Mechanical properties and in vitro bioactivity of surface-modified mesoporous bioglass-carbon fiber/polyetheretherketone ternary composites
-
摘要: 碳纤维增强聚醚醚酮复合材料(CF/PEEK)因其稳定的化学性能、优异的物理和机械性能而被广泛应用于生物医学,并且CF/PEEK具有射线可透性,可作为骨科和牙科植入物。但是由于CF/PEEK的表面呈现出生物惰性,会导致骨整合不良。生物玻璃(BGs)具有良好的骨传导性能和一定的骨诱导性能。为了能够使CF/PEEK在保持优秀的力学性能的同时具有生物活性,在本文中选取了无孔BGs、介孔BGs(MBG,孔径5 - 7 nm)和通过氯化钙(CaCl2)进行改性后的介孔BGs(Ca-MBG)三种生物玻璃,分别制备得到BG-CF/PEEK、MBG-CF/PEEK和Ca-MBG-CF/PEEK三种三元复合材料。测试结果显示,BG-CF/PEEK、MBG-CF/PEEK和Ca-MBG-CF/PEEK的拉伸强度分别为114.85 MPa、111.34 MPa和92.45 MPa。制备的三元复合材料未使CF/PEEK的拉伸强度大幅下降。通过羟基磷灰石形成与骨髓间充质干细胞表面粘附进行的体外生物活性试验结果表明,加入通过CaCl2进行表面处理后的介孔BGs的样品类骨沉积量与表面粘附细胞数量最高,能明显增强CF/PEEK的生物活性。
-
关键词:
- 碳纤维/聚醚醚酮复合材料 /
- 生物玻璃 /
- 力学性能 /
- 生物活性[1]
Abstract: Carbon fiber reinforced polyether ether ketone (CF/PEEK) are widely used in biomedical applications due to their stable chemical properties, excellent physical and mechanical properties, and the radiopacity of CF/PEEK for orthopedic and dental implants. However, CF/PEEK may lead to poor osseointegration due to the biologically inert surface it presents. Bioactive glasses (BGs) have good osteoconductive properties and weak osteoinductive properties, but due to their low mechanical strength and brittleness, they can easily cause stress shielding resulting in bone fixation failure. In this work, to make CF/PEEK bioactive while maintaining excellent mechanical properties, three bioactive glasses, namely, nonporous BGs, mesoporous BGs (MBG, pore size of 5 - 7 nm), and mesoporous BGs after surface treatment (Ca-MBG) by calcium chloride (CaCl2), were selected and prepared with CF/PEEK to form BG-CF/PEEK, MBG-CF/PEEK and Ca-MBG-CF/PEEK three composites. The test results showed that the tensile strengths of BG-CF/PEEK, MBG-CF/PEEK, and Ca-MBG-CF/PEEK were 114.85 MPa, 111.34 MPa, and 92.45 MPa, respectively. The mechanical strength of CF/PEEK was not decreased by the prepared composites. In vitro bioactivity assays were performed by formation of hydroxyapatite and surface adhesion of bone marrow mesenchymal stem cells (BMSCs). The results showed that the amount of bone deposition and the number of surface-adherent cells were highest in the composites with the addition of mesoporous BGs that were surface-treated via CaCl2, which could significantly enhance the bioactivity of CF/PEEK.-
Key words:
- CF/PEEK composites /
- Bioglass /
- Mechanical properties /
- Bioactivity
-
图 6 力学性能:(a)拉伸强度;(b)拉伸模量;(c)拉伸应力应变曲线;(d)弯曲强度;(e)弯曲模量;(f)弯曲应力应变曲线;(g)冲击强度;(h)维氏硬度,**代表p < 0.01
Figure 6. Mechanical properties: (a) tensile strength; (b) tensile modulus; (c) tensile stress- strain curve; (d) bending strength; (e) bending modulus;(f) bending stress- strain curve; (g) impact strength; (h) Vickers-hardness, ** represents p < 0.01
表 1 三种生物玻璃的元素原子比
Table 1. Element atoms of three BGs
O Na Si P Ca Cl BG 55.15 0.26 44.12 0.38 0.09 MBG 41.15 0 56.38 2.36 0.11 Ca-MBG 30.14 0 24.85 1.08 17.15 26.78 Notes:BG, MBG and Ca-MBG are respectively non-porous bioglass, mesoporous bioglass and mesoporous bioglass modified by calcium chloride. 表 2 生物玻璃-碳纤维/聚醚醚酮复合材料的表面元素原子比
Table 2. Surface element atoms of the bioglass-carbon fiber/polyetheretherketone composites
