留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi2O3-TiO2复合氧化物光催化环己烷选择氧化

郑小强 佟占鑫 吴健博 廖诗艺 王海鹏 陈丽娟

郑小强, 佟占鑫, 吴健博, 等. Bi2O3-TiO2复合氧化物光催化环己烷选择氧化[J]. 复合材料学报, 2022, 39(7): 3262-3270. doi: 10.13801/j.cnki.fhclxb.20210906.005
引用本文: 郑小强, 佟占鑫, 吴健博, 等. Bi2O3-TiO2复合氧化物光催化环己烷选择氧化[J]. 复合材料学报, 2022, 39(7): 3262-3270. doi: 10.13801/j.cnki.fhclxb.20210906.005
ZHENG Xiaoqiang, TONG Zhanxin, WU Jianbo, et al. Photocatalytic selective oxidation of cyclohexane with Bi2O3-TiO2 composite oxide[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3262-3270. doi: 10.13801/j.cnki.fhclxb.20210906.005
Citation: ZHENG Xiaoqiang, TONG Zhanxin, WU Jianbo, et al. Photocatalytic selective oxidation of cyclohexane with Bi2O3-TiO2 composite oxide[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3262-3270. doi: 10.13801/j.cnki.fhclxb.20210906.005

Bi2O3-TiO2复合氧化物光催化环己烷选择氧化

doi: 10.13801/j.cnki.fhclxb.20210906.005
基金项目: 国家自然科学基金 (21406058);湖南省自然科学基金(2021JJ30237)
详细信息
    通讯作者:

    陈丽娟,博士,教授,硕士生导师,研究方向为光催化、多相催化  E-mail: ljchen11@163.com

  • 中图分类号: TQ233.1;TQ234.21;TQ426

Photocatalytic selective oxidation of cyclohexane with Bi2O3-TiO2 composite oxide

  • 摘要: 环己烷选择性氧化生成的环己醇和环己酮是己内酰胺合成中的重要中间体,在尼龙生产中具有重要作用,但工业路线条件苛刻,效率低。温和条件下环己烷选择性氧化引起极大关注,而光催化在低温环境压力下的饱和C—H活化和氧化具有独特优势。本文采用水热法制备了一系列Bi2O3-TiO2复合催化剂,对其结构、形貌、光学与光电化学性质通过多种方法包括SEM、XRD、N2吸脱附、UV-Vis、光致发光光谱、瞬态光电流响应等进行详细表征。在室温、0.1 MPa氧气为氧化剂、500 W氙灯模拟太阳光条件下比较了纯TiO2、Bi2O3和Bi2O3-TiO2复合物对环己烷选择性氧化的催化性能,结果表明,复合Bi2O3后提高了TiO2的催化活性,其中9%Bi2O3-TiO2的活性最高,在反应条件下,转化率达13.32%;环己酮/醇总选择性为95.5%,其中环己酮的选择性为57.3%、环己醇的选择性为38.2%、酮醇比为1.5。表征结果证实复合催化剂具有更宽的光吸收频率范围,能有效促进光生电子-空穴分离;同时,比表面积表征也表明复合催化剂比表面积比TiO2和Bi2O3更高,有利于增加表面活性中心浓度。

     

  • 图  1  Bi2O3、TiO2、9%Bi2O3-TiO2复合催化剂的XRD图谱

    Figure  1.  XRD patterns of Bi2O3, TiO2, 9% Bi2O3-TiO2 composite catalyst

    图  2  Bi2O3-TiO2复合催化剂的XPS总图谱(a)以及Bi4f (b)、Ti2p (c)和O1s (d)的高分辨率XPS图谱

    Figure  2.  XPS total spectrum of Bi2O3-TiO2 composite catalyst (a) and high-resolution XPS spectra of Bi4f (b), Ti2p (c) and O1s (d)

