Preparation of polyvinyl alcohol/sodium alginate composite aerogel and its application in efficient seawater desalination
-
摘要:
太阳能是最大的可再生和可持续能源,基于太阳能界面水蒸发技术的海水淡化蒸发器可以实现海水的淡化提纯,吸引了越来越多研究者的关注。但目前海水淡化蒸发器的蒸发速率相对较低,严重限制了其实际应用。本文创新性地将碳纳米管(CNT)与聚乙烯醇(PVA)和海藻酸钠(SA)复合,通过定向冷冻方法制备了具有不同垂直孔隙的PVA-SA复合气凝胶,并将其组装成二维(2D)和三维(3D)的太阳能蒸发器。通过调整PVA和SA溶液的浓度,可以调控最终气凝胶的内部孔隙尺寸,实现高效的水传输和良好的热管理性能。通过系统研究PVA与SA的浓度、两者复合比例等因素对微观孔隙和蒸发速率的影响,制备的气凝胶蒸发器光吸收率可以达到97%左右,在一个太阳光照射下最高可以实现2.7 kg·m-2·h-1的蒸发速率,展示出高效的蒸发速率以及优异的稳定性。 CNT/PVA-SA复合气凝胶蒸发器的制备过程示意图 不同浓度二维和三维CNT10/PVA-SA(6-10)气凝胶在一个太阳光照射下的水蒸发质量变化 Abstract: The desalination evaporator based on the solar interface water evaporation technology can realize the desalination and purification of seawater, but the evaporation rate of the evaporator is low at present. In this work, the composite aerogel of polyvinyl alcohol and sodium alginate was prepared by directional freezing. At the same time, carbon nanotube materials were used as light absorbing materials. The effects of the composition, proportion and content of light absorbing materials of the composite aerogel on the evaporation performance of evaporator water were explored. The research found that the composite aerogel evaporator has a light absorption rate of up to 97% and excellent seawater desalination performance. The water evaporation rate under a sun light can reach 2.7 kg·m−2·h−1. In the long-term alternating process of light and darkness, the salt crystals accumulated on the surface of the evaporator will automatically melt and disappear, playing a self-cleaning effect, and can achieve long-term sustainable evaporation. It has broad application prospects in the field of seawater desalination.-
Key words:
- aerogel /
- directional freezing /
- seawater desalination /
- water evaporation /
- self-cleaning /
- sodium alginate /
- carbon nanotube /
- polyvinyl alcohol
-
图 2 (a)CNT10/PVA-SA (6)的SEM图像,(b)CNT10/PVA-SA (7)的SEM图像, (c)CNT10/PVA-SA (8)的SEM图像,(d)CNT10/PVA-SA (9)的SEM图像,(e)CNT10/PVA-SA (10)的SEM图像,(f)复合气凝胶的宏观图像
Figure 2. (a) SEM image of CNT10/PVA-SA (6), (b) SEM image of CNT10/PVA-SA (7), (c) SEM image of CNT10/PVA-SA (8), (d) SEM image of CNT10/PVA-SA (9), (e) SEM image of CNT10/PVA-SA (10), and (f) macro image of composite aerogel
图 5 (a) PVA-SA和CNT10/PVA-SA的吸收光谱,(b)一个太阳光照射下CNT(5-20)/PVA-SA的表面温度变化曲线,(c)在一个太阳光照射下CNT(5-20)/PVA-SA的水蒸发质量变化,(d)在一个太阳光照射下不同比例CNT10/PVA-SA(1-5)的水蒸发变化
Figure 5. (a) Absorption spectra of PVA-SA and CNT10/PVA-SA, (b) Surface temperature change curve of CNT(5-20)/PVA-SA under one sunlight, (c) Water evaporation mass change of CNT(5-20)/PVA-SA under one sunlight, (d) Water evaporation mass change of CNT10/PVA-SA(1-5) with different proportions under one sunlight
图 6 (a)在3 kW·m−2的太阳光下产生的水蒸汽的图像(左图),在2D蒸发下的红外图像(右图),(b)3D水蒸发测试示意图(左图),在3D蒸发下的红外图像(右图),(c)在一个太阳光照射下不同浓度CNT10/PVA-SA(6-10)的2D水蒸发质量变化,(d)在一个太阳光照射下不同浓度CNT10/PVA-SA(6-10)的3D水蒸发质量变化
