留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋大气环境对CFRP-钢界面粘结性能的影响

余倩倩 赵翊舟 高瑞鑫

余倩倩, 赵翊舟, 高瑞鑫. 海洋大气环境对CFRP-钢界面粘结性能的影响[J]. 复合材料学报, 2022, 39(11): 5148-5157. doi: 10.13801/j.cnki.fhclxb.20220915.003
引用本文: 余倩倩, 赵翊舟, 高瑞鑫. 海洋大气环境对CFRP-钢界面粘结性能的影响[J]. 复合材料学报, 2022, 39(11): 5148-5157. doi: 10.13801/j.cnki.fhclxb.20220915.003
YU Qianqian, ZHAO Yizhou, GAO Ruixin. Effect of marine atmosphere on the bond behaviour of CFRP-steel interface[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5148-5157. doi: 10.13801/j.cnki.fhclxb.20220915.003
Citation: YU Qianqian, ZHAO Yizhou, GAO Ruixin. Effect of marine atmosphere on the bond behaviour of CFRP-steel interface[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5148-5157. doi: 10.13801/j.cnki.fhclxb.20220915.003

海洋大气环境对CFRP-钢界面粘结性能的影响

doi: 10.13801/j.cnki.fhclxb.20220915.003
基金项目: 国家优秀青年科学基金(52222803)
详细信息
    通讯作者:

    余倩倩,博士,副教授,博士生导师,研究方向为结构性能提升、新型材料和结构体系 E-mail: qianqian.yu@tongji.edu.cn

  • 中图分类号: TU391

Effect of marine atmosphere on the bond behaviour of CFRP-steel interface

Funds: National Natural Science Foundation of China (52222803)
  • 摘要: 为研究长期海洋大气环境作用对碳纤维增强树脂复合材料(CFRP)-钢界面粘结性能的影响,设计并制作了36个CFRP-钢板双搭接试件,采用盐雾沉降量1~2 mL/80 (cm2·h)的盐雾箱来模拟海洋大气环境。对试件进行了疲劳加载后的静力拉伸试验,分析了环境作用时间(30、180、360天)、长期持续荷载和硅烷表面处理方式对CFRP-钢界面破坏模式和承载力的影响。研究结果表明:随着海洋大气环境作用时间增加,CFRP-钢双面搭接节点由胶层内破坏伴随CFRP层离破坏逐渐向钢-胶界面粘结失效转变。暴露360天后极限承载力最大下降了15.72%。硅烷表面处理对CFRP-钢界面耐久性提升作用较小。持续荷载导致短期环境作用下(30天)极限承载力下降了18.39%,但对长期环境作用影响很小,高应力预加疲劳导致CFRP-钢界面极限承载力最大下降了26.6%。采用Hart-Smith模型对CFRP-钢界面极限承载力进行计算,发现长期环境作用后的承载力预测值和试验值误差超过了30%。在考虑破坏模式变化对界面极限承载力的影响下进行了修正,将误差减小到最大为14.04%。

     

  • 图  1  碳纤维增强树脂复合材料(CFRP)-钢双搭接试件示意图

    Figure  1.  Configuration and dimension of carbon fibre reinforced polymer (CFRP)-steel double-lap shear joint specimens

    图  2  钢板表面处理方式

    Figure  2.  Steel plate surface treatment

    图  3  养护后CFRP-钢双搭接试件对比

    Figure  3.  Comparison of CFRP-steel double-lap shear joint specimens after curing

    图  4  持续荷载

    Figure  4.  Sustained loading device

    图  5  疲劳试验加载装置

    Figure  5.  Fatigue test loading device

    图  6  暴露30天后碳纤维板-钢试件破坏模式

    Figure  6.  Failure mode of CFRP laminate-steel specimens after exposure for 30 days

    图  7  暴露30天后碳纤维布-钢试件破坏模式

    Figure  7.  Failure mode of CFRP sheet-steel specimens after exposure for 30 days

    图  8  海洋大气环境下低应力疲劳碳纤维布-钢试件破坏模式

    Figure  8.  Failure modes of low-stress fatigue CFRP sheet-steel specimens in marine atmospheric environment