    图  3  Bi2O3、TiO2和9%Bi2O3-TiO2的SEM图像

    Figure  3.  SEM images of Bi2O3, TiO2 and 9%Bi2O3-TiO2

    图  4  TiO2和9%Bi2O3-TiO2的N2吸附-脱附和孔径分布曲线

    Figure  4.  N2 adsorption desorption and pore size distribution curves of TiO2 and 9% Bi2O3-TiO2 ((a) TiO2; (b) 9%Bi2O3-TiO2)

    图  5  TiO2、Bi2O3和不同组成Bi2O3-TiO2复合物的UV-Vis漫反射光谱(a)、(Ahν)1/2-图(b)以及Bi2O3的(Ahν)2-图(b)

    Figure  5.  UV-Vis diffuse reflectance spectra (a), (Ahν)1/2- diagrams (b) of TiO2, Bi2O3 and Bi2O3-TiO2 composites with different compositions and (Ahν)2- diagrams (b) of Bi2O3

    图  6  TiO2、Bi2O3和Bi2O3-TiO2复合材料的PL图谱

    Figure  6.  Fluorescence spectra of TiO2, Bi2O3 and Bi2O3-TiO2 composite materials

    λEx—Excitation wavelength

    图  7  TiO2、Bi2O3和9%Bi2O3-TiO2的光电流响应和阻抗谱

    Figure  7.  Photocurrent response and impedance of TiO2, Bi2O3 and 9%Bi2O3-TiO2

    表  1  不同样品的BET表面积、孔体积和平均孔径

    Table  1.   BET surface area, pore volume and average pore diameter of different samples

    SampleBET surface area/(m2·g−1)Pore volume/(cm3·g−1)Average pore size/nm
    TiO2 74.3 0.300 12.9
    Bi2O3 1.3 0.004 7.9
    9%Bi2O3-TiO2 104.0 0.580 21.1
    下载: 导出CSV

    表  2  Bi2O3-TiO2复合物光催化氧化环己烷性能

    Table  2.   Photocatalytic oxidation of cyclohexane by Bi2O3-TiO2 composite

    catalystConversion rate/%Selectivity/%Keto alcohol ratio
    CyclohexanoneCyclohexanol
    TiO2 10.5 60.9 34.0 1.8
    Bi2O3 - - - -
    3%Bi2O3-TiO2 10.4 57.9 37.1 1.6
    6%Bi2O3-TiO2 11.1 58.0 36.9 1.6
    9%Bi2O3-TiO2 13.3 57.3 38.2 1.5
    12%Bi2O3-TiO2 10.7 60.1 34.7 1.7
    15%Bi2O3-TiO2 9.5 64.7 30.2 2.2
    下载: 导出CSV
  • [1] 刘懿, 朱明乔, 王磊, 等. 微管内环己烷无催化氧化工艺条件对产物分布影响研究[J]. 高校化学工程学报, 2016, 30(2):378-383. doi: 10.3969/j.issn.1003-9015.2016.02.018

    LIU Yi, ZHU Mingqiao, WANG Lei, et al. Effects of process conditions on products distribution of cyclohexane non-catalytic oxidation in micro-capillary[J]. Journal of Che-mical Engineering of Chinese Universities,2016,30(2):378-383(in Chinese). doi: 10.3969/j.issn.1003-9015.2016.02.018
    [2] NAGHIPOUR A, FA KHRI A. Efficient oxidation of sulfides into sulfoxides catalyzed by a chitosan-Schiff base complex of Cu(II) supported on supramagnetic Fe3O4 nanoparticles[J]. Environmental Chemistry Letters,2016,14(2):207-213. doi: 10.1007/s10311-015-0545-z
    [3] WANG K, XUE B, WANG J L, et al. Efficient and selective oxi-dation of cyclohexane to cyclohexanone over flake hexagonal boron nitride/titanium dioxide hybrid photocatalysts[J]. Molecular Catalysis,2021,505:111530. doi: 10.1016/j.mcat.2021.111530
    [4] RIBEIRO A, SPADA E, BERTANI R, et al. Adipic acid route: Oxidation of cyclohexene vs. cyclohexane[J]. Catalysts,2020,10(12):1443. doi: 10.3390/catal10121443
    [5] 张利梅. 新型铬系催化剂的制备及可见光催化环己烷氧化性能研究[D]. 北京: 中国石油大学, 2016.

