留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于外场作用的SEBS形态演变对PPS基复合材料力学性能的影响

易成鸿 谢林生 吉华建 李果 马玉录 王玉

易成鸿, 谢林生, 吉华建, 等. 基于外场作用的SEBS形态演变对PPS基复合材料力学性能的影响[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 易成鸿, 谢林生, 吉华建, 等. 基于外场作用的SEBS形态演变对PPS基复合材料力学性能的影响[J]. 复合材料学报, 2024, 42(0): 1-12.
YI Chenghong, XIE Linsheng, JI Huajian, et al. Impact of the morphological evolution of SEBS based on external field effects on the mechanical properties of PPS composite materials[J]. Acta Materiae Compositae Sinica.
Citation: YI Chenghong, XIE Linsheng, JI Huajian, et al. Impact of the morphological evolution of SEBS based on external field effects on the mechanical properties of PPS composite materials[J]. Acta Materiae Compositae Sinica.

基于外场作用的SEBS形态演变对PPS基复合材料力学性能的影响

详细信息
    通讯作者:

    王 玉,博士,助理研究员,研究方向为过程装备及材料加工 E-mail: wangyu_ecust@ecust.edu.cn

  • 中图分类号: TB332

Impact of the morphological evolution of SEBS based on external field effects on the mechanical properties of PPS composite materials

  • 摘要: 聚苯硫醚(PPS)是一种热塑性工程材料,具有强度高、稳定性好等优点,现已在国防、民用领域得到广泛的应用。然而PPS本身的韧性较差,通常通过添加弹性体进行增韧改性以扩大其应用范围。本研究基于高拉伸混沌流的混炼转子,通过熔融共混法制备了氢化苯乙烯-丁二烯嵌段共聚物/聚苯硫醚(SEBS/PPS)复合材料,研究了不同含量SEBS在高拉伸外场作用下的微观形态演变行为,分析了其对PPS基复合材料力学性能的影响规律。结果表明:随着SEBS含量的增加,PPS基复合材料的冲击强度和断裂伸长率呈现先增加后下降的趋势;当SEBS含量达到6wt%时,复合材料呈现韧性断裂行为,其冲击强度和断裂伸长率达到最高,分别为67.8J/m和6.1%。通过对复合材料微观结构分析发现:在高拉伸混炼转子作用下,当SEBS含量在0~6wt%之间时,SEBS粒径尺寸较小,分布均匀,液滴形态向拉伸棒状演变,此时复合材料发生脆韧转变,韧性明显增强,且在6wt% SEBS含量的复合材料受到冲击力时引发多重银纹,发生剪切屈服,表现为塑性变形;当SEBS含量继续增加时,其团聚行为加剧,粒径尺寸随之逐渐增加,且分布较宽,同时两相界面出现大量空穴区域,在引发银纹发展的同时也会导致复合材料的断裂失效,使得复合材料冲击强度有所下降。

     

  • 图  1  双转子连续混炼挤出机的转子结构

    Figure  1.  Rotor structure of two-rotor continuous mixing extruder

    图  2  不同SEBS含量的氢化苯乙烯-丁二烯嵌段共聚物/聚苯硫醚(SEBS/PPS)复合材料的力学性能:(a) 冲击强度;(b) 断裂伸长率;(c) 拉伸性能;(d) 弯曲性能

    Figure  2.  Mechanical properties of SEBS/PPS composites with different hydrogenated styrene-butadiene-styrene block copolymer/polyphenylene sulfide (SEBS/PPS) contents: (a) Impact strength; (b) Elongation at break; (c) Tensile properties; (d) Bending properties

    图  3  不同SEBS含量的SEBS/PPS复合材料拉伸性能测试时的应力应变曲线及破坏试样图片: (a) 应力应变曲线;(b) 拉伸破坏试样;(c) 冲击破坏试样

    Figure  3.  Stress-strain curves and sample images during tensile performance testing of SEBS/PPS composites with different SEBS contents: (a) Stress-strain curves; (b) Tensile failure samples; (c) Impact failure samples