C O Na Si P Ca BG-CF/PEEK 79.80 17.96 1.09 0.82 0.08 0.25 MBG-CF/PEEK 75.47 21.96 1.31 0.75 0.05 0.46 Ca-MBG-CF/PEEK 80.59 17.53 0.44 0.64 0.05 0.75 -
[1] WANG X, PAN L, ZHENG A, et al. Multifunctionalized carbon-fiber-reinforced polyetheretherketone implant for rapid osseointegration under infected environment[J]. Bioactive Materials, 2023, 24: 236-250. doi: 10.1016/j.bioactmat.2022.12.016 [2] KRÄTZIG T, MENDE K C, MOHME M, et al. Carbon fiber-reinforced PEEK versus titanium implants: an in vitro comparison of susceptibility artifacts in CT and MR imaging[J]. Neurosurgical Review, 2021, 44: 2163-2170. doi: 10.1007/s10143-020-01384-2 [3] KURTZ S M, DEVINE J N. PEEK biomaterials in trauma, orthopedic, and spinal implants[J]. Biomaterials, 2007, 28(32): 4845-4869. doi: 10.1016/j.biomaterials.2007.07.013 [4] WANG S, YANG Y, LI Y, et al. Strontium/adiponectin co-decoration modulates the osteogenic activity of nano-morphologic polyetheretherketone implant[J]. Colloids and Surfaces B: Biointerfaces, 2019, 176: 38-46. doi: 10.1016/j.colsurfb.2018.12.056 [5] QIN L, YAO S, ZHAO J, et al. Review on development and dental applications of polyetheretherketone-based biomaterials and restorations[J]. Materials, 2021, 14(2): 408. doi: 10.3390/ma14020408 [6] 薛成龙, 王守仁, 王高琦, 等. 碳纤维增强聚醚醚酮复合材料骨诱导修复植入体制备及微动摩擦学性能[J]. 复合材料学报, 2022, 39(7): 3212-3223.XUE Chenglong, WANG Shouren, WANG Gaoqi, et al. Preparation and fretting tribological properties of carbon fiber reinforced polyetheretherketone composite osteoinductive repair implants[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3212-3223(in Chinese). [7] ZHAO W, YU R, DONG W, et al. The influence of long carbon fiber and its orientation on the properties of three-dimensional needle-punched CF/PEEK composites[J]. Composites Science and Technology, 2021, 203: 108565. doi: 10.1016/j.compscitech.2020.108565 [8] LU T, LI J, QIAN S, et al. Enhanced osteogenic and selective antibacterial activities on micro-/nano-structured carbon fiber reinforced polyetheretherketone[J]. Journal of Materials Chemistry B, 2016, 4(17): 2944-2953. doi: 10.1039/C6TB00268D [9] KATTI K S. Biomaterials in total joint replacement[J]. Colloids and surfaces B: Biointerfaces, 2004, 39(3): 133-142. doi: 10.1016/j.colsurfb.2003.12.002 [10] PONNAPPAN R K, SERHAN H, ZARDA B, et al. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation[J]. The Spine Journal, 2009, 9(3): 263-267. doi: 10.1016/j.spinee.2008.08.002 [11] DA CRUZ M B, MARQUES J F, PEÑARRIETA-JUANITO G M, et al. Bioactive-enhanced polyetheretherketone dental implant materials: Mechanical characterization and cellular responses[J]. Journal of Oral Implantology, 2021, 47(1): 9-17. doi: 10.1563/aaid-joi-D-19-00172 [12] YU W, ZHANG H, LAN A, et al. Enhanced bioactivity and osteogenic property of carbon fiber reinforced polyetheretherketone composites modified with amino groups[J]. Colloids and Surfaces B: Biointerfaces, 2020, 193: 111098. doi: 10.1016/j.colsurfb.2020.111098 [13] QIN W, XING T, MA J, et al. Decoration with electronegative 2D materials based on chemical transition layers on CFR-PEEK implants for promoting osteogenesis[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2024, 152: 106436. doi: 