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control[J]. Energy & Environmental Science,2012,5(3):6104-6110. [19] ZHANG Z C Y, XI B J, WANG X, et al. Oxygen defects engineering of VO2·xH2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage[J]. Advanced Functional Materials,2021,31(34):2103070-2103079. doi: 10.1002/adfm.202103070 [20] DHANDA M, ARORA R, SAINI M, et al. Prolific intercalation of VO2 (D)/polypyrrole/g-C3N4 as an energy storing electrode with remarkable capacitance [J]. New Journal of Chemistry, 2022. [21] KOS T, ANŽLOVAR A, PAHOVNIK D, et al. Zinc-containing block copolymer as a precursor for the in situ formation of nano ZnO and PMMA/ZnO nanocomposites[J]. Macromolecules,2013,46(17):6942-6948. doi: 10.1021/ma4010296 [22] ZHAO X P, MOFID S A, GAO T, et al. Durability-enhanced vanadium dioxide thermochromic film for smart windows[J]. Materials Today Physics,2020,13:100205-100213. doi: 10.1016/j.mtphys.2020.100205 [23] FAN F Q, XIA Z B, LI Q Y, et al. ZrO2/PMMA nanocomposites: preparation and its dispersion in polymer matrix[J]. Chinese Journal of Chemical Engineering,2013,21(2):113-120. doi: 10.1016/S1004-9541(13)60448-6 [24] GU Y F, FEI J, HUANG J F, et al. Synthesis and tribological performance of carbon microspheres/poly(methyl methacrylate) core–shell particles as highly efficient lubricant[J]. The Journal of Physical Chemistry C,2019,123(47):29037-29046. doi: 10.1021/acs.jpcc.9b09458 [25] CHEN Y, LI Z N, MIAO N M Polymethylmethacrylate (PMMA)/CeO2 hybrid particles for enhanced chemical mechanical polishing performance [J]. Tribology International, 2015, 82: 211-217. [26] YAO Y J, CHEN Z, WEI W, et al. Cs0.32WO3/PMMA nanocomposite via in-situ polymerization for energy saving windows[J]. Solar Energy Materials and Solar Cells,2020,215:110656-110661. doi: 10.1016/j.solmat.2020.110656 [27] ZHAO X X, SUN J H, MA J C, et al. Combining reversible addition-fragmentation chain transfer polymerization and thiol-ene click reaction for application of core-shell structured VO2@polymer nanoparticles to smart window[J]. Sustainable Materials and Technologies,2022,32:e00420-e00434. doi: 10.1016/j.susmat.2022.e00420 [28] MUSTAFA I F, HUSSEIN M Z. Synthesis and technology of nanoemulsion-based pesticide formulation[J]. Nanomaterials (Basel),2020,10(8):1608-1633. doi: 10.3390/nano10081608 [29] 高迎, 秦成远, 聂永, 等. 二氧化钒-荧光增白剂-有机聚合物三层多功能复合薄膜[J]. 复合材料学报, 2022:39.GAO Y, QIN C Y, NIE Y, et al. Three-layer multifunctional vanadium dioxide-fluorescent brightener-organic polymer composite films[J]. Acta Materiae Compositae Sinica,2022:39(in Chinese). [30] ZHANG M, LAI Y, LI M, et al. The microscopic structure-property relationship of metal-organic polyhedron nanocomposites[J]. Angew Chem Int Ed Engl,2019,58(48):17412-17417. doi: 10.1002/anie.201909241 [31] ZHU J, ZHOU Y, WANG B, et al. Vanadium dioxide nanoparticle-based thermochromic smart coating: high luminous transmittance, excellent solar regulation efficiency, and near room temperature phase transition[J]. ACS Appl Mater Interfaces,2015,7(50):27796-27803. doi: 10.1021/acsami.5b09011 [32] 我国最高气温, 吐鲁番的49.6℃ [OL]. (2015-09-15) https://www.souid.com/zhongguozhizui/1056.htmlThe highest temperature in China, 49.6 ℃ in Turpan [OL]. (2015-09-15) (in Chinese) -