    图  4  不同SEBS含量的SEBS/PPS复合材料的动态力学性能:(a) 储能模量 (b) 损耗模量(c) 损耗角正切值

    Figure  4.  Dynamic mechanical properties of SEBS/PPS composites with different SEBS contents: (a) Storage modulus (b) Loss modulus (c) Loss angle tangent

    图  5  不同SEBS含量的SEBS/PPS复合材料的SEM照片:SEBS含量:(a) 0 % (b) 3wt% (c) 6wt % (d) 9wt% (e) 15wt% (f) 20wt%

    Figure  5.  SEM photographs of SEBS/PPS composites with different SEBS contents: content of SEBS /wt%: (a) 0 % (b) 3wt% (c) 6wt % (d) 9wt% (e) 15wt% (f) 20wt%

    图  6  不同SEBS含量的SEBS/PPS复合材料的DSC曲线:(a) 熔融曲线 (b) 结晶曲线(1-0wt%SEBS; 2-3wt% SEBS; 3-6wt% SEBS; 4-9wt% SEBS; 5-15wt% SEBS; 6-20wt% SEBS)

    Figure  6.  DSC curves of SEBS/PPS composites with different SEBS contents: (a) Melt curve (b) Crystallization curve (1-0wt%SEBS; 2-3wt% SEBS; 3-6wt% SEBS; 4-9wt% SEBS; 5-15wt% SEBS; 6-20wt% SEBS)

    图  7  不同SEBS含量的SEBS/PPS复合材料冲击断面SEM照片:SEBS含量:(a) 0 % (b) 3wt% (c) 6 wt % (d) 9wt% (e) 15wt% (f) 20wt%

    Figure  7.  SEM images of impact sections of SEBS/PPS composites with different SEBS contents: content of SEBS: (a) 0 % (b) 3wt% (c) 6 wt % (d) 9wt% (e) 15wt% (f) 20wt%

    图  8  不同SEBS含量的SEBS/PPS复合材料的冲击断面TEM照片:SEBS含量:(a) 3wt% (b) 6wt% (c) 20wt%

    Figure  8.  TEM images of impact sections of SEBS/PPS composites with different SEBS contents: content of SEBS:(a) 3wt% (b) 6wt% (c) 20wt%

    图  9  SBES/ PPS的复合材料增韧模型: SEBS含量: (a) 3wt% (b) 6wt% (c) 20wt%

    Figure  9.  Toughening model of composites with SBES/ PPS: content of SEBS: (a) 3wt% (b) 6wt% (c) 20wt%

    表  1  不同SEBS含量的SEBS/PPS复合材料动态力学性能数据

    Table  1.   Data on dynamic mechanical properties of SEBS/PPS composites with different SEBS contents

    Content of SEBS /wt% Storage modulus /MPa Tg1/℃ Tg2/℃ ΔTg
    −50℃ 50℃
    0 2254.2 2131.7 / 124.69 /
    3 2576.6 2382.1 4.38 127.19 122.81
    6 2761.6 2561.2 4.80 125.35 120.55
    9 2465.6 2217.9 4.02 126.12 122.10
    15 2750.31 1921.4 4.14 126.93 122.79
    20 2738.5 1532.4 4.34 126.22 121.98
    Notes:Tg1 is the SEBS glass transition temperature, Tg2 is the PPS glass transition temperature, and ΔTg is the discrepancy between glass transition temperatures.
    下载: 导出CSV

    表  2  不同SEBS含量的SEBS/PPS复合材料DSC热力学参数

    Table  2.   DSC thermodynamic parameters of SEBS/PPS composites with different SEBS contents