    图  9  海洋大气环境下高应力疲劳碳纤维布-钢试件破坏模式

    Figure  9.  Failure modes of high-stress fatigue CFRP sheet-steel specimens in marine atmospheric environment

    图  10  CFRP-钢试件极限承载力对比

    Figure  10.  Comparison of ultimate bearing capacity of CFRP-steel specimen

    图  11  CFRP-钢极限承载力预测值和试验值对比

    Figure  11.  Comparison of predicted and experimental values of ultimate bearing capacity of CFRP-steel

    表  1  材料性能

    Table  1.   Mechanical properties

    MaterialThickness/mmElastic modulus/GPaYield strength/MPaTensile strength/MPaElongation at
    break/%
    Steel plate518733549517
    CFRP laminate1.421033001.4
    CFRP sheet0.16728036031.8
    Adhesive0.52.4835.522.6
    Note: CFRP—Carbon fibre reinforced polymer.
    下载: 导出CSV

    表  2  试件参数和试验结果

    Table  2.   Summary of test program and results

    SpecimenCFRP typeExposure timeSustained load/kNSurface treatmentFatigue load range/kNUltimate load carrying capacity/kN
    SL-F0.2-30Sheet30 days18.21.82-18.2087.99
    SL-F0.5-30Sheet18.24.56-45.56Failed at 16233 cycles
    SS-F0.2-30SheetSilane treatment1.88-18.82111.80
    SS-F0.5-30SheetSilane treatment4.71-47.05Failed at 29162 cycles
    SLS-F0.2-30Sheet18.8Silane treatment1.88-18.8291.24
    SLS-F0.5-30Sheet18.8Silane treatment4.71-47.05Failed at 11119 cycles
    LL-F0.2-30Laminate18.01.80-18.00122.10
    LL-F0.5-30Laminate18.04.50-45.0089.60
    LS-F0.2-30LaminateSilane treatment1.85-18.53a
    LS-F0.5-30LaminateSilane treatment4.63-46.33112.00
    LLS-F0.2-30Laminate18.5Silane treatment1.85-18.53121.60
    LLS-F0.5-30Laminate18.5Silane treatment4.63-46.3393.08
    SL-F0.2-180Sheet180 days18.21.82-18.2082.05
    SL-F0.5-180Sheet18.24.56-45.56Failed at 14097 cycles
    SS-F0.2-180SheetSilane treatment1.88-18.8281.49
    SS-F0.5-180SheetSilane treatment4.71-47.05Failed at 10513 cycles
    SLS-F0.2-180Sheet18.8Silane treatment1.88-18.8284.83
    SLS-F0.5-180Sheet18.8Silane treatment4.71-47.05Failed at 29162 cycles
    LL-F0.2-180Laminate18.01.80-18.00a
    LL-F0.5-180Laminate18.04.50-45.00a
    LS-F0.2-180LaminateSilane treatment1.85-18.53a
    LS-F0.5-180LaminateSilane treatment4.63-46.33a
    LLS-F0.2-180Laminate18.5Silane treatment1.85-18.53a
    LLS-F0.5-180Laminate18.5Silane treatment4.63-46.33a
    SL-F0.2-360Sheet360 days18.21.82-18.20a
    SL-F0.5-360Sheet18.24.56-45.56Failed at 12830 cycles
    SS-F0.2-360SheetSilane treatment1.88-18.8279.86
    SS-F0.5-360SheetSilane treatment4.71-47.05Failed at 15485 cycles
    SLS-F0.2-360Sheet18.8Silane treatment1.88-18.8278.42
    SLS-F0.5-360Sheet18.8Silane treatment4.71-47.05Failed at 12712 cycles
    LL-F0.2-360Laminate18.01.80-18.00a
    LL-F0.5-360Laminate18.04.50-45.00b
    LS-F0.2-360LaminateSilane treatment1.85-18.53a
    LS-F0.5-360LaminateSilane treatment4.63-46.33b
    LLS-F0.2-360Laminate18.5Silane treatment1.85-18.53b
    LLS-F0.5-360Laminate18.5Silane treatment4.63-46.33b
    Notes: SL—CFRP sheet specimen with sustained load applied; SS—CFRP sheet specimen with silane treatment; SLS—CFRP sheet specimen with sustained load applied and silane treatment; LL—CFRP laminate specimen with sustained load applied; LS—CFRP laminate specimen with silane treatment; LLS—CFRP laminate specimen with sustained load applied and silane treatment. F0.2 and F0.5—Specimen subjected to 0.2 times and 0.5 times preloaded fatigue load ratio respectively; 30, 180 and 360—30, 180 and 360 days of exposure in the marine atmosphere respectively; a and b—Fracture of the specimen at the end steel plate during static loading and fatigue loading.
    下载: 导出CSV

    表  3  各阶段钢-胶界面剥离面积

    Table  3.   Area of steel-adhesive interface debonding at each stage

    SpecimenArea after
    30 days of
    exposure/mm2
    Area ratio after
    30 days of
    exposure/%
    Area after
    180 days of
    exposure/mm2
    Area ratio after
    180 days of
    exposure/%
    Area after
    360 days of
    exposure/mm2
    Area ratio after
    360 days of
    exposure/%
    SS-F0.21305.9226.122668.9053.382250.2745.01
    SLS-F0.21500.9930.022972.4959.452360.0047.20
    下载: 导出CSV
  • [1] STEPHENS R I, FATEMI A, STEPHENS R R, et al. Metal fatigue in engineering[M]. New York: John Wiley and Sons, 2000.
    [2] TENG J G, YU T, FERNANDO D. Strengthening of steel structures with fiber-reinforced polymer composites[J]. Journal of Constructional Steel Research,2012,78:131-143. doi: 10.1016/j.jcsr.2012.06.011
    [3] ZHAO X L. FRP-strengthened metallic structures[M]. Boca Raton: CRC Press, Taylor & Francis Group, 2013.
    [4] YU Q Q, WU Y F. Fatigue retrofitting of cracked steel beams with CFRP laminates[J]. Composite Structures,2018,192:232-244. doi: 10.1016/j.compstruct.2018.02.090
    [5] WANG H T, WU G. Crack propagation prediction of double-edged cracked steel beams strengthened with FRP plates[J]. Thin-Walled Structures,2018,127:459-468. doi: 10.1016/j.tws.2018.02.018
    [6] HU L L, FENG P, ZHAO X L. Fatigue design of CFRP strengthened steel members[J]. Thin-Walled Structures,2017,119:482-498. doi: 10.1016/j.tws.2017.06.029
    [7] COLOMBI P, FAVA G. Experimental study on the fatigue behaviour of cracked steel beams repaired with CFRP plates[J]. Engineering Fracture Mechanics,2015,145:128-142. doi: 10.1016/j.engfracmech.2015.04.009
    [8] 李安邦, 徐善华. 锈蚀对钢板表面特性及CFRP板-锈蚀钢板界面黏结性能的影响[J]. 复合材料学报, 2022, 39(2):746-758. doi: 10.13801/j.cnki.fhclxb.20210422.001

