留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP-铝合金单搭接胶接接头疲劳寿命和失效模式

邹田春 巨乐章 符记 刘志浩 李晔

邹田春, 巨乐章, 符记, 等. CFRP-铝合金单搭接胶接接头疲劳寿命和失效模式[J]. 复合材料学报, 2021, 39(0): 1-10
引用本文: 邹田春, 巨乐章, 符记, 等. CFRP-铝合金单搭接胶接接头疲劳寿命和失效模式[J]. 复合材料学报, 2021, 39(0): 1-10
Tianchun ZOU, Yuezhang JU, Ji FU, Zhihao LIU, Ye LI. Fatigue life and failure mode of CFRP-aluminum alloy single-lap adhesive joints[J]. Acta Materiae Compositae Sinica.
Citation: Tianchun ZOU, Yuezhang JU, Ji FU, Zhihao LIU, Ye LI. Fatigue life and failure mode of CFRP-aluminum alloy single-lap adhesive joints[J]. Acta Materiae Compositae Sinica.

CFRP-铝合金单搭接胶接接头疲劳寿命和失效模式

详细信息
    通讯作者:

    邹田春,博士,副教授,硕士生导师,研究方向为复合材料胶接  E-mail: Zoutianchun@126.com

  • 中图分类号: TB332

Fatigue life and failure mode of CFRP-aluminum alloy single-lap adhesive joints

  • 摘要: 在室温下制备碳纤维增强树脂复合材料(CFRP)-铝合金单搭接胶接试样。利用电子万能试验机和电液伺服疲劳试验机进行准静态拉伸和拉-拉疲劳试验,基于疲劳试验结果和双参数威布尔分布方法,采用多种函数模型对接头S-N曲线进行拟合。同时,利用三维数字图像相关技术(3D Digital Image Correlation, 3D-DIC)和扫描电子显微镜(Scanning Electron Microscope, SEM)等设备,获得接头应变分布云图和失效形貌,揭示CFRP-铝合金胶接接头在循环载荷下的破坏机制。结果表明,幂函数对CFRP-铝合金单搭接胶接接头S-N曲线拟合度最高,相关系数R2为0.987,且接头疲劳寿命随着载荷水平的降低逐渐提高,变异系数逐渐增大。载荷水平为25%和35%失效载荷时,CFRP-铝合金单搭接接头破坏模式主要为胶层内聚破坏和铝合金-胶层界面破坏,且随着载荷水平的升高内聚破坏面积逐渐增加,载荷水平达到75%失效载荷时,CFRP-铝合金单搭接接头只发生胶层内聚破坏。在载荷水平为25%失效载荷下,接头由于内部温度上升主要发生韧性断裂,且随载荷水平上升至75%失效载荷时,接头由于受到较大拉应力逐渐向脆性断裂转变。

     

  • 图  1  CFRP-铝合金单搭接接头

    Figure  1.  Single-lap joint of CFRP-Al

    图  2  胶厚控制方法示意图

    Figure  2.  Schematic diagram of adhesive layer thickness control

    图  3  试验设备:(a) 电子万能试验机;(b) 电液伺服疲劳试验机

    Figure  3.  Testing equipment: (a) Universal testing machine; (b) Electro-hydraulic servo fatigue testing machine

    图  4  不同载荷水平下CFRP-铝合金单搭接胶接接头的Weibull概率图

    Figure  4.  Weibull probability plots of CFRP-aluminum alloy single-lap adhesive joints under different load levels

    图  5  不同载荷水平下CFRP-铝合金单搭接胶接接头平均疲劳寿命与变异系数关系

    Figure  5.  Relationship between TMTTF and CV of CFRP-aluminum alloy single-lap adhesive joints under different load levels.

    图  6  CFRP-铝合金单搭接胶接接S-N曲线

    Figure  6.  S-N curves of CFRP-aluminum alloy single-lap adhesive joints

    图  7  不同载荷水平下CFRP-铝合金单搭接胶接接头典型滞回环(a) 25% (b)35% (c)55% (d)75%

    Figure  7.  Typical hysteresis loops of CFRP-aluminum alloy single-lap adhesive joints under different load levels (a) 25% (b)35% (c)55% (d)75%

    图  8  不同载荷水平下CFRP-铝合金单搭接胶接接头侧面x方向应变场:(a) 25%;(b)35%;(c)55%;(d)75%

    Figure  8.  Strain field in side x direction of CFRP-aluminum alloy single-lap adhesive joints under different load levels: (a) 25%; (b)35%; (c)55%; (d)75%

    图  9  准静态拉伸载荷下CFRP-铝合金单搭接胶接接头的破坏模式

    Figure  9.  Destruction mode of CFRP-aluminum alloy single-lap adhesive joints under quasi-static tensile loading

    图  11  不同载荷水平下CFRP-铝合金单搭接胶接接头微观失效形貌:(a)~(b) 35%;(c)~(d) 75%

    Figure  11.  Micro failure morphologies of CFRP-aluminum alloy single-lap adhesive joints under different load levels: (a)-(b) 35%; (c)-(d) 75%

    图  10  不同载荷水平下CFRP-铝合金单搭接胶接接头的破坏模式:(a) 25%;(b)35%;(c)55%;(d)75%

    Figure  10.  Destruction modes of CFRP-aluminum alloy single-lap adhesive joints under different load levels: (a) 25%; (b)35%; (c)55%; (d)75%

    表  1  CFRP层合板材料性能

    Table  1.   Material properties of CFRP laminates

    PropertyValue
    E11/MPa121000
    E22/MPa8600
    E33/MPa8600
    G12/MPa3450
    G13/MPa2850
    G23/MPa2850
    $ \gamma $0.301
    ρ/(kg·m−3)1467
    Note: E-Young’s modulus; $ i $ ($ i $=1, 2, 3)—Direction; G-Shear modulus; $ \gamma $-Poisson’s ratio; ρ-Density.
    下载: 导出CSV

    表  2  Al7075材料性能

    Table  2.   Material properties of Al7075

    PropertyValue
    E11/MPa71700
    $ \gamma $0.32
    ρ/(kg·m−3)3000
    下载: 导出CSV

    表  3  不同载荷水平下CFRP-铝合金单搭接胶接接头的疲劳寿命

    Table  3.   Fatigue life of CFRP-aluminum alloy single-lap adhesive joints under different load levels

    Load levelFatigue life$\ln \ln \dfrac{1}{{R\left( t \right)}}$$\ln \left( t \right)$
    100%
    (5.93 kN)
    1
    75%
    (4.45 kN)
    474−1.7536.161
    638−0.7176.458
    1026−0.0506.933
    12480.6097.129
    55%
    (3.26 kN)
    2442−1.7537.801
    3283−0.7178.097
    5235−0.0508.563
    75620.6098.931
    35%
    (2.08 kN)
    33364−1.75310.415
    68903−0.71711.140
    103672−0.05011.549
    1355730.60911.817
    25%
    (1.48 kN)
    99998−1.75311.513
    179375−0.71712.097
    252329−0.05012.620
    4578970.60913.034
    15%
    (0.89 kN)
    5301850
    Notes: lnln[1/R(t)] is the result of taking the logarithm of reliability, and the calculation formula is shown in formula (4)-(5); lnt is the result of taking the logarithm of mean time to fatigue, and the calculation formula is shown in formula (6).
    下载: 导出CSV

    表  4  不同载荷水平下CFRP-铝合金单搭接胶接接头的Weibull参数

    Table  4.   Weibull parameters under different load levels

    Load levelαβTMTTFCV
    75%2.25975.568640.47
    55%1.985372.4847630.53
    35%1.64100859.46902690.62
    25%1.53305218.042750010.67
    Notes: α is Shape parameter; β is Scale parameter; TMTTF is the mean time to fatigue of the joints; CV is the coefficient of variation of the joints.
    下载: 导出CSV
  • [1] Ning L, Yang S C, Leng Y, et al. Overview of the application of advance composite materials on aircraft and the development of its manufacturing technology[J]. Science and Engineering of Composite Materials,2020,05:123.
    [2] Kitano A. Characteristics of Carbon-Fiber-Reinforced Plastics (CFRP) and associated challenges—Focusing on Carbon-Fiber-Reinforced Thermosetting Resins (CFRTS) for aircraft[J]. International Journal of Automation Technology,2016,10(3):300-309. doi: 10.20965/ijat.2016.p0300
    [3] Kgoete F M, Popoola A P I, et al. Advancement in the application of alloys and composites in the manufacture of aircraft component: A review[J]. Journal of Physics Conference Series,2019,1378:032049. doi: 10.1088/1742-6596/1378/3/032049
    [4] 马立敏, 张嘉振, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322.

    Ma L M, Zhang J Z, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica,2015,32(2):317-322(in Chinese).
    [5] 郭磊, 刘检华, 张佳朋, 等. 航天工业中胶接技术的研究现状分析[J]. 中国机械工程, 2020, 32(12):11.