    ZHANG Limei. The preparation of new chromium catalysts ang their catalytic performance of photocatalytic cyclohexane oxidation [D]. Beijing: China University of Petroleum, 2016(in Chinese).
    [6] 张龙. 金属卟啉催化O2氧化环烷烃(C5-C8) C—H键规律的研究[D]. 浙江工业大学, 2020.

    ZHANG Long. Study on the regularity for oxidation of C—H bonds in cycloalkanes (C5-C8) with O2 catalyzed by metalloporphyrins[D]. Zhejiang University of Technology, 2020(in Chinese).
    [7] TIAN J, SHAO Q, ZHAO J, et al. Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B[J]. Journal of Colloid & Interface Science,2019,541:18-29.
    [8] SIMSEK E B. Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrup-ting compounds and pharmaceuticals under visible light irradiation[J]. Applied Catalysis B Environmental,2017,200:309-322. doi: 10.1016/j.apcatb.2016.07.016
    [9] MM A, HD B, SKP A. Enhanced photocatalysis perfor-mance of mechano-synthesized V2O5-TiO2 nanocompo-site for wastewater treatment: Correlation of structure with photocatalytic performance[J]. Materials Chemistry and Physics,2020,248:122947. doi: 10.1016/j.matchemphys.2020.122947
    [10] 赵晓霞. NH2-MIL-125(Ti)及其复合物的光催化环己烷氧化性能的研究[D]. 北京: 中国石油大学(北京), 2018.

    ZHAO Xiaoxia. Photocatalytic cyclohexane oxidation performance of NH2-MIL-125(Ti) and its composites [D]. Beijing: China University of Petroleum (Beijing), 2018(in Chinese).
    [11] NARAYANAM P K, MAJOR S S. Langmuir blodgett based growth of rGO wrapped TiO2 nanostructures and their photocatalytic performance[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects,2020,609:125652.
    [12] LIU Y, ZENG X K, CHRISTOPHER D E, et al. An in situ assembled WO3-TiO2 vertical heterojunction for enhanced Z-scheme photo-catalytic activity[J]. Nanoscale,2020,12:8775. doi: 10.1039/D0NR01611J
    [13] AISSANI T, YAHIAOUI I, BOUDRAHEM F, et al. The combination of photocatalysis process (UV/TiO2, (P25) and UV/ZnO) with activated sludge culture for the degradation of sulfamethazine[J]. Separation Science & Technology,2018,53(9):1-11.
    [14] JALALAH M, FAISAL M, BOUZID H, et al. Comparative study on photocatalytic performances of crystalline α- and β-Bi2O3 nanoparticles under visible light[J]. Journal of Industrial and Engineering Chemistry,2015,30:183-189. doi: 10.1016/j.jiec.2015.05.020
    [15] LUO X, ZHU G, PENG J, et al. Enhanced photocatalytic activity of Gd-doped porous β-Bi2O3 photocatalysts under visible light irradiation[J]. Applied Surface Science,2015,351:260-269.
    [16] 高晓明, 尚艳岩, 刘利波, 等. Zn掺杂二维层状δ-Bi2O3纳米片的光催化固氮性能研究[J]. 无机材料学报, 2019, 34(9):967-973.

    GAO Xiaoming, SHANG Yanyan, LIU Libo, et al. Zn doping 2D layered δ-Bi2O3 nanosheets for photocatalytic nitrogen fixation[J]. Journal of inorganic materials,2019,34(9):967-973(in Chinese).
    [17] 刘攀, 邹浩, 宋绵新, 等. Nd掺杂Bi2O3-TiO2纳米复合材料的制备、表征与模拟太阳光催化活性[J]. 科技创新与应用, 2016, 21:38-40.

