Loading [MathJax]/jax/output/SVG/jax.js

二元复配增塑剂改性聚氨酯介电弹性体的电驱动行为

马丽, 李创, 宋翔宇, 刘嘉卉, 刘应凡, 郭东杰

马丽, 李创, 宋翔宇, 等. 二元复配增塑剂改性聚氨酯介电弹性体的电驱动行为[J]. 复合材料学报, 2024, 43(0): 1-10.
引用本文: 马丽, 李创, 宋翔宇, 等. 二元复配增塑剂改性聚氨酯介电弹性体的电驱动行为[J]. 复合材料学报, 2024, 43(0): 1-10.
MA Li, LI Chuang, SONG Xiangyu, et al. Effects of binary plasticizers on driving properties of modified polyurethane dielectric elastomer[J]. Acta Materiae Compositae Sinica.
Citation: MA Li, LI Chuang, SONG Xiangyu, et al. Effects of binary plasticizers on driving properties of modified polyurethane dielectric elastomer[J]. Acta Materiae Compositae Sinica.

二元复配增塑剂改性聚氨酯介电弹性体的电驱动行为

基金项目: 教育部长江学者与创新团队发展计划 (IRT1187);国家自然科学基金 (52275295);中原科技创新领军人才项目 (234200510026);河南省科技攻关项目(242102231003)
详细信息
    通讯作者:

    郭东杰,博士,教授,博士生导师,研究方向为…电活性聚合物… E-mail: djguo@zzuