留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VO2@PMMA微胶囊的原位制备及其热致变色涂层性能

呼啸 李文婷 付勍玮 徐慧妍 聂永 杨帅军 蒋绪川

呼啸, 李文婷, 付勍玮, 等. VO2@PMMA微胶囊的原位制备及其热致变色涂层性能[J]. 复合材料学报, 2023, 40(8): 4587-4600. doi: 10.13801/j.cnki.fhclxb.20221102.004
引用本文: 呼啸, 李文婷, 付勍玮, 等. VO2@PMMA微胶囊的原位制备及其热致变色涂层性能[J]. 复合材料学报, 2023, 40(8): 4587-4600. doi: 10.13801/j.cnki.fhclxb.20221102.004
HU Xiao, LI Wenting, FU Qingwei, et al. In situ preparation of VO2@PMMA microcapsule and thermochromic properties of its coating[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4587-4600. doi: 10.13801/j.cnki.fhclxb.20221102.004
Citation: HU Xiao, LI Wenting, FU Qingwei, et al. In situ preparation of VO2@PMMA microcapsule and thermochromic properties of its coating[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4587-4600. doi: 10.13801/j.cnki.fhclxb.20221102.004

VO2@PMMA微胶囊的原位制备及其热致变色涂层性能

doi: 10.13801/j.cnki.fhclxb.20221102.004
基金项目: 山东省自然科学基金青年项目(ZR2022 QE017);济南大学科技计划项目(XKY2065);济南大学学科重大课题项目
详细信息
    通讯作者:

    李文婷,博士,讲师,研究方向为有机-无机复合材料及抗菌高分子材料 E-mail: ism_liwt@ujn.edu.cn

    蒋绪川,博士,教授,博士生导师,研究方向为光、热、电、磁等外界刺激响应型无机功能材料,隔热节能玻璃的功能化 E-mail: ism_jiangxc@ujn.edu.cn

  • 中图分类号: TB332

In situ preparation of VO2@PMMA microcapsule and thermochromic properties of its coating

Funds: Natural Science Foundation of Shandong Province (ZR2022 QE017); Science and Technology Program of University of Ji'nan (XKY2065); Major Subject Project of the University of Ji'nan
  • 摘要: M相二氧化钒(VO2(M))能够响应外界温度变化而改变红外波段透过率,成为热致变色智能窗涂层的首选材料。球磨法工艺设备简单、易于操作、反应时间短、无废液产生,适合工业化生产,但球磨VO2稳定性差、易团聚在实际应用中面临重大挑战。本文基于原位聚合法制备了二氧化钒@聚甲基丙烯酸甲酯(VO2@PMMA)微胶囊并辊涂构建热致变色涂层。甲基丙烯酸甲酯(MMA)单体在球磨法制备的VO2颗粒表面通过共价键原位聚合得到尺寸均匀、耐酸抗氧化能力强的VO2@PMMA微胶囊。VO2@PMMA热致变色涂层不仅具有良好的抗酸和抗氧化能力,而且可见光透过率(Tlum)为77.89%时涂层的太阳光调制能力(ΔTsol)高达10.12%,具有优异的光学性质,满足智能窗的应用需求。

     

  • 图  1  二氧化钒@聚甲基丙烯酸甲酯(VO2@PMMA)微胶囊的合成示意图

    KH570—3-methacryloxypropyltrimethoxysilane; KPS—Potassium persulfate

    Figure  1.  Schematic diagram of the preparation of vanadium dioxide@polymethyl methacrylate (VO2@PMMA) microcapsule

    图  2  VO2、VO2-KH570和VO2@PMMA微胶囊的FTIR图谱(a)、TGA曲线(b)、XRD图谱(c)和DSC曲线(d)

    Figure  2.  FTIR spectra (a), TGA curves (b), XRD patterns (c) and DSC curves (d) of VO2, VO2-KH570 and VO2@PMMA microcapsule

    图  3  VO2 (a)、VO2-KH570 (b)和VO2@PMMA微胶囊粉体((c)、(d))的SEM图像

    Figure  3.  SEM images of VO2 (a), VO2-KH570 (b) and VO2@PMMAmicrocapsule ((c), (d))

    图  4  VO2@PMMA微胶囊的TEM (a)和HRTEM (b)图像

    Figure  4.  TEM (a) and HRTEM (b) images of VO2@PMMA microcapsule

    图  5  VO2 ((a)、(d))、VO2-KH570 ((b)、(e))和VO2@PMMA微胶囊((c)、(f))涂层表面的SEM图像

    Figure  5.  SEM images of VO2 coating ((a), (d)), VO2-KH570 coating ((b), (e)) and VO2@PMMA microcapsule coating ((c), (f))

    图  6  VO2 ((a)、(d))、VO2-KH570 ((b)、(e))和VO2@PMMA微胶囊((c)、(f))涂层断面的SEM图像

    Figure  6.  Cross sectional SEM images of VO2 coating ((a), (d)), VO2-KH570 coating ((b), (e)) and VO2@PMMA microcapsule coating ((c), (f))

    图  7  VO2 (a)、VO2-KH570 (b)和VO2@PMMA微胶囊(c)涂层断面粉体的线分析

    Figure  7.  Ingredient linear scan analysis on the cross sectional of VO2 coating (a), VO2-KH570 coating (b) and VO2@PMMA microcapsule coating (c)

    图  8  VO2、VO2-KH570和VO2@PMMA微胶囊涂层(a)和不同含量VO2@PMMA微胶囊涂层(b)的紫外-可见-近红外透射图谱

    Figure  8.  UV-Vis-NIR transmittance spectra of VO2 coating, VO2-KH570 coating, VO2@PMMA microcapsule coating (a) and with different content VO2@PMMA microcapsules (b)

    图  9  (a)从左向右依次为VO2、VO2-KH570和VO2@PMMA微胶囊在0.5 mol/L的H2SO4溶液中浸泡不同时间的实物照片;(b) VO2@PMMA微胶囊未浸泡和浸泡H2SO4溶液48 h后粉体的XRD图谱;(c) VO2 (左)和VO2@PMMA微胶囊(右)涂层浸泡在0.5 mol/L的H2SO4溶液中浸泡24 h的实物照片;(d) VO2和VO2@PMMA微胶囊涂层浸泡H2SO4溶液24 h后紫外-可见-近红外透射图谱

    Figure  9.  (a) From left to right pictures of VO2, VO2-KH570 and VO2@PMMA microcapsule nanoparticle dispersed in 0.5 mol/L H2SO4 solution for different times; (b) XRD patterns of VO2@PMMA microcapsule nanoparticle before and after dispersed in H2SO4 solution for 48 h; (c) Pictures of VO2 (left) and VO2@PMMA (right) coating dispersed in 0.5 mol/L H2SO4 solution for 24 h; (d) UV-Vis-NIR transmittance spectra of VO2 coating and VO2@PMMA microcapsule coating after dispersed in H2SO4 solution for 24 h

    图  10  (a)从左向右依次为VO2、VO2-KH570和VO2@PMMA微胶囊在0.1 mol/L的H2O2溶液中浸泡不同时间的实物照片;(b) VO2@PMMA微胶囊未浸泡和浸泡H2O2溶液48 h后粉体的XRD图谱;(c) VO2 (左)和VO2@PMMA微胶囊(右)涂层浸泡在0.1 mol/L的H2O2溶液中浸泡24 h的实物照片;(d) VO2和VO2@PMMA微胶囊涂层浸泡H2O2溶液24 h后紫外-可见-近红外透射图谱

    Figure  10.  (a) From left to right pictures of VO2, VO2-KH570 and VO2@PMMA microcapsule nanoparticle dispersed in 0.1 mol/L H2O2 solution for different times; (b) XRD patterns of VO2@PMMA microcapsule nanoparticle before and after dispersed in H2O2 solution for 48 h; (c) Pictures of VO2 (left) and VO2@PMMA (right) coating dispersed in 0.1 mol/L H2O2 solution for 24 h; (d) UV-Vis-NIR transmittance spectra of VO2 coating and VO2@PMMA microcapsule coating after dispersed in H2O2 solution for 24 h