    LIU Pan, ZOU Hao, SONG Mianxin, et al. Preparation, cha-racterization and simulation of solar photocatalytic acti-vity of Nd-doped Bi2O3-TiO2 nanocomposite[J]. Technology Innovation and Application,2016,21:38-40(in Chinese).
    [18] VIRUTHAGIRI G, KANNAN P, SHANMUGAM N. Photocatalytic rendition of Zn2+-doped Bi2O3 nanoparticles[J]. Photonics and Nanostructures: Fundamentals and Applications,2018,32:35-41. doi: 10.1016/j.photonics.2018.05.008
    [19] XU X, YAN Q, GU X, et al. The preparation and photocatalytic performance of BiOCl@Ag, a visible-light responsive catalyst[J]. Journal of Materials Science: Materials in Electronics,2019,30(9):8892-8902. doi: 10.1007/s10854-019-01217-z
    [20] 陈华军, 尹国杰, 吴春来. 纳米Bi2O3/TiO2复合光催化剂的制备及性能研究[J]. 环境工程学报, 2008, 2(11):1516-1518.

    CHEN Huajun, YIN Guojie, WU Chunlai. Study on preparation and properties of nanometer Bi2O3/TiO2 composite photocatalyst[J]. Chinese Journal of Environmental Engi-neering,2008,2(11):1516-1518(in Chinese).
    [21] 赵亚雯, 张俊可, 冯彩霞, 等. 锌掺杂OV-β-Bi2O3可见光催化活性的提高: 能带结构的调节和电荷分离的促进(英文)[J]. 无机化学学报, 2021, 37(3):541-554. doi: 10.11862/CJIC.2021.064

    ZHAO Yawen, ZHANG Junke, FENG Caixia, et al. Enhancement of visible-light catalytic activity for zn doped OV-β-Bi2O3: Regulation of electronic structure and promotion of charge separation[J]. Journal of Inorganic Materials,2021,37(3):541-554(in Chinese). doi: 10.11862/CJIC.2021.064
    [22] 康巧梅, 吴晓雪, 刘小琳. Bi2O3/Bi2WO6光催化剂的制备及光催化性能研究[J]. 化工新型材料, 2020, 48(10):211-215.

    KANG Qiaomei, WU Xiaoxue, LIU Xiaolin. Preparation and performance of Bi2O3/Bi2WO6 photocatalyst[J]. New Chemical Materials,2020,48(10):211-215(in Chinese).
    [23] 王桂萍, 陈晓东, 李雷. 纳米Bi2O3制备及其对AP热分解的催化性能[J]. 沈阳理工大学学报, 2019, 38(3):44-48. doi: 10.3969/j.issn.1003-1251.2019.03.009

    WANG Guiping, CHEN Xiaodong, LI Lei. Preparation of Bi2O3 nanoparticles particles and its aatalytic effect on thermal decomposition of ammonium perchlorate (AP)[J]. Journal of Shenyang Ligong University,2019,38(3):44-48(in Chinese). doi: 10.3969/j.issn.1003-1251.2019.03.009
    [24] JIA Z, LYU F, ZHANG L C, et al. Pt nanoparticles decorated hetero structured g-C3N4/Bi2MoO6 microplates with highly enhanced photocatalytic activities under visible light[J]. Scientific Reports,2019,9(1):7636. doi: 10.1038/s41598-019-42973-6
    [25] MA Z Y, HU L L, LI X B, et al. A novel nano-sized MoS2 de-corated Bi2O3 hetero-junction with enhanced photocataly-tic performance for methylene blue and tetracycline degradation[J]. Ceramics International,2019,45(13):15824-15833. doi: 10.1016/j.ceramint.2019.05.085
    [26] 佟占鑫, 石亮, 彭超, 等. 光催化环己烷选择氧化合成环己酮/环己醇催化研究进展[J]. 化工进展, 2020, 39(8):3066-3076.

    TONG Zhanxin, SHI Liang, PENG Chao, et al. Progress in photocatalytic selective oxidation of cyclohexane to cyclohexanone/cyclohexanol[J]. Chemical Industry and Engi-neering Progress,2020,39(8):3066-3076(in Chinese).
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1157
  • HTML全文浏览量:  443
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-07-26
  • 录用日期:  2021-08-14
  • 网络出版日期:  2021-09-06
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回