留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偶联剂表面富集对高强玻纤复合材料界面和层间断裂韧性的影响

郭妙才 李亚锋 张杜鹃 洪旭辉

郭妙才, 李亚锋, 张杜鹃, 等. 偶联剂表面富集对高强玻纤复合材料界面和层间断裂韧性的影响[J]. 复合材料学报, 2022, 40(0): 1-9
引用本文: 郭妙才, 李亚锋, 张杜鹃, 等. 偶联剂表面富集对高强玻纤复合材料界面和层间断裂韧性的影响[J]. 复合材料学报, 2022, 40(0): 1-9
Miaocai GUO, Yafeng LI, Dujuan ZHANG, Xuhui HONG. Effect of the surface enrichment of coupling agent on the interfacial properties and interlaminar fracture toughness of GFRPs[J]. Acta Materiae Compositae Sinica.
Citation: Miaocai GUO, Yafeng LI, Dujuan ZHANG, Xuhui HONG. Effect of the surface enrichment of coupling agent on the interfacial properties and interlaminar fracture toughness of GFRPs[J]. Acta Materiae Compositae Sinica.

偶联剂表面富集对高强玻纤复合材料界面和层间断裂韧性的影响

详细信息
    通讯作者:

    郭妙才,博士,高级工程师,研究方向为复合材料 E-mail:guo_miaocai@sina.cn

  • 中图分类号: TB332

Effect of the surface enrichment of coupling agent on the interfacial properties and interlaminar fracture toughness of GFRPs

  • 摘要: 浸润剂是形成复合材料界面的关键组成,理解浸润剂特性对复合材料界面和宏观力学的影响机制,对发展高性能复合材料有着重要的科学价值。本文研究了采用两种不同浸润剂体系的高强玻璃纤维织物的表面、界面和层间断裂韧性等性能,发现其中一种浸润剂体系的纤维表面发生了更显著的偶联剂表面富集,偶联剂表面富集导致纤维/树脂之间具有较高的动态接触角,同时纤维/树脂的界面剪切强度下降。作为对比,偶联剂较少表面富集的浸润剂体系,纤维/树脂之间的动态接触角较小,同时界面剪切强度较高。两种复合材料的I型、II层间断裂韧性均基于纤维/树脂之间的界面脱粘机制,较多偶联剂表面富集的浸润剂降低了复合材料的界面连续性,而较少偶联剂表面富集的浸润剂则与树脂形成了连续的界面相,界面粘结良好,并诱导了层间断裂时的织物拔出机制,I型和II型层间断裂韧性分别比前者高56.5%和62.2%。

     

  • 图  1  测试试样的结构和加载方式: (a) GIC, (b) GIIC

    Figure  1.  Sketch map of the structures and loading modes of the GIC (a) and GIIC (b) samples

    图  2  典型的织物A(FA)或织物B(FB)织物的SEM图像

    Figure  2.  A typical SEM image of the high strength glass fiber fabric A (FA) or fabric B (FB)

    图  3  FA和FB纤维使用DMF去除浸润剂前后的AFM图,其中FA(a)、FA (b)去除浸润剂后, FB(c)、FB(d)去除浸润剂后

    Figure  3.  AFM images of the surfaces of the original FA fiber (a), desized FA fiber(b), original FB fiber (c) and desized FB fiber (d)

    图  4  复合材料截面的SEM图:(a)FA/AC318;(b)FB/AC318

    Figure  4.  SEM images of the cross sections of FA reinforced AC318 composite (FA/AC318) (a) and FB reinforced AC318 composite (FB/AC318) (b)

    图  5  I型层间断面照片:(a) FA/AC318;(b) FB/AC318;(c) 两者的GIC载荷-位移曲线;I型层间断面的SEM图:(d) FA/AC318;(e) FB/AC318

    Figure  5.  Optical images of the mode I fracture surfaces of FA/AC318 (a), FB/AC318 (b), and the GIC load-displacement curves (c), and the SEM images of the mode I fracture surfaces of FA/AC318 (d) and FB/AC318 (e)

    图  6  II型层间断面照片: (a) FA/AC318; (b) FB/AC318;(c)两者的GIIC载荷-位移曲线;II型层间断面的SEM图:(d) FA/AC318;(e) FB/AC318

    Figure  6.  Optical images of the mode II fracture surfaces of FA/AC318 (a), FB/AC318 (b), and the GIC load-displacement curves (c), and the SEM images of the mode II fracture surfaces of FA/AC318 (d) and FB/AC318 (e)