    图  11  VO2 (a)、VO2-KH570 (b)和VO2@PMMA微胶囊(c)涂层紫外老化48 h紫外-可见-近红外透射图谱

    Figure  11.  UV-Vis-NIR transmittance spectra of VO2 coating (a), VO2-KH570 coating (b) and VO2@PMMA microcapsule coating (c) after UV ageing for 48 h

    图  12  从左向右依次为常温放置10个月VO2、VO2-KH570和VO2@PMMA微胶囊涂料(a)和涂层(b)实物照片; VO2 (c)、VO2-KH570 (d)和VO2@PMMA微胶囊(e)涂层常温放置10个月紫外-可见-近红外透射图谱

    Figure  12.  From left to right pictures of VO2, VO2-KH570 and VO2@PMMA microcapsule nanoparticle (a) and coating (b) after ageing for 10 months, UV-Vis-NIR transmittance spectra of VO2 coating (c), VO2-KH570 coating (d) and VO2@PMMA microcapsule coating (e) after ageing for 10 months

    图  13  (a)构建简易测试涂层玻璃隔热效果的小房子实物图;(b)温度随照射时间的变化曲线

    Figure  13.  (a) Photograph of small house for test of thermal insulation effect of coated glass; (b) Relation curves between the temperature and time of different coating glasses

    表  1  VO2、VO2-KH570和VO2@PMMA微胶囊涂层的可见光透过率和太阳光调制能力汇总

    Table  1.   Summary of luminous transmittance and solar modulation efficiency for VO2 coating, VO2-KH570 coating and VO2@PMMA microcapsule coating

    Luminous transmittance Tlum/%Solar transmittance Tsol/%Solar regulation efficiency ΔTsol/%
    20℃90℃20℃90℃
    VO2-1 77.23 79.22 82.02 76.77 5.25
    VO2-2 68.24 68.73 73.53 66.56 6.97
    VO2-3 41.16 43.02 50.88 42.03 8.85
    VO2-KH570-1 74.74 74.92 80.11 75.12 4.99
    VO2-KH570-2 69.97 73.37 77.21 74.02 3.19
    VO2-KH570-3 45.04 45.83 56.06 47.22 8.84
    VO2@PMMA-1 78.29 77.48 83.16 73.04 10.12
    VO2@PMMA-2 64.80 64.07 73.60 60.30 13.30
    VO2@PMMA-3 57.29 56.72 68.08 50.58 17.50
    下载: 导出CSV

    表  2  VO2和VO2@PMMA微胶囊涂层耐酸、抗氧化和紫外老化后太阳光调制能力汇总

    Table  2.   Summary of solar modulation efficiency of VO2 coating and VO2@PMMA microcapsule coating after acid resistance, oxidation resistance and UV ageing

    ConditionVO2VO2@PMMA
    Before acidification 8.52 9.99
    Acidification for 24 h −5.80 9.90
    Before oxidation 5.24 11.05
    Oxidation for 24 h 1.95 8.63
    Before UV ageing 8.20 9.30
    UV ageing for 48 h 7.11 10.33
    下载: 导出CSV
  • [1] LIU M S, SU B, TANG Y, et al. Recent advances in nanostructured vanadium oxides and composites for energy conversion[J]. Advanced Energy Materials,2017,7(23):1700885-1700918. doi: 10.1002/aenm.201700885
    [2] CHANG T C, CAO X, BAO S H, et al. Review on thermochromic vanadium dioxide based smart coatings: From lab to commercial application[J]. Advances in Manufacturing,2018,6(1):1-19. doi: 10.1007/s40436-017-0209-2
    [3] XU F, CAO X, LUO H J, et al. Recent advances in VO2-based thermochromic composites for smart windows[J]. Journal of Materials Chemistry C,2018,6(8):1903-1919. doi: 10.1039/C7TC05768G
    [4] 徐放, 金平实, 罗宏杰, 等. VO2热致变色智能窗: 现状、挑战及展望[J]. 无机材料学报, 2021, 36(10):1013-1021. doi: 10.15541/jim20210070