    Content of SEBS /wt% Tc/℃ Tm/℃ $\Delta {H_m}$/(J·g−1) Xc/%
    0 236.4 285.3 37.670 34.1
    3 236.3 285.2 36.420 34.0
    6 235.7 285.0 34.871 33.6
    9 235.1 284.8 32.435 33.4
    15 234.6 284.5 30.463 33.3
    20 233.8 283.2 22.597 28.3
    Notes:Tc is the crystallization temperature, Tm is the melting temperature, ΔHm is the enthalpy of melting, and Xc is the degree of crystallinity, calculated according to equation (1).
    下载: 导出CSV
  • [1] ZHANG Y, YANG W, ZHUANG X, et al. Study on the properties of PPS composite modified with Tungsten powder[J]. IOP Conference Series:Materials Science and Engineering, 2019, 592(1): 012025. doi: 10.1088/1757-899X/592/1/012025
    [2] OSTI DE MORAES D V, DE MELO MORGADO G F, MAGNABOSCO R, et al. Study of the influence of PPS, PAEK, and PEEK thermoplastic matrices on the static mechanical behavior of carbon fiber-reinforced compo-site[J]. Polymer compo-site: 2023, 27885.
    [3] 樊星, 陈俊林, 王凯, 等. 纳米SiO2/聚苯硫醚和SiO2-玻璃纤维/聚苯硫醚复合材料的性能[J]. 复合材料学报, 2018, 35(9): 2397-2404

    FAN Xing, CHEN Junlin, WANG Kai, et al. Properties of nano SiO2/poly-phenylene sulfide and SiO2-glass fiber/poly-phenylene sulfide compo-site[J]. Acta Materiae Compositae Sinica, 2018, 35(9): 2397-2404 (in Chinese).
    [4] TANG W, HU X, TANG J, et al. Toughening and compatibilization of poly-phenylene sulfide/nylon 66 blends with SEBS and maleic anhydride grafted SEBS triblock copolymers[J]. Journal of Applied Polymer Science, 2017, 106(4): 2648-2655.
    [5] ZHANG M, WANG X, BAI Y, et al. C60 as fine fillers to improve poly (phenylene sulfide) electrical conductivity and mechanical property[J]. Scientific Reports, 2017, 7(1): 4443. doi: 10.1038/s41598-017-04491-1
    [6] 王海霞, 李振环, 程博闻. 环氧化功能碳纳米管改性氨基PPS[J]. 复合材料学报, 2016, 33(11): 2468-2476

    WANG Haixia, LI Zhenhuan, CHENG Bowen. Epoxy functionalized carbon nanotubes modified amino substituted PPS[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2468-2476 (in Chinese).
    [7] 王淼, 相鹏伟, 邵宝刚等. 聚苯硫醚复合材料的应用及进展[J]. 塑料, 2020, 49(6): 148-151

    WANG Miao, XIANG Pengwei, SHAO Baogang et al. Application and Progress of Polyphenylene Sulfide compo-site[J]. Plastics, 2020, 49(6): 148-151(in Chinese).
    [8] LIN Y, LANG F, ZENG D, et al. Effects of modified graphene on property optimization in thermal conductive compo-site based on PPS/PA6 blend[J]. Soft Materials, 2021, 19(4): 457-467. doi: 10.1080/1539445X.2020.1856873
    [9] 黄嘉伟, 韩小龙, 吴悠, 靳玉娟, 郭茂林. EVA弹性体对PHBV的增韧改性研究[J]. 中国塑料, 2022, 36(12): 16-23

    HUANG Jiawei, HAN Xiaolong, WU You, JIN Yujuan, GUO Maolin. Toughening modification of PHBV with EVA elastomer[J]. China Plastics, 2022, 36(12): 16-23(in Chinese).
    [10] 徐建林, 安静, 康成虎, 等. 热塑性聚氨酯弹性体对聚对苯二甲酸丁二醇酯基阻燃复合材料性能的影响[J]. 复合材料学报, 2021, 38(8): 2586-2594

    XU Jianlin, AN Jing, KANG Chenghu, et al. Effect of thermoplastic polyurethane elastomer on the properties of polybutylene terephthalate matrix flame retardant compo-sites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2586-2594(in Chinese).
    [11] ALIAS N F, ISMAIL H. An overview of toughening polylactic acid by an elastomer[J]. Polymer-Plastics Technology and Materials, 2019, 58(13): 1399-1422. doi: 10.1080/25740881.2018.1563118
    [12] SHANG M, WU Y, SHENTU B, et al. Toughening of PBT by POE/POE-g-GMA Elastomer through Regulating Interfacial Adhesion and Toughening Mechanism[J]. Industrial & Engineering Chemistry Research, 2019, 58(28): 12650-12663.
    [13] 王明, 沈佳斌, 杜芹, 等. EPDM/PS交替多层复合材料的力学性能分析[J]. 复合材料学报, 2007, 24(6): 36-43.