    图  7  复合材料断面纤维-树脂界面区域的高倍SEM图:(a)FA/AC318;(b)FB/AC318

    Figure  7.  High magnification SEM images of the fractured fiber/resin interfaces of FA/AC318 (a), FB/AC318 (b)

    表  1  原始纤维和DMF处理纤维的表面元素组成

    Table  1.   Surface element compositions of original fibers and DMF treated fibers

    FiberFA untreatedFA treatedFB untreatedFB treated
    Si/Atomic%7.7314.484.247.93
    C/Atomic%56.8833.0471.3261.27
    N/Atomic%9.8914.561.863.3
    O/Atomic%25.5137.9322.5827.52
    下载: 导出CSV

    表  2  纤维浸入树脂中的动态接触角

    Table  2.   Dynamic contact angles between fiber and resin

    FiberFAFB
    First advancing angle/(º)68.4±1.855.5±0.5
    First receding angle/(º)00
    Secondary advancing angle/(º)28.7±5.918.9±2.5
    Secondary receding angle/(º)00
    下载: 导出CSV

    表  3  两种纤维去浸前后的微界面剪切强度

    Table  3.   Interfacial shear strength of the original and desized fibers

    FiberFAFB
    Original fiber/MPa42.9±5.947.1±4.7
    Desized fiber/MPa34.7±6.042.6±4.3
    下载: 导出CSV

    表  4  复合材料的层间断裂韧性

    Table  4.   The interlaminar fracture toughness of the composites

    CompositeFA/AC318FB/AC318
    GIC/(J·m−2)550.8±57.5862.0±133.5
    GIIC/(J·m−2)1062±2151723±325
    下载: 导出CSV
  • [1] BEURA S, THATOI DN, CHAKRAVERTY AP, et al. Impact of the ambiance on GFRP composites and role of some inherent factors: A review report[J]. Journal of Reinforced Plastics and Composites,2018,37:533-547. doi: 10.1177/0731684418754359
    [2] 肖何, 陈藩, 刘寒松, 等. 国产ZT7 H碳纤维表面状态及其复合材料界面性能[J]. 复合材料学报, 2021, 38(8):2554-2567.

    XIAO He, CHEN Fan, LIU Handsong, et al. Surface state of domestic ZT7 H carbon fiber and interface property of composites[J]. Acta Materiae Compositae Sinica,2021,38(8):2554-2567(in Chinese).
    [3] GONZALEZ C, LLORCA J. Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling[J]. Composites Science and Technology,2007,67:2795-2806. doi: 10.1016/j.compscitech.2007.02.001
    [4] KOLOOR SSR, ABDULLAH MA, TAMIN MN, et al. Fatigue damage of cohesive interfaces in fiber-reinforced polymer composite laminates[J]. Composites Science and Technology,2019,183:107779. doi: 10.1016/j.compscitech.2019.107779
    [5] WANG J, GANGARAO H, LIANG R, et al. Durability and prediction models of fiber-reinforced polymer composites under various environmental conditions: A critical review[J]. Journal of Reinforced Plastics and Composites,2016,35:179-211. doi: 10.1177/0731684415610920
    [6] WU Z, YI X, WILKINSON A. Interlaminar fracture toughness of carbon fibre/RTM6-2 composites toughened with thermoplastic-coated fabric reinforcement[J]. Composites Part B,2017,130:192-199. doi: 10.1016/j.compositesb.2017.08.003
    [7] BOON YD, JOSHI SC. A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites[J]. Materials Today Communications,2020,22:100830. doi: 10.1016/j.mtcomm.2019.100830
    [8] SPRENGER, S. Improving mechanical properties of fiber-reinforced composites based on epoxy resins containing industrial surface-modified silica nanoparticles: review and outlook[J]. Journal of Composite Materials,2015,49:53-63. doi: 10.1177/0021998313514260
    [9] LIAO L, WANG X, FANG P, et al. Interface Enhancement of Glass Fiber Reinforced Vinyl Ester Composites with Flame-Synthesized Carbon Nanotubes and Its Enhancing Mechanism[J]. ACS Applied Materials & Interfaces,2011,3:534-538.
    [10] 樊序敏, 顾轶卓, 刘亚男, 等. 碳纳米管浸润剂对碳纤维/环氧树脂界面性能的影响[J]. 复合材料学报, 2012, 29(4):17-22.

    FAN Xumin, GU Yizhuo, LIU Yanan, et al. Effects of wetting agent containing carbon nanotubes on interfacial property of carbon fiber/epoxy resin[J]. Acta Materiae Compositae Sinica,2012,29(4):17-22(in Chinese).
    [11] ZHUANG R-C, LIU J-W, PLONKA R, et al. NaBF4 as a hygrothermal durability enhancer for glass fibre reinforced polypropylene composites[J]. Composites Science and Technology,2011,71:1461-1470. doi: 10.1016/j.compscitech.2011.06.002
    [12] DIBENEDETTO AT. Tailoring of interfaces in glass fiber reinforced polymer composites: a review[J]. Materials Science and Engineering A,2001,302:74-82. doi: 10.1016/S0921-5093(00)01357-5
    [13] PAPE PG, PLUEDDEMANN EP. In: K[J]. L. Mittal(Ed. ), Silanes and other coupling agents[M]. VSP, The Netherlands,1992:105-116.
    [14] QU Z, ZHAO B, WANG J, et al. Morphological and mechanical behavior of polyurethane/epoxy interpenetrating polymers and its flax fiber-reinforced composites[J]. Polymer Composites,2021,42:1258-1266. doi: 10.1002/pc.25898
    [15] REN D, CHEN L, YUAN Y, et al. Designing and Preparation of Fiber-Reinforced Composites with Enhanced Interface Adhesion[J]. Polymers,2018,10:1128. doi: 10.3390/polym10101128
    [16] DIBENEDETTO AT, Connelly SM, Lee WC, et al. The properties of organosiloxane/polyester interfaces at an E-glass fiber surface[J]. The Journal of Adhesion,1995,52:41-64. doi: 10.1080/00218469508015185
    [17] LIU Z, ZHANG J, TANG Y, et al. Optimization of PBO fibers/cyanate ester wave-transparent laminated composites via incorporation of a fluoride-containing linear interfacial compatibilizer[J]. Composites Science and Technology,2021,210:108838. doi: 10.1016/j.compscitech.2021.108838
    [18] 中国航空工业总公司. 碳纤维复合材料层合板I型层间断裂韧性GIC试验方法: HB 7402—96[S]. 中国航空工业总公司, 1997.

    Aviation Industry Corporation of China. Test method for mode I interlaminar fracture toughness of carbon fiber-reinforced polymer matrix composites: HB 7402—96 [S]. Beijing: Aviation Industry Corporation of China, 1997 (in Chinese).
    [19] 中国航空工业总公司. 碳纤维复合材料层合板II型层间断裂韧性GIIC试验方法: HB 7403—96[S]. 中国航空工业总公司, 1997.

    Aviation Industry Corporation of China. Test method for mode II interlaminar fracture toughness of carbon fiber-reinforced polymer matrix composites: HB 7403—96 [S]. Aviation Industry Corporation of China, 1997 (in Chinese).
    [20] 水兴瑶, 刘猛, 朱曜峰, 等. 水性上浆剂对碳纤维表面及碳纤维/环氧树脂复合材料界面性能的影响[J]. 复合材料学报, 2016, 33(2):273-279.

    SHUI Xingyao, LIU Meng, ZHU Yaofeng, et al. Effects of waterborne sizing agent on carbon fiber surface and properties of carbon fiber/epoxy composites interface[J]. Acta Materiae Compositae Sinica,2016,33(2):273-279(in Chinese).
    [21] 向东, 刘家良, 赵春霞, 等. 基于插层法协同提升碳纤维树脂基复合材料的导电性能与层间韧性[J]. 复合材料学报, 2022, 39(1):134-146.

    XIANG Dong, LIU Jialiang, ZHAO Chunxia, et al. Synergistic improvement of electrical conductivity and interlaminar toughness of carbon fiber resin matrix composites based on intercalation method[J]. Acta Materiae Compositae Sinica,2022,39(1):134-146(in Chinese).
    [22] RODRIGUEZ-GARCIA V, HERRAEZ M, MARTINEZ V, et al. Interlaminar and translaminar fracture toughness of Automated Manufactured Bio-inspired CFRP laminates[J]. Composites Science and Technology,2022,219:109236. doi: 10.1016/j.compscitech.2021.109236
  • 加载中
计量
  • 文章访问数:  62
  • HTML全文浏览量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 录用日期:  2022-05-15
  • 修回日期:  2022-05-09
  • 网络出版日期:  2022-06-02

目录

    /

    返回文章
    返回