    XU Fang, JIN Pingshi, LUO Hongjie, et al. VO2 thermochromic smart window: Status, challenges and prospects[J]. Journal of Inorganic Materials,2021,36(10):1013-1021(in Chinese). doi: 10.15541/jim20210070
    [5] WANG C Y, XU H Y, LIU T Y, et al. One-step ball milling synthesis of VO2 (M) nanoparticles with exemplary thermochromic performance[J]. SN Applied Sciences,2021,3(4):436-445. doi: 10.1007/s42452-021-04154-x
    [6] WANG C, XU H Y, WANG C Y, et al. Preparation of VO2 (M) nanoparticles with exemplary optical performance from VO2 (B) nanobelts by ball milling[J]. Journal of Alloys and Compounds,2021,877:159888-159895. doi: 10.1016/j.jallcom.2021.159888
    [7] DOU S, ZHAO J, ZHANG W, et al. A universal approach to achieve high luminous transmittance and solar modulating ability simultaneously for vanadium dioxide smart coatings via double-sided localized surface plasmon resonances[J]. ACS Applied Materials & Interfaces,2020,12(6):7302-7309. doi: 10.1021/acsami.9b17923
    [8] XU Q Y, KE Y J, FENG C C, et al. Anisotropic localized surface plasmon resonance of vanadium dioxide rods in flexible thermochromic film towards multifunctionality[J]. Solar Energy Materials and Solar Cells,2021,230:111163. doi: 10.1016/j.solmat.2021.111163
    [9] LI Y M, JI S D, GAO Y F, et al. Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic pro-perties for application as energy-saving smart coatings[J]. Science Reports,2012,3:1370-1382.
    [10] ZHU Z Z, ZHU K Z, GUO J H, et al. Preparation and durabi-lity evaluation of vanadium dioxide intelligent thermal insulation films[J]. Colloid and Interface Science Communications,2022,48:100619-100626. doi: 10.1016/j.colcom.2022.100619
    [11] TONG K, LI R, ZHU J T, et al. Preparation of VO2/Al-O core-shell structure with enhanced weathering resistance for smart window[J]. Ceramics International,2017,43(5):4055-4061. doi: 10.1016/j.ceramint.2016.11.181
    [12] SAINI M, DEHIYA B S, UMAR A. VO2(M)@CeO2 core-shell nanospheres for thermochromic smart windows and photocatalytic applications[J]. Ceramics International,2020,46(1):986-995. doi: 10.1016/j.ceramint.2019.09.062
    [13] ZHOU Y, HUANG A, LI Y, et al. Surface plasmon resonance induced excellent solar control for VO2@SiO2 nanorods-based thermochromic foils[J]. Nanoscale,2013,5(19):9208-9213. doi: 10.1039/c3nr02221h
    [14] LI Y M, JI S D, GAO Y F, et al. Core-regenerated vapor-solid growth of hierarchical stem-like VOx nanocrystals on VO2@TiO2 core-shell nanorods: Microstructure and mechanism[J]. CrystEngComm,2013,15(41):8330-8336. doi: 10.1039/c3ce40947c
    [15] CHEN Y, SHAO Z, YANG Y, et al. Electrons-donating derived dual-resistant crust of VO2 nano-particles via ascorbic acid treatment for highly stable smart windows applications[J]. ACS Applied Materials & Interfaces,2019,11(44):41229-41237. doi: 10.1021/acsami.9b11142
    [16] EBRAHIMI A K, SHEIKHSHOAIE I, SALIMI S, et al. In-situ facile synthesis of superparamagnetic porous core-shell structure for dye adsorption[J]. Journal of Molecular Structure,2021,1228:129797-129803. doi: 10.1016/j.molstruc.2020.129797
    [17] ZHOU J, WANG Y, CHEN Y, et al. Single-crystal red phosphors and their core-shell structure for improved water-resistance for laser diodes applications[J]. Angew Andte Chemie-International Edition,2021,60(8):3940-3945. doi: 10.1002/anie.202011022
    [18] GAO Y F, WANG S B, LUO H J, et al. Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control[J]. Energy & Environmental Science,2012,5(3):6104-6110. doi: 10.1039/c2ee02803d
    [19] ZHANG Z C Y, XI B J, WANG X, et al. Oxygen defects engi-neering of VO2·xH2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage[J]. Advanced Functional Materials,2021,31(34):2103070. doi: 10.1002/adfm.202103070
    [20] DHANDA M, ARORA R, SAINI M, et al. Prolific intercalation of VO2 (D)/polypyrrole/g-C3N4 as an energy storing electrode with remarkable capacitance[J]. New Journal of Chemistry, 2022, 46: 14251-14266.
    [21] KOS T, ANŽLOVAR A, PAHOVNIK D, et al. Zinc-containing block copolymer as a precursor for the in situ formation of nano ZnO and PMMA/ZnO nanocomposites[J]. Macromolecules,2013,46(17):6942-6948. doi: 10.1021/ma4010296
    [22] ZHAO X P, MOFID S A, GAO T, et al. Durability-enhanced vanadium dioxide thermochromic film for smart windows[J]. Materials Today Physics,2020,13:100205-100213. doi: 10.1016/j.mtphys.2020.100205
    [23] FAN F Q, XIA Z B, LI Q Y, et al. ZrO2/PMMA nanocompo-sites: Preparation and its dispersion in polymer matrix[J]. Chinese Journal of Chemical Engineering,2013,21(2):113-120. doi: 10.1016/S1004-9541(13)60448-6
    [24] GU Y F, FEI J, HUANG J F, et al. Synthesis and tribological performance of carbon microspheres/poly(methyl methacrylate) core-shell particles as highly efficient lubricant[J]. The Journal of Physical Chemistry C,2019,123(47):29037-29046. doi: 10.1021/acs.jpcc.9b09458
    [25] CHEN Y, LI Z N, MIAO N M. Polymethylmethacrylate (PMMA)/CeO2 hybrid particles for enhanced chemical mechanical polishing performance[J]. Tribology International, 2015, 82: 211-217.
    [26] YAO Y J, CHEN Z, WEI W, et al. Cs0.32WO3/PMMA nanocomposite via in-situ polymerization for energy saving windows[J]. Solar Energy Materials and Solar Cells,2020,215:110656. doi: 10.1016/j.solmat.2020.110656
    [27] ZHAO X X, SUN J H, MA J C, et al. Combining reversible addition-fragmentation chain transfer polymerization and thiolene click reaction for application of core-shell structured VO2@polymer nanoparticles to smart window[J]. Sustainable Materials and Technologies,2022,32:e00420-e00434. doi: 10.1016/j.susmat.2022.e00420
    [28] MUSTAFA I F, HUSSEIN M Z. Synthesis and technology of nanoemulsion-based pesticide formulation[J]. Nanomaterials (Basel),2020,10(8):1608-1633. doi: 10.3390/nano10081608
    [29] 高迎, 秦成远, 聂永, 等. 二氧化钒-荧光增白剂-有机聚合物三层多功能复合薄膜[J]. 复合材料学报, 2022, 39(8):3828-3844.