10.1016/j.jmbbm.2024.106436 [14] MIYAZAKI T, MATSUNAMI C, SHIROSAKI Y. Bioactive carbon–PEEK composites prepared by chemical surface treatment[J]. Materials Science and Engineering: C, 2017, 70: 71-75. doi: 10.1016/j.msec.2016.08.058 [15] SKOVDAL S M, JØRGENSEN N P, PETERSEN E, et al. Ultra-dense polymer brush coating reduces Staphylococcus epidermidis biofilms on medical implants and improves antibiotic treatment outcome[J]. Acta Biomaterialia, 2018, 76: 46-55. doi: 10.1016/j.actbio.2018.07.002 [16] 胡雅菲, 单英杰, 邱丽, 等. 羟基磷灰石的表面改性对羟基磷灰石/聚醚醚酮复合材料力学和摩擦性能的影响[J]. 复合材料学报, 2018, 35(10): 2651-2657.HU Yafei, SHAN Yingjie, QIU Li, et al. Effect of surface modification of hydroxyapatite on mechanical and tribological properties of hydroxyapatite/polyetheretherketone composites[J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2651-2657(in Chinese). [17] ZHAO L, HU J, GAO L, et al. Improvement of interfacial properties and bioactivity of CF/PEEK composites by rapid biomineralization of hydroxyapatite[J]. ACS Biomaterials Science & Engineering, 2022, 9(7): 4117-4125. [18] LI Y, JIA H, CUI X, et al. Bending properties, compression properties, biocompatibility and bioactivity of sulfonated carbon fibers/PEEK composites with graphene oxide coating[J]. Applied Surface Science, 2022, 575: 151774. doi: 10.1016/j.apsusc.2021.151774 [19] MA J, LIANG Q, QIN W, et al. Bioactivity of nitric acid and calcium chloride treated carbon-fibers reinforced polyetheretherketone for dental implant[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102: 103497. doi: 10.1016/j.jmbbm.2019.103497 [20] KAUR G, PANDEY O P, SINGH K, et al. A review of bioactive glasses: their structure, properties, fabrication and apatite formation[J]. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2014, 102(1): 254-274. [21] HAN C T, CHI M, ZHENG Y Y, et al. Mechanical properties and bioactivity of high-performance poly (etheretherketone)/carbon nanotubes/bioactive glass biomaterials[J]. Journal of Polymer Research, 2013, 20: 1-8. [22] AMUDHA S, RAMYA J R, ARUL K T, et al. Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass[J]. Composites Part B: Engineering, 2020, 196: 108099. doi: 10.1016/j.compositesb.2020.108099 [23] 中国国家标准化管理委员会(标准制定单位). 塑料拉伸性能的测定: GB/T 1040.1—2018[S]. 北京: 中国标准出版社, 2019.Standardization Administration of the People’s Republic of China. Plastics—Determination of tensile properties: GB/T 1040.1—2018[S]. Beijing: China Standards Press, 2019(in Chinese). [24] 中国国家标准化管理委员会(标准制定单位). 塑料弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People’s Republic of China. Plastics—Determination of flexural properties: GB/T 9341—2008[S]. Beijing: China Standards Press, 2009(in Chinese). [25] International Organization for Standardization. Metallic materials — Vickers hardness test: ISO 6507-1: 2023 [S]. IX-ISO, 2023. [26] LI Y, WANG D, QIN W, et al. Mechanical properties, hemocompatibility, cytotoxicity and systemic toxicity of carbon fibers/poly (ether-ether-ketone) composites with different fiber lengths as orthopedic implants[J]. Journal of Biomaterials Science, Polymer Edition, 2019, 30(18): 1709-1724. doi: 10.1080/09205063.2019.1659711
计量
- 文章访问数: 47
- HTML全文浏览量: 18
- 被引次数: 0