留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于还原-冷压制备的Janus湿气诱导水伏发电GO-rGO复合材料

张玮峰 王荦敏 邓元

张玮峰, 王荦敏, 邓元. 基于还原-冷压制备的Janus湿气诱导水伏发电GO-rGO复合材料[J]. 复合材料学报, 2023, 41(0): 1-8
引用本文: 张玮峰, 王荦敏, 邓元. 基于还原-冷压制备的Janus湿气诱导水伏发电GO-rGO复合材料[J]. 复合材料学报, 2023, 41(0): 1-8
Weifeng ZHANG, Luomin WANG, Yuan DENG. Janus moisture induced hydrovoltaic electricity GO-rGO composite material via reduction and tabletting method[J]. Acta Materiae Compositae Sinica.
Citation: Weifeng ZHANG, Luomin WANG, Yuan DENG. Janus moisture induced hydrovoltaic electricity GO-rGO composite material via reduction and tabletting method[J]. Acta Materiae Compositae Sinica.

基于还原-冷压制备的Janus湿气诱导水伏发电GO-rGO复合材料

基金项目: 国家自然科学基金青年科学基金项目(52003015);浙江省自然科学基金重点项目(LZ23E020004);国家重点研发计划(2018YFA0702100);浙江省重点研发计划(2021C01026);浙江省领军型创新创业团队(2020R01007)
详细信息
    通讯作者:

    张玮峰,博士,副研究员,硕士生导师,研究方向为新能源材料、超浸润材料的设计与应用 E-mail: weifengzhang0205@163.com

  • 中图分类号: O647

Janus moisture induced hydrovoltaic electricity GO-rGO composite material via reduction and tabletting method

Funds: National Natural Science Foundation of China (No. 52003015), Zhejiang Provincial Natural Science Foundation of China (No. LZ23E020004), National Key Research and Development Program of China (No. 2018YFA0702100), Zhejiang Provincial Key Research and Development Program (No. 2021C01026), Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (No. 2020R01007).
  • 摘要: 水伏发电材料作为一种新兴的能源材料,能够利用自然界中各类形式的水循环而产生电能,对于碳达峰、碳中和背景下可再生能源的替代以及温室效应的缓解有着重要的意义。其中,具有湿气诱导特性的水伏材料因其可以在自然环境中随时发电的特性而被广泛研究,然而,该类材料目前仍存在制备方法复杂、输出性能较低、稳定性较差等科学问题需要解决。本文通过一种简单的多巴胺自聚合化学还原及冻干冷压的方式,制备出在面外方向上存在异质分布的Janus湿气诱导水伏发电GO-rGO复合材料,将冷冻干燥后的GO多孔材料与rGO多孔材料一次性压片,可以形成含氧官能团分布梯度,因此能够在自然环境中借助湿气自发形成离子并产生定向移动,从而进行电能输出。集成后的湿气诱导水伏发电机具有良好的输出性能与应用前景,单个器件的开路电压接近400 mV,功率密度可达25 μW/cm3。此外,发电机在使用过程中还表现出良好的稳定性,能够长时间运行并且1年后性能仍未衰减。更重要的是,通过串联和阵列化工作,器件的开路电压能够轻松达到伏特级别,从而驱动低功耗器件,同时对湿度具有灵敏的响应,能够用于相应的传感监测场景。Janus湿气诱导水伏发电GO-rGO复合材料的发电机理与应用场景说明

     

  • 图  1  Janus 湿气诱导水伏发电 GO-rGO 复合材料的制备流程与水伏发电器件示意图

    Figure  1.  The fabrication process of the Janus moisture induced electricity generation GO-rGO composite material and the corresponding hydrovoltaic generator.

