Impact of the morphological evolution of SEBS based on external field effects on the mechanical properties of PPS composite materials
-
摘要: 聚苯硫醚(PPS)是一种热塑性工程材料,具有强度高、稳定性好等优点,现已在国防、民用领域得到广泛的应用。然而PPS本身的韧性较差,通常通过添加弹性体进行增韧改性以扩大其应用范围。本文基于高拉伸混沌流的混炼转子,通过熔融共混法制备了氢化苯乙烯-丁二烯嵌段共聚物/聚苯硫醚(SEBS/PPS)复合材料,研究了不同含量SEBS在高拉伸外场作用下的微观形态演变行为,分析了其对PPS基复合材料力学性能的影响规律。结果表明:随着SEBS含量的增加,PPS基复合材料的冲击强度和断裂伸长率呈现先增加后下降的趋势;当SEBS含量达到6wt%时,复合材料呈现韧性断裂行为,其冲击强度和断裂伸长率达到最高,分别为67.8 J/m和6.1%。通过对复合材料微观结构分析发现:在高拉伸混炼转子作用下,当SEBS含量在0wt%~6wt%之间时,SEBS粒径尺寸较小,分布均匀,液滴形态向拉伸棒状演变,此时复合材料发生脆韧转变,韧性明显增强,且在6wt%SEBS含量的复合材料受到冲击力时引发多重银纹,发生剪切屈服,表现为塑性变形;当SEBS含量继续增加时,其团聚行为加剧,粒径尺寸随之逐渐增加,且分布较宽,同时两相界面出现大量空穴区域,在引发银纹发展的同时也会导致复合材料的断裂失效,使复合材料冲击强度有所下降。
-
关键词:
- 聚苯硫醚 /
- 氢化苯乙烯-丁二烯嵌段共聚物 /
- 力学性能 /
- 微观结构 /
- 增韧机制
Abstract: Polyphenylene sulfide (PPS) stands as a thermoplastic engineering material, renowned for its high strength and excellent stability. It has found extensive applications in both defense and civilian sectors. However, the intrinsic lack of toughness in PPS necessitates toughness enhancement for broadening its application scope, typically achieved through the incorporation of elastomers. In this study, a melt-blending technique utilizing a high-stretch chaotic flow rotor was employed to prepare hydrogenated styrene-butadiene-styrene block copolymer/polyphenylene sulfide (SEBS/PPS) composite materials. The research aimed to investigate the microstructural evolution of the materials under the influence of high-stretch external forces and analyze the impact of varying SEBS content on the mechanical properties of the PPS-based composite materials. The results indicate that with an increase in SEBS content, the impact strength and fracture elongation of the PPS-based composite materials exhibit an initial rise followed by a subsequent decline. When the SEBS content reaches 6wt%, the composite material demonstrates a ductile fracture behavior, achieving the highest impact strength and fracture elongation at 67.8 J/m and 6.1%, respectively. Microstructural analysis of the composite material reveals that within the SEBS content range of 0wt%-6wt%, under the action of the high-stretch blending rotor, SEBS particles exhibit smaller and more uniformly distributed sizes. The droplet morphology undergoes a transition to elongated rod shapes, indicating a brittle-to-ductile transformation and a significant improvement in toughness. In the composite material with 6wt%SEBS content, multiple silver streaks are induced upon impact, leading to shear yielding and exhibiting plastic deformation. Continued increase in SEBS content intensifies the aggregation behavior of SEBS, resulting in an enlargement of particle sizes and broader distribution. At this stage, numerous void regions appear at the two-phase interfaces, triggering the development of silver streaks and concurrently causing fracture failure in the composite material, leading to a decrease in impact strength. -
图 2 不同SEBS含量的氢化苯乙烯-丁二烯嵌段共聚物/聚苯硫醚(SEBS/PPS)复合材料的力学性能:(a) 冲击强度;(b) 断裂伸长率;(c) 拉伸性能;(d) 弯曲性能
Figure 2. Mechanical properties of hydrogenated styrene-butadiene-styrene block copolymer/polyphenylene sulfide (SEBS/PPS) composites with different SEBS contents: (a) Impact strength; (b) Elongation at break; (c) Tensile properties; (d) Bending properties
图 3 不同SEBS含量的SEBS/PPS复合材料拉伸性能测试时的应力-应变曲线及破坏试样图片: (a) 应力-应变曲线;(b) 拉伸破坏试样;(c) 冲击破坏试样
Figure 3. Stress-strain curves and sample photos during tensile performance testing of SEBS/PPS composites with different SEBS contents: (a) Stress-strain curves; (b) Tensile failure samples; (c) Impact failure samples
表 1 不同SEBS含量的SEBS/PPS复合材料动态力学性能数据
Table 1. Data on dynamic mechanical properties of SEBS/PPS composites with different SEBS contents
Content of SEBS/wt% Storage modulus/MPa Tg1/℃ Tg2/℃ ΔTg −50℃ 50℃ 0 2254.2 2131.7 – 124.69 – 3 2576.6 2382.1 4.38 127.19 122.81 6 2761.6 2561.2 4.80 125.35 120.55 9 2465.6 2217.9 4.02 126.12 122.10 15 2750.31 1921.4 4.14 126.93 122.79 20 2738.5 1532.4 4.34 126.22 121.98 Notes:Tg1—SEBS glass transition temperature; Tg2—PPS glass transition temperature; ΔTg—Discrepancy between glass transition temperatures. 表 2 不同SEBS含量的SEBS/PPS复合材料的DSC热力学参数
Table 2. DSC thermodynamic parameters of SEBS/PPS composites with different SEBS contents
Content of SEBS/wt% Tc/℃ Tm/℃ $ \Delta H\mathrm{_m} $/(J·g−1) Xc/% 0 236.4 285.3 37.670 34.1 3 236.3 285.2 36.420 34.0 6 235.7 285.0 34.871 33.6 9 235.1 284.8 32.435 33.4 15 234.6 284.5 30.463 33.3 20 233.8 283.2 22.597 28.3 Notes:Tc—Crystallization temperature; Tm—Melting temperature; ΔHm—Enthalpy of melting; Xc—Degree of crystallinity, calculated according to equation (1). -
[1] ZHANG Y, YANG W, ZHUANG X, et al. Study on the properties of PPS composite modified with Tungsten powder[J]. IOP Conference Series: Materials Science and Engineering, 2019, 592(1): 012025. doi: 10.1088/1757-899X/592/1/012025 [2] OSTI DE MORAES D V, DE MELO MORGADO G F, MAGNABOSCO R, et al. Study of the influence of PPS, PAEK, and PEEK thermoplastic matrices on the static mechanical behavior of carbon fiber-reinforced compo-site[J]. Polymer Composite, 2024, 45(2): 1726-1736. [3] 樊星, 陈俊林, 王凯, 等. 纳米SiO2/聚苯硫醚和SiO2-玻璃纤维/聚苯硫醚复合材料的性能[J]. 复合材料学报, 2018, 35(9): 2397-2404.FAN Xing, CHEN Junlin, WANG Kai, et al. Properties of nano SiO2/poly-phenylene sulfide and SiO2-glass fiber/poly-phenylene sulfide composite[J]. Acta Materiae Compositae Sinica, 2018, 35(9): 2397-2404 (in Chinese). [4] TANG W, HU X, TANG J, et al. Toughening and compatibilization of poly-phenylene sulfide/Nylon 66 blends with SEBS and maleic anhydride grafted SEBS triblock copolymers[J]. Journal of Applied Polymer Science, 2017, 106(4): 2648-2655. [5] ZHANG M, WANG X, BAI Y, et al. C60 as fine fillers to improve poly(phenylene sulfide) electrical conductivity and mechanical property[J]. Scientific Reports, 2017, 7(1): 4443. doi: 10.1038/s41598-017-04491-1 [6] 王海霞, 李振环, 程博闻. 环氧化功能碳纳米管改性氨基PPS[J]. 复合材料学报, 2016, 33(11): 2468-2476.WANG Haixia, LI Zhenhuan, CHENG Bowen. Epoxy functionalized carbon nanotubes modified amino substituted PPS[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2468-2476 (in Chinese). [7] 王淼, 相鹏伟, 邵宝刚, 等. 聚苯硫醚复合材料的应用及进展[J]. 塑料, 2020, 49(6): 148-151.WANG Miao, XIANG Pengwei, SHAO Baogang, et al. Application and progress of polyphenylene sulfide composite[J]. Plastics, 2020, 49(6): 148-151(in Chinese). [8] LIN Y, LANG F, ZENG D, et al. Effects of modified graphene on property optimization in thermal conductive compo-site based on PPS/PA6 blend[J]. Soft Materials, 2021, 19(4): 457-467. doi: 10.1080/1539445X.2020.1856873 [9] 黄嘉伟, 韩小龙, 吴悠, 等. EVA弹性体对PHBV的增韧改性研究[J]. 