    GAO Ying, QIN Chengyuan, NIE Yong, et al. Three-layer multifunctional vanadium dioxide-fluorescent brightener-organic polymer composite films[J]. Acta Materiae Compositae Sinica,2022,39(8):3828-3844(in Chinese).
    [30] ZHANG M, LAI Y, LI M, et al. The microscopic structure-property relationship of metal-organic polyhedron nanocomposites[J]. Angew Andte Chemie-International Edition,2019,58(48):17412-17417. doi: 10.1002/anie.201909241
    [31] ZHU J, ZHOU Y, WANG B, et al. Vanadium dioxide nanoparticle-based thermochromic smart coating: High luminous transmittance, excellent solar regulation efficiency, and near room temperature phase transition[J]. ACS Applied Materials & Interfaces,2015,7(50):27796-27803. doi: 10.1021/acsami.5b09011
    [32] 世界之最大全. 我国最高气温: 吐鲁番的49.6℃[EB/OL]. (2015-09-15). https://www.souid.com/zhongguozhizui/1056.html.

    The World's Largest Collection. The highest temperature in China: 49.6℃ in Turpan[EB/OL]. (2015-09-15). https://www.souid.com/zhongguozhizui/1056.html (in Chinese).
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  843
  • HTML全文浏览量:  580
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2022-09-22
  • 录用日期:  2022-10-16
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回