    图  2  Janus 湿气诱导水伏发电 GO-rGO 复合材料的表 面形貌: (a), (b) 氧化石墨烯部分的数码照片与 SEM 照片; (c), (d) 还原氧化石墨烯部分的数码照片与 SEM 照片

    Figure  2.  The surface morphology of the Janus moisture in- duced electricity generation GO-rGO composite material: (a)-(b) Digital image and SEM image of the GO surface. (c)-(d) Digital image and SEM image of the rGO surface

    图  3  Janus 湿气诱导水伏发电 GO-rGO 复合材料的 官能团浓度梯度表征: (a) Janus 水伏发电材料的 SEM 截面照片;(b) GO 区域与 rGO 区域的 O/C 原子含量比;(c), (d) GO 区域与rGO 区域的 C 元素 XPS 窄扫精细谱图;(e) GO 面与rGO 面的红外图谱

    Figure  3.  The characterization of functional group concentra- tion gradient in Janus moisture induced electricity genera- tion GO-rGO composite material: (a) The cross section SEM image of the Janus MEGM. (b)The O/C atomic ratio of the GO surface and rGO surface.(c)-(d) High-resolution XPS C as narrow scans of the GOsurface and rGO surface, respectively. (e) FTIR spectra ofGO surface and rGO surface

    图  4  Janus 湿气诱导水伏发电 GO-rGO 复合材料与发电机的发电性能: (a) Janus 湿气诱导水伏发电复合材料的发电机理;(b) 材料在不同湿度下的输出电压; (c) 水伏器件的输出电压/输出电流随外接负载的变化;(d) 水伏器件长时间工作时的输出电压;(e) 材料在 0 天与放置 365 天后的输出电压;(f) 纯 rGO 与 GO 膜材料的湿气发电性能

    Figure  4.  The performance of the Janus moisture induced electricity generation GO-rGO composite material and generator: (a) Electricity generation scheme of the Janus GO-rGO composite material. (b) Output voltage of the as-prepared material at different moisture condition. (c) Output voltage (black curve) and current density (blue curve) of the Janus MEGM with different electric resistors. (d) The output voltage of the hydrovoltaic device working for a long time. (e) Output performance of the material at the original state and after 365 days, respectively. (f) The output voltage of the pure rGO and GO material, respectively

    图  5  湿气诱导水伏发电机的应用展示: (a) Janus 湿气诱导水伏发电机输出电压随呼气-吸气的变化;(b) 8 器件串联水伏器件阵列的输出电压,附图是阵列外观数码照片。

    Figure  5.  Application illustration of the moisture induced hydro- voltaic generator: (a) Responsive performance of the Janus hydrovoltaic devicebetween expiration and inspiration. (b) Output voltage of thehydrovoltaic array with 8 individual devices connected in se-ries, insets are the digital photo of the device array and the il-lustration of LED self-powered application.

  • [1] Zhang Z, Li X, Yin J, et al. Emerging hydrovoltaic technology[J]. Nature Nanotechnology,2018,13(12):1109-1119. doi: 10.1038/s41565-018-0228-6
    [2] Yin J, Zhou J, Fang S, et al. Hydrovoltaic Energy on the Way[J]. Joule,2020,4(9):1852-1855. doi: 10.1016/j.joule.2020.07.015
    [3] Tarelho J, Soares M, Ferreira J, et al. Graphene-based materials and structures for energy harvesting with fluids – A review[J]. Materials Today,2018,21(10):1019-1041. doi: 10.1016/j.mattod.2018.06.004
    [4] Tang Q, Yang P. The era of water-enabled electricity generation from grapheme[J]. Journal of Materials Chemistry A,2016,4(25):9730-9738. doi: 10.1039/C6TA03107B
    [5] Fang S, Li J, Xu Y, et al. Evaporating potential[J]. Joule,2022,6(3):690-701. doi: 10.1016/j.joule.2022.02.002
    [6] 刘刚, 欧宝立, 赵欣欣, 等. 共价功能化石墨烯超疏水防腐复合涂层材料的制备[J]. 复合材料学报, 2021, 38(10):3236-3246. doi: 10.13801/j.cnki.fhclxb.20210208.002

    Liu G, Ou B, Zhao X, et al. Preparation of covalently functionalized graphene superhydrophobic anticorrosive composite coating materials[J]. Acta Materiae Compositae Sinica,2021,38(10):3236-3246(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210208.002
    [7] 刘洋洋, 易敏, 陈涛, 等. 石墨烯-有机物复合光催化材料及其应用[J]. 复合材料学报, 2022, 40(0):1-14.