中国塑料, 2022, 36(12): 16-23.HUANG Jiawei, HAN Xiaolong, WU You, et al. Toughening modification of PHBV with EVA elastomer[J]. China Plastics, 2022, 36(12): 16-23(in Chinese). [10] 徐建林, 安静, 康成虎, 等. 热塑性聚氨酯弹性体对聚对苯二甲酸丁二醇酯基阻燃复合材料性能的影响[J]. 复合材料学报, 2021, 38(8): 2586-2594.XU Jianlin, AN Jing, KANG Chenghu, et al. Effect of thermoplastic polyurethane elastomer on the properties of polybutylene terephthalate matrix flame retardant compo-sites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2586-2594(in Chinese). [11] ALIAS N F, ISMAIL H. An overview of toughening polylactic acid by an elastomer[J]. Polymer-Plastics Technology and Materials, 2019, 58(13): 1399-1422. doi: 10.1080/25740881.2018.1563118 [12] SHANG M, WU Y, SHENTU B Q, et al. Toughening of PBT by POE/POE-g-GMA elastomer through regulating interfacial adhesion and toughening mechanism[J]. Industrial & Engineering Chemistry Research, 2019, 58(28): 12650-12663. [13] 王明, 沈佳斌, 杜芹, 等. EPDM/PS交替多层复合材料的力学性能分析[J]. 复合材料学报, 2007, 24(6): 36-43.WANG Ming, SHEN Jiabin, DU Qin, et al. Mechanical properties of EPDM/PS alternative multilayer composite[J]. Acta Materiae Compositae Sinica, 2007, 24(6): 36-43(in Chinese). [14] GRIGORESCU R M, CIUPRINA F, GHIOCA P, et al. Mechanical and dielectric properties of SEBS modified by graphite inclusion and composite interface[J]. Journal of Physics and Chemistry of Solids, 2016, 89: 97-106. doi: 10.1016/j.jpcs.2015.10.008 [15] TOMACHESKI D, PITTOL M, ERMEL C E, et al. Influence of processing conditions on the mechanical properties of SEBS/PP/oil blends[J]. Polymer Bulletin, 2017, 74(12): 4841-4855. doi: 10.1007/s00289-017-1994-2 [16] SUN H, ZHANG J. Modified epoxy resin with SEBS-g-MAH to fabricate crack-free and robust hydrophobic coatings on the surface of PP/SEBS matrix[J]. Surfaces and Interfaces, 2022, 28: 101662. doi: 10.1016/j.surfin.2021.101662 [17] NISHITANI Y, YAMADA Y, ISHII C, et al. Effects of addition of functionalized SEBS on rheological, mechanical, and tribological properties of polyamide 6 nanocomposite[J]. Polymer Engineering & Science, 2009, 50(1): 100-112. [18] SONG L, CONG F, WANG W, et al. The effect of functionalized SEBS on the properties of PP/SEBS blends[J]. Polymers, 2023, 15(18): 3696. doi: 10.3390/polym15183696 [19] MERZ E H, CLAVER G C, BAER M. Studies on heterogeneous polymeric systems[J]. Journal of Polymer Science, 1956, 22(101): 325-341. doi: 10.1002/pol.1956.1202210114 [20] BUCKNALL C B. Current research on structure and mechanical properties of rubber-modified thermoplastics[J]. Journal of Materials, 1969, 4(1): 214-220. [21] BUCKNALL C B, MARCHETTI A. A novel hysteresis test for studying crazing and shear yielding in rubber-toughened polymers[J]. Polymer Engineering & Science, 1984, 24(8): 535-540. [22] QIAO L, DONG X, YING Y, et al. Toughening mechanism of PPS/Sr ferrite composites by TPU elastomer[J]. Journal of Applied Polymer Science, 2016, 133(25): 43564. doi: 10.1002/app.43564 [23] LIN J, LI J, WANG J, et al. Effects of thermoplastic elastomer on the morphology and mechanical properties of glass fiber-reinforced polycarbonate/acrylonitrile-butadiene-styrene[J]. Polymer Engineering & Science, 2023, 59: 144-151. [24] 谢林生, 马玉录. 双转子连续混炼机中的混沌混合行为研究[J]. 中国塑料, 2009, 23(4): 104-108.XIE Linsheng, MA Yulu. Study on chaotic mixing process of a two-rotor continuous mixer[J]. China Plastics, 2009, 23(4): 104-108(in Chinese). [25] CHEN T, GUO H, LI G, et al. Chaotic mixing analyzing in continuous mixer with tracing the morphology development of a polymeric drop[J]. Processes, 2020, 8(10): 1308. [26] 郝玉婷, 陈涛, 马玉录, 等. 混炼机横截面PP熔体液滴分散过程的数值模拟研究[J]. 中国塑料, 2018, 32(6): 84-91.HAO Yuting, CHEN Tao, MA Yulu, et al. Study on numerical simulation for dispersion process of PP melt droplet on cross section of mixer[J]. China Plastics, 2018, 32(6): 84-91(in Chinese). [27] American Society for Testing and Materials. Standard test methods for determining the lzod pendulum impact resistance of plastics: ASTM D256—23E01[J]. West Conshohocken: ASTM International, 2023. [28] American Society for Testing and Materials. Standard test method for tensile properties of plastics: ASTM D638—22[J]. West Conshohocken: ASTM International, 2022. [29] American Society for Testing and Materials. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790—17[J]. West Conshohocken: ASTM International, 2017. [30] HUO P, CEBE P. Effects of thermal history on the rigid amorphous phase in poly (phenylene sulfide)[J]. Colloid & Polymer Science, 1992, 27(20): 5609-5619. [31] 郝建秀, 王海刚, 王伟宏, 等. 利用弹性体增韧木粉/HDPE复合材料[J]. 复合材料学报, 2016, 33(5): 976-983.HAO Jianxiu, WANG Haigang, WANG Weihong, et al. Improve toughness of wood flour/HDPE composite with elastomers[J]. Acta Materiae Compositae Sinica, 2016, 33(5): 976-983 (in Chinese). [32] 丁大有, 马玉录, 谢林生, 等. 基于双转子连续混炼挤出机的PPS/CF复合材料制备及性能研究[J]. 中国塑料, 2020, 34(8): 50-56.DING Dayou, MA Yulu, XIE Linsheng, et al. Preparation of PPS/CF composite by a twin-rotor continuous mixing extrude[J]. China Plastics, 2020, 34(8): 50-56(in Chinese). [33] 时圣勇. 聚苯硫醚复合材料中分散相性质和形貌特点对体系性能的影响[D]. 扬州: 扬州大学, 2010.SHI Shengyong. Influence of dispersed phase properties and morphology characteristics on system properties in polyphenylene sulfide composite [D]. Yangzhou: Yangzhou University, 2010(in Chinese). [34] WU S. Polymer molecular-weight distribution from dynamic melt viscoelasticity[J]. Polymer Engineering & Science, 1985, 25(2): 122-128. [35] HISAMATSU T, NAKANO S, ADACHI T, et al. The effect of compatibility on toughness of PPS/SEBS polymer alloy[J]. Polymer, 2000, 41(13): 4803-4809. doi: 10.1016/S0032-3861(99)00489-9 [36] ESMAEILI A, MA D, MANES A, et al. An experimental and numerical investigation of highly strong and tough epoxy based nanocomposite by addition of MWCNTs: Tensile and mode I fracture tests[J]. Composite Structures, 2020, 252: 112692. doi: 10.1016/j.compstruct.2020.112692 [37] HWANG J F, MANSON J A, HERTZBERG R W, et al. Fatigue crack propagation of rubber-toughened epoxies[J]. Polymer Engineering & Science, 1989, 29(20): 1477-1487. [38] 詹茂盛, 成泽郁夫. 聚对苯二甲酸丁二酯/热塑性聚酰胺弹性体合金的抗冲击强度和破坏机制[J]. 复合材料学报, 1998, 15(2): 87-92.ZHAN Maosheng, NARISAWA Ikuo. Impact strength and fracture mechanism of poly(butylene terephthalate)/thermoplastic polyamide elastomers alloys[J]. Acta Materiae Compositae Sinica, 1998, 15(2): 87-92(in Chinese).