    LI Anbang, XU Shanhua. Effect of corrosion on the surface properties of steel plate and interfacial bonding properties between CFRP plate and corroded steel plate[J]. Acta Materiae Compositae Sinica,2022,39(2):746-758(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210422.001
    [9] ZHAO X L, BAI Y, AL-MAHAIDI R, et al. Effect of dynamic loading and environmental conditions on the bond between CFRP and steel: State-of-the-art review[J]. Jour-nal of Composites for Construction,2014,18:A4013005. doi: 10.1061/(ASCE)CC.1943-5614.0000419
    [10] YANG Y, SILVA M A G, BISCAIA H, et al. Bond durability of CFRP laminates-to-steel joints subjected to freeze-thaw[J]. Composite Structures,2019,212:243-258. doi: 10.1016/j.compstruct.2019.01.016
    [11] YANG Y, BISCAIA H, SILVA M A G, et al. Monotonic and quasi-static cyclic bond response of CFRP-to-steel joints after salt fog exposure[J]. Composites Part B: Engineering,2019,168:532-549. doi: 10.1016/j.compositesb.2019.03.066
    [12] WANG Y, LI J, DENG J, et al. Bond behaviour of CFRP/steel strap joints exposed to overloading fatigue and wetting/drying cycles[J]. Engineering Structures,2018,172:1-12. doi: 10.1016/j.engstruct.2018.05.112
    [13] NGUYEN T C, BAI Y, ZHAO X L, et al. Durability of steel/CFRP double strap joints exposed to sea water, cyclic temperature and humidity[J]. Composite Structures,2012,94(5):1834-1845. doi: 10.1016/j.compstruct.2012.01.004
    [14] BORRIE D, LIU H B, ZHAO X L, et al. Bond durability of fatigued CFRP-steel double-lap joints pre-exposed to marine environment[J]. Composite Structures,2015,131:799-809. doi: 10.1016/j.compstruct.2015.06.021
    [15] DAWOOD M, RIZKALLA S. Environmental durability of a CFRP system for strengthening steel structures[J]. Construction and Building Materials,2010,24:1682-1689. doi: 10.1016/j.conbuildmat.2010.02.023
    [16] WANG Y, ZHENG Y, LI J, et al. Experimental study on tensile behaviour of steel plates with centre hole strengthened by CFRP plates under marine environment[J]. International Journal of Adhesion and Adhesives,2018,84:18-26. doi: 10.1016/j.ijadhadh.2018.01.017
    [17] Committee MT-006. Mechanical testing of metals: Methods of tensile testing of metals: AS 1391—2007[S]. Sydney: Standards Australia, 2007.
    [18] American Society of Testing Materials International. Standard test method for tensile properties of polymer matrix composite materials: D 3039/D 3039 M-08[S]. West Conshohocken: American Society of Testing Materials, 2008.
    [19] American Society of Testing Materials International. Standard test method for tensile properties of plastics: D 638-08[S]. West Conshohocken: American Society of Testing Materials, 2008.
    [20] YU Q Q, GU X L, ZHAO X L, et al. Characterization of model uncertainty of adhesively bonded CFRP-to-steel joints[J]. Composite Structures,2019,215:150-165. doi: 10.1016/j.compstruct.2019.02.045
    [21] 中国国家标准化管理委员会. 聚合物基复合材料疲劳性能测试方法 第1部分: 通则: GB/T 35465.1—2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People’s Republic of China. Test method for fatigue properties of polymer matrix composite materials-Part 1: General principle: GB/T 35465.1-2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
    [22] YU Q Q, GAO R X, GU X L, et al. Bond behavior of CFRP-steel double-lap joints exposed to marine atmosphere and fatigue loading[J]. Engineering Structures,2018,175:76-85. doi: 10.1016/j.engstruct.2018.08.012
    [23] ZHAO X L, ZHANG L. State-of-the-art review on FRP strengthened steel structures[J]. Steel Construction,2007,29(8):1808-1823.
    [24] POWERS D A. Interaction of water with epoxy: No. SAND2009-4405[R]. Albuquerque: Sandia National Laboratories (SNL), 2009.
    [25] HART-SMITH L J. Adhesive-bonded double-lap joints: NAS1-11234[R]. California: NASA, 1973.
    [26] 高瑞鑫, 余倩倩. 养护阶段环境作用对结构黏胶力学性能影响[J]. 建筑结构学报, 2018, 39(S1):405-409. doi: 10.14006/j.jzjgxb.2018.S1.053

    GAO Ruixin, YU Qianqian. Effects of environmental expo-sure during curing stage on adhesive material properties[J]. Journal of Building Structures,2018,39(S1):405-409(in Chinese). doi: 10.14006/j.jzjgxb.2018.S1.053
    [27] XIA S H, TENG J G. Behaviour of FRP-to-steel bonded joints[C]//CHEN J F, TENG J G. Proceedings of the international symposium on bond behaviour of FRP in structures (BBFS 2005). Hong Kong: International Institute for FRP in Construction, 2005: 419-426.
    [28] LIU M, DAWOOD M. Reliability analysis of adhesively bonded CFRP-to-steel double lap shear joint with thin outer adherends[J]. Construction and Building Materials,2017,141:52-63. doi: 10.1016/j.conbuildmat.2017.02.113
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  645
  • HTML全文浏览量:  299
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 修回日期:  2022-08-22
  • 录用日期:  2022-08-30
  • 网络出版日期:  2022-09-15
  • 刊出日期:  2022-11-01

目录

    /

    返回文章
    返回