    Liu Y, Yi M, Chen T, et al. Applications of graphene -organic compound photocatalytic materials[J]. Acta Materiae Compositae Sinica,2022,40(0):1-14(in Chinese).
    [8] 李正, 尚军军, 刘夏, 等. 可穿戴石墨烯复合材料压阻传感性能计算方法及其参数分析[J]. 复合材料学报, 2021, 38(4):1066-1075. doi: 10.13801/j.cnki.fhclxb.20201229.002

    Li Z, Shang J, Liu X, et al. Computational method and parameters analysis of piezoresistive sensing properties of wearable graphene composites[J]. Acta Materiae Compositae Sinica,2021,38(4):1066-1075(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201229.002
    [9] Shen D, Duley W, Peng P, et al. Moisture-Enabled Electricity Generation: From Physics and Materials to Self-Powered Applications[J]. Advanced Materials,2020,32(52):2003722. doi: 10.1002/adma.202003722
    [10] Bai J, Huang Y, Cheng H, et al. Moist-electric generation[J]. Nanoscale,2019,11(48):23083-23091. doi: 10.1039/C9NR06113D
    [11] Xu T, Ding X, Shao C, et al. Electric Power Generation through the Direct Interaction of Pristine Graphene-Oxide with Water Molecules[J]. Small,2018,14:1704473. doi: 10.1002/smll.201704473
    [12] Liang Y, Zhao F, Cheng Z, et al. Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics[J]. Energy & Environmental Science,2018,11:1730-1735.
    [13] Wang H, He T, Hao X, et al. Moisture adsorption-desorption full cycle power generation[J]. Nature Communications,2022,13:2524. doi: 10.1038/s41467-022-30156-3
    [14] Liu X, Gao H, Ward J, et al. Power generation from ambient humidity using protein nanowires[J]. Nature,2020,578:550-554. doi: 10.1038/s41586-020-2010-9
    [15] Zhao F, Liang Y, Cheng H, et al. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks[J]. Energy & Environmental Science,2016,9:912-916.
    [16] Huang Y, Cheng H, Yang C, et al. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts[J]. Nature Communications,2018,9:4166. doi: 10.1038/s41467-018-06633-z
    [17] Zhao F, Wang L, Zhao Y, et al. Graphene Oxide Nanoribbon Assembly toward Moisture-Powered Information Storage[J]. Advanced Materials,2017,29:1604972. doi: 10.1002/adma.201604972
    [18] Cheng H, Huang Y, Zhao F, et al. Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk[J]. Energy & Environmental Science,2018,11:2839-2845.
    [19] Zhao F, Cheng H, Zhang Z, et al. Direct Power Generation from a Graphene Oxide Film under Moisture[J]. Advanced Materials,2015,27:4351-4357. doi: 10.1002/adma.201501867
    [20] Liang Y, Zhao F, Cheng Z, et al. Self-powered wearable graphene fiber for information expression[J]. Nano Energy,2017,32:329-335. doi: 10.1016/j.nanoen.2016.12.062
    [21] Shao C, Gao J, Xu T, et al. Wearable fiberform hygroelectric generator[J]. Nano Energy,2018,53:698-705. doi: 10.1016/j.nanoen.2018.09.043
    [22] Cheng H, Huang Y, Qu L, et al. Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel[J]. Nano Energy,2018,45:37-43. doi: 10.1016/j.nanoen.2017.12.033
    [23] Liu K, Yang P, Li S, et al. Induced Potential in Porous Carbon Films through Water Vapor Absorption[J]. Angewandte Chemie International Edition,2016,55:8003-8007. doi: 10.1002/anie.201602708
    [24] Zhang Y, Guo S, Yu Z, et al. An Asymmetric Hygroscopic Structure for Moisture-Driven Hygro-Ionic Electricity Generation and Storage[J]. Advanced Materials,2022,34:2201228. doi: 10.1002/adma.202201228
    [25] Xue J, Zhao F, Hu C, et al. Vapor-Activated Power Generation on Conductive Polymer[J]. Advanced Functional Materials,2016,26:8784-8792. doi: 10.1002/adfm.201604188
    [26] Nie X, Ji B, Chen N, et al. Gradient doped polymer nanowire for moistelectric nanogenerator[J]. Nano Energy,2018,46:297-304. doi: 10.1016/j.nanoen.2018.02.012
    [27] Gao X, Xu T, Shao C, et al. Electric power generation using paper materials[J]. Journal of Materials Chemistry A,2019,7:20574-20578. doi: 10.1039/C9TA08264F
    [28] Li M, Zong L, Yang W, et al. Li. Biological Nanofibrous Generator for Electricity Harvest from Moist Air Flow[J]. Advanced Functional Materials,2019,29:1901798. doi: 10.1002/adfm.201901798
    [29] Wang H, Cheng H, Huang Y, et al. Transparent, self-healing, arbitrary tailorable moist-electric film generator[J]. Nano Energy,2020,67:104238. doi: 10.1016/j.nanoen.2019.104238
    [30] Mandal S, Roy S, Mandal A, et al. Protein-Based Flexible Moisture-Induced Energy-Harvesting Devices as Self-Biased Electronic Sensors[J]. ACS Applied Electronic Materials,2020,2:780-789. doi: 10.1021/acsaelm.9b00842
    [31] Wang H, Sun Y, He T, et al. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1, 000 V output[J]. Nature Nanotechnology,2021,16:811-819. doi: 10.1038/s41565-021-00903-6
    [32] Li H, Yang J, Xu Z, et al. Asymmetric surface engineering for Janus membranes[J]. Advanced Materials Interfaces,2020,7:1902064. doi: 10.1002/admi.201902064
    [33] Yang H, Xie Y, Hou J, et al. Janus membranes: creating asymmetry for energy efficiency[J]. Advanced Materials,2018,30:1801495. doi: 10.1002/adma.201801495
    [34] Yang H, Hou J, Chen V, et al. Janus membranes: exploring duality for advanced separation[J]. Angewandte Chemie International Edition,2016,55:13398-13407. doi: 10.1002/anie.201601589
    [35] Lee H, Dellatore S, Miller W, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science,2007,318:426-430. doi: 10.1126/science.1147241
    [36] Cui W, Li M, Liu J, et al. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked grapheme oxide[J]. ACS Nano,2014,8:9511-9517. doi: 10.1021/nn503755c
    [37] Cheng C, Li S, Zhao J, et al. Biomimetic assembly of polydopamine-layer on grapheme: Mechanisms versatile 2 D and 3 D architectures and pollutant disposal[J]. Chemical Engineering Journal,2013,228:468-481. doi: 10.1016/j.cej.2013.05.019
    [38] Lee W, Lee J, Jung B, et al. Simultaneous enhancement of mechanical, electrical and thermal properties of grapheme oxide paper by embedding dopamine[J]. Carbon,2013,65:296-304. doi: 10.1016/j.carbon.2013.08.029
    [39] Kang S, Park S, Kim D, et al. Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Mussel-Inspired Chemistry[J]. Advanced Functional Materials,2011,21:108-112. doi: 10.1002/adfm.201001692
    [40] Shen D, Xiao M, Zou G, et al. Self-Powered Wearable Electronics Based on Moisture Enabled Electricity Generation[J]. Advanced Materials,2018,30:1705925. doi: 10.1002/adma.201705925
    [41] Shen D, Xiao M, Xiao Y, et al. Self-Powered, Rapid-Response, and Highly Flexible Humidity Sensors Based on Moisture-Dependent Voltage Generation[J]. ACS Applied Materials & Interfaces,2019,11:14249-14255.
  • 加载中
计量
  • 文章访问数:  105
  • HTML全文浏览量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-02
  • 修回日期:  2023-03-14
  • 录用日期:  2023-03-17
  • 网络出版日期:  2023-03-30

目录

    /

    返回文章
    返回