    WANG Ming, SHEN Jiabin, DU Qin, et al. Mechanical properties of EPDM/PS alternative multilayer compo-site[J] (in Chinese).
    [14] GRIGORESCU R M, CIUPRINA F, GHIOCA P, et al. Mechanical and dielectric properties of SEBS modified by graphite inclusion and composite interface[J]. Journal of Physics and Chemistry of Solids, 2016, 89: 97-106. doi: 10.1016/j.jpcs.2015.10.008
    [15] TOMACHESKI D, PITTOL M, ERMEL C E, et al. Influence of processing conditions on the mechanical properties of SEBS/PP/oil blends[J]. Polymer Bulletin, 2017, 74(12): 4841-4855. doi: 10.1007/s00289-017-1994-2
    [16] SUN H, ZHANG J, et al. Modified epoxy resin with SEBS-g-MAH to fabricate crack-free and robust hydrophobic coatings on the surface of PP/SEBS matrix[J]. Surfaces and Interfaces, 2022, 28: 101662. doi: 10.1016/j.surfin.2021.101662
    [17] NISHITANI Y, YAMADA Y, ISHII C, et al. Effects of addition of functionalized SEBS on rheological, mechanical, and tribological properties of polyamide 6 nanocompo-site[J]. Polymer Engineering & Science, 2009, 50(1): 100-112.
    [18] SONG L, CONG F, WANG W, et al. The Effect of Functionalized SEBS on the Properties of PP/SEBS Blends[J]. Polymers, 2023, 15(18): 3696. doi: 10.3390/polym15183696
    [19] MERZ E H, CLAVER G C, BAER M. Studies on heterogeneous polymeric systems[J]. Journal of Polymer Science, 1956, 22(101): 325-341. doi: 10.1002/pol.1956.1202210114
    [20] BUCKNALL C B. Current research on structure and mechanical properties of rubber-modified thermoplastics[J]. Journal of Materials 1969, 4 (1): 214-220.
    [21] BUCLCNALL C B, MARCHETTI A. A novel hysteresis test for studying crazing and shear yielding in rubber-toughened polymers[J]. Polymer Engineering & Science, 1984, 24(8): 535-540.
    [22] QIAO L, DONG X, YING Y, et al. Toughening mechanism of PPS/Sr ferrite compo-sites by TPU elastomer[J]. Journal of Applied Polymer Science, 2016, 133(25): 43564. doi: 10.1002/app.43564
    [23] LIN J, LI J, WANG J, et al. Effects of thermoplastic elastomer on the morphology and mechanical properties of glass fiber-reinforced polycarbonate/acrylonitrile-butadiene-styrene[J]. Polymer Engineering & Science, 2023, 59(s2).
    [24] 谢林生, 马玉录. 双转子连续混炼机中的混沌混合行为研究[J]. 中国塑料, 2009, 23(4): 104-108

    XIE Linsheng, MA Yulu. Study on Chaotic Mixing Process of A Two-rotor Continuous Mixer[J]. China Plastics, 2009, 23(4): 104-108(in Chinese).
    [25] CHEN T, GUO H, LI G, et al. Chaotic Mixing Analyzing in Continuous Mixer with Tracing the Morphology Development of a Polymeric Drop[J]. Processes, 2020, 8(10).
    [26] 郝玉婷, 陈涛, 马玉录等. 混炼机横截面PP熔体液滴分散过程的数值模拟研究[J]. 中国塑料, 2018, 32(6): 84-91