Figure 6. (a) Image of water vapor generated under the sunlight of 3 kW ·m − 2 (left figure), infrared image under 2D evaporation (right figure), (b) Schematic diagram of 3D water evaporation test (left figure), infrared image under 3D evaporation (right figure), (c) Change of 2D water evaporation quality with different concentrations of CNT10/PVA-SA(6-10) under one sunlight, and (d) Change of 3D water evaporation quality with different concentrations of CNT10/PVA-SA(6-10) under one sunlight
图 7 (a)脱盐前后,真实海水(中国黄海)中四种主要阳离子的浓度,(b)CNT10/PVA-SA蒸发器表面模拟自然环境的盐沉积/自清洁照片
Figure 7. (a) Concentrations of four main cations in real seawater (Yellow Sea, China) before and after desalination, (b) Photos of salt deposition/self-cleaning on the surface of CNT(10)/PVA-SA evaporator simulating the natural environment
表 1 不同CNT含量和PVA与SA不同比例的复合气凝胶
Table 1. Composite aerogels with different CNT content and different proportions of PVA and SA
Sample 3 wt%PVA/mL 3 wt%SA/mL CNT/g PVA 20 / / PVA-SA 10 10 / CNT5/PVA-SA 10 10 5 CNT10/PVA-SA 10 10 10 CNT15/PVA-SA 10 10 15 CNT20/PVA-SA 10 10 20 CNT10/PVA-SA(1) 10 10 10 CNT10/PVA-SA(2) 6.66 13.3 10 CNT10/PVA-SA(3) 5 15 10 CNT10/PVA-SA(4) 15 5 10 CNT10/PVA-SA(5) 13.3 6.66 10 表 2 不同PVA与SA浓度的复合气凝胶
Table 2. Composite aerogels with different PVA and SA concentrations
Sample PVA/5 mL SA/15 mL CNT/10 g CNT10/PVA-SA(6) 1wt% 1wt% CNT10 g CNT10/PVA-SA(7) 2wt% 2wt% CNT10 g CNT10/PVA-SA(8) 3wt% 3wt% CNT10 g CNT10/PVA-SA(9) 4wt% 4wt% CNT10 g CNT10/PVA-SA(10) 5wt% 5wt% CNT10 g -
[1] WANG X, LIU Q, WU S, et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J]. Advanced Materials,2019,31(19):1807716. doi: 10.1002/adma.201807716 [2] CHEN C, LI Y, SONG J, et al, Highly flexible and efficient solar steam generation device[J]. Advanced Materials, 2017, 29(30): 1701756. [3] ZHU M, LI Y, CHEN G, et al, Tree-Inspired design for high-efficiency water extraction[J]. Advanced Materials, 2017, 29(44): 1704107. [4] SUN F, LIU Q D, XIN X P, et al, Attapulgite modulated thorny nickel nanowires/graphene aerogel with excellent electromagnetic wave absorption performance[J]. Chemical Engineering Journal, 2021, 415: 128976. [5] ZHU M W, LI Y J, CHEN F J, et al, Plasmonic wood for high efficiency solar steam generation[J]. Advanced Energy Materials, 2018, 8(4): 1701028. [6] LI Z T, WANG C B, Multi-scale Ag/CuO photothermal materials: preparation and application in seawater desalination[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1457-1464. [7] LI T, LIU H, ZHAO X P, et al, Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport[J]. Advanced Functional Materials, 2018, 28(16): 1707134. [8] YU Z C, WU P Y, Biomimetic MXene polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation[J]. Advanced Materials Technologies, 2020, 5(6): 2000065. [9] LEI Z W, SUN X T, ZHU S F, et al, Nature inspired MXene decorated 3 D honeycomb-fabric architectures toward efficient water desalination and salt harvesting[J]. Nano-Micro Letters, 2021, 14(1): 10. [10] QIN H F, ZHANG Y F, JIANG J G, et al, Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly[J]. Advanced Functional Materials, 2021, 31(46): 2106269. [11] MA Q, YIN P F, ZHAO M T, et al, MOF-based hierarchical structures for solar-thermal clean water production[J]. Advanced Materials, 2019, 31(17): 1808249. [12] LIU K, ZHANG W Y, CHENG H, et al, A nature-inspired monolithic integrated cellulose aerogel based evaporator for efficient solar desalination[J]. ACS Applied Materials Interfaces, 2021, 13(8): 10612-10622. [13] STORER D P, PHELPS J L, WU X, et al, Graphene and rice straw-fiber-based 3 D photothermal aerogels for highly efficient solar evaporation[J]. ACS Applied Materials Interfaces, 2020, 12(13): 15279-15287. [14] LIU Z, QING R K, XIE A O, et al, Self-contained Janus aerogel with antifouling and salt rejecting properties for stable solar evaporation[J]. ACS Applied Materials Interfaces, 2021, 13(16): 18829-18837. [15] LU Y, FAN D Q, WANG Y D, et al, Surface patterning of two dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation[J]. ACS Nano, 2021, 15(6): 10366-10376. [16] LI J L, WANG X Y, LIN Z H, et al, Over 10 kg m (-2) h(-1)evaporation rate enabled by a 3 D interconnected porous carbon foam[J]. Joule, 2020, 4(4): 928-937. [17] LEI Z W, ZHU S F, SUN X T, et al, A multiscale porous 3D fabric evaporator with vertically aligned yarns enables ultra-efficient and continuous water desalination[J]. Advanced Functional Materials, 2022, 32(40). 2205790. [18] 高靖阳. 淀粉基气凝胶的制备及其性质测定[D]. 广州: 华南理工大学, 2020GAO Jingyang. Preparation and characterization of starch based aerogels[D]. Guangzhou: South China University of Technology 2020(in chinese). [19] ZHENG M L, The model and experiment for heat transfer characteristics of nanoporous silica aerogel[J]. Korean Journal of Materials Research, 2020, 30(4): 155-159. [20] KONG Y, DAN H B, KONG W J, et al, Self-floating maize straw/graphene aerogel synthesis based on microbubble and ice crystal templates for efficient solar-driven interfacial water evaporation[J]. Journal of Materials Chemistry A, 2020, 8(46): 24734-24742. [21] JOUKHDAR H, SEIFERT A, JUNGST T, et al, Ice templating soft matter: fundamental principles and fabrication approaches to tailor pore structure and morphology and their biomedical applications[J]. Advanced Materials, 2021, 2100091. [22] 罗伟, 王林生, 陈裕欣, 等. 有机-无机复合气凝胶的制备及其阻燃性能研究进展[J]. 复合材料学报, 2021, 38(7):2056-2069. doi: 10.13801/j.cnki.fhclxb.20210324.002WEI Luo, WANG Linsheng, CHEN Yuxin, et al. Research progress on preparation and flame retardant properties of organic-inorganic composite aerogel[J]. Acta Materiae Compositae Sinica,2021,38(7):2056-2069(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210324.002 [23] JIANG Y Z, HOU Y J, FANG J J, et al, Preparation and characterization of PVA/SA/HA composite hydrogels for wound dressing[J]. International Journal of Polymer Analysis and Characterization, 2019, 24(2): 132-141. -

计量
- 文章访问数: 193
- HTML全文浏览量: 76
- 被引次数: 0