    Guo L, Liu J H, Zhang J P, et al. Analysis of the research status of adhesively connection technology in aerospace industry [J/OL][J]. China. Mechanical. Engineering.,2020,32(12):11(in Chinese).
    [6] Budhe S, Banea M D, Barros S, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion and Adhesives,2016,72:30-42.
    [7] Marques A C, Mocanu A, Tomic N Z, et al. Review on adhesives and surface treatments for structural applications: Recent developments on sustainability and implementation for metal and composite substrates[J]. Materials,2020,13(24).
    [8] Karata M A, Motorcu A R, Gokkaya H. Optimization of machining parameters for kerf angle and roundness error in abrasive water jet drilling of CFRP composites with different fiber orientation angles[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2020,42(4).
    [9] 卓宁生, 付益战, 胡昭. 运8系列飞机结构疲劳定寿总结[J]. 航空科学技术, 2006(2):40-44. doi: 10.3969/j.issn.1007-5453.2006.02.011

    Zhuo N S, Fu Y Z, H Z. Summary of determination of structures fatigue life for Y8 aircraft series[J]. Aeronautical Science & Technology,2006(2):40-44(in Chinese). doi: 10.3969/j.issn.1007-5453.2006.02.011
    [10] Park S M, Roy R, Kweon J H, et al. Strength and failure modes of surface treated CFRP secondary bonded single-lap joints in static and fatigue tensile loading regimes[J]. Composites Part A Applied Science and Manufacturing,2020:134.
    [11] Giovanni M, Marino Q, et al. Damage mechanisms in composite bonded joints under fatigue loading[J]. Composites Part B,2012,43(2).
    [12] 曹双辉, 高弄玥, 刘斌. 飞机复合材料阶梯式胶接结构的疲劳损伤与寿命[J]. 复合材料科学与工程, 2020(2):81-84+96. doi: 10.3969/j.issn.1003-0999.2020.02.013

    Cao S H, Gao N Y, Liu B. Study on composite omiga stringer stiffened curved panel by automatic[J]. Compositea Science and Engineering,2020(2):81-84+96(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.02.013
    [13] 赵京南. 钢-CFRP胶接接头疲劳损伤特性试验研究 [D]. 大连理工大学, 2016

    Zhao J N. Experimental Study on Fatigue Damage Performance of CFRP-Steel Adhesively Bonded Joint. [D]. Dalian University of Technology, 2016. (in Chinese)
    [14] 慕文龙, 那景新, 等. 交变载荷对CFRP复合材料-铝合金粘接接头剩余强度的影响[J]. 复合材料学报, 2019, 36(5):1124-1131.

    Mu W L, Na J X, et al. Effect of alternating load on residual strength of adhesively bonded CFRP composite-aluminum alloy joints[J]. Acta Materiae Composite Sinica,2019,36(5):1124-1131(in Chinese).
    [15] T/CSAE 171-2020, 汽车用聚合物基复合材料胶接性能测试方法复合材料/金属材料[S].

    T/CSAE 171-2020, Test methods for mechanical properties of adhesively bonded joints for automotive polymer matrix composites-composite/metal [S]. (in Chinese)
    [16] ASTM D5868-01, Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic(FRP) Bonding [S].
    [17] Xu X. X, Crocombe A D, Smith P A. Fatigue Crack Growth Rates in Adhesive Joints Tested at Different Frequencies [J]. Taylor & Francis Group, 2006, 58(3-4):
    [18] Datla N V, Ameli A, et al. Effects of hygrothermal aging on the fatigue behavior of two toughened epoxy adhesives.[J]. Engineering Fracture Mechanics,2011,79:88-96.
    [19] Razavi S M J, Bale E S, Berto F. Mechanical behavior of metallic fiber-reinforced adhesive under cyclic loading[J]. Procedia Structural Integrity,2020,26:225-228. doi: 10.1016/j.prostr.2020.06.026
    [20] Ahmed S. Haidyrah, Joseph W. Newkirk, Carlos H. Castaño. Weibull statistical analysis of Krouse type bending fatigue of nuclear materials[J]. Journal of Nuclear Materials,2016:470.
    [21] Liu X L, Zheng G, Luo Q T, et al. Fatigue behavior of carbon fibre reinforced plastic and aluminum single-lap adhesive joints after the transverse pre-impact[J]. International Journal of Fatigue,2021:144.
    [22] Hao J, Tong L, et al. Fatigue life assessment of electromagnetic riveted carbon fiber reinforce plastic/aluminum alloy lap joints using Weibull distribution[J]. International Journal of Fatigue,2017,105.
    [23] 王中强, 张开富, 等. CFRP/Al复合构件胶接界面力学建模与强度分析[J]. 西北工业大学学报, 2010, 28(6):858-865.

    Wang Z Q, Zhang K F, et al. An interface stress model for strength analysis of CFRP/Al[J]. Journal of Northwestern Polytechnical University,2010,28(6):858-865(in Chinese).
    [24] Gudladt H J, Frömmel S T. Fatigue and fracture behavior of adhesive-bonded structures in the light of the surface morphology[J]. International Journal of Adhesion and Adhesives,2019:88.
    [25] Tan W, Jingxin N, Guangbin W, et al. Effect of temperature on the fatigue performance and failure mechanism of a flexible adhesive butt joint[J]. The Journal of Adhesion,2021(365):1-31.
  • 加载中
计量
  • 文章访问数:  167
  • HTML全文浏览量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 录用日期:  2021-11-22
  • 修回日期:  2021-11-17
  • 网络出版日期:  2021-12-21

目录

    /

    返回文章
    返回