    HAO Yuting, CHEN Tao, MA Yulu, et al. Study on Numerical Simulation for Dispersion Process of PP Melt Droplet on Cross Section of Mixer[J]. China Plastics, 2018, 32(6): 84-91(in Chinese).
    [27] American Society for Testing and Materials. ASTM D256-23E01: Standard test methods for determining the lzod pendulum impact resistance of plastics. West Conshohocken, PA: ASTM International, 2023.
    [28] American Society for Testing and Materials. ASTM D638-22: Standard test method for tensile properties of plastics. West Conshohocken, PA: ASTM International, 2022.
    [29] American Society for Testing and Materials. ASTM D790-17: Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical lnsulating materials. West Conshohocken, PA: ASTM International, 2017.
    [30] Huo P, Cebe P. Effects of thermal history on the rigid amorphous phase in poly (phenylene sulfide)[J]. colloid & polymer science, 1992.
    [31] 郝建秀, 王海刚, 王伟宏, 等. 利用弹性体增韧木粉/HDPE复合材料[J]. 复合材料学报, 2016, 33(5): 976-983

    HAO Jianxiu, WANG Haigang, WANG Weihong, et al. Improve toughness of wood flour/HDPE compo-site with elastomers[J]. Acta Materiae Compositae Sinica, 2016, 33(5): 976-983 (in Chinese).
    [32] 丁大有, 马玉录, 谢林生, 等. 基于双转子连续混炼挤出机的PPS/CF复合材料制备及性能研究[J]. 中国塑料, 2020, 34(8): 50-56

    DING Dayou, MA Yulu, XIE Linsheng, et al. Preparation of PPS/CF compo-site by a Twin-rotor Continuous Mixing Extrude[J]. China Plastics, 2020, 34(8): 50-56(in Chinese).
    [33] 时圣勇. 聚苯硫醚复合材料中分散相性质和形貌特点对体系性能的影响[D]. 扬州大学, 2010

    SHI ShengYong. Influence of dispersed phase properties and morphology characteristics on system properties in polyphenylene sulfide compo-site [D]. Yangzhou University, 2010(in Chinese).
    [34] WU S. Polymer molecular-weight distribution from dynamic melt viscoelasticity[J]. Polymer Engineering & Science, 1985, 25(2): 122-128
    [35] HISAMATSU T, NAKANO S, ADACHI T, et al. The effect of compatibility on toughness of PPS/SEBS polymer alloy[J]. Polymer, 2000, 41(13): 4803-4809. doi: 10.1016/S0032-3861(99)00489-9
    [36] ESMAEILI A, MA D, MANES A, et al. An experimental and numerical investigation of highly strong and tough epoxy based nanocomposite by addition of MWCNTs: Tensile and mode I fracture tests[J]. Composite Structures, 2020, 252: 112692. doi: 10.1016/j.compstruct.2020.112692
    [37] HWANG J-F, MANSON J A, HERTZBERG R W, et al. Fatigue crack propagation of rubber-toughened epoxies[J]. Polymer Engineering & Science, 1989, 29(20): 1477-1487.
    [38] 詹茂盛, 成泽郁夫. 聚对苯二甲酸丁二酯/热塑性聚酰胺弹性体合金的抗冲击强度和破坏机理[J]. 复合材料学报, 1998, 15(2): 87-92

    ZHAN Maosheng, NARISAWA Ikuo. IMPACT STRENGTH AND FRACTURE MECHANISM OF POLY(BUTYLENE TEREPHTHALATE)/THERMOPLASTIC POLYAMIDE ELASTOMERS ALLOYS[J]. Acta Materiae Compositae Sinica, 1998, 15(2): 87-92(in Chinese).
  • 加载中
计量
  • 文章访问数:  67
  • HTML全文浏览量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-05
  • 修回日期:  2024-01-07
  • 录用日期:  2024-02-03
  • 网络出版日期:  2024-03-12

目录

    /

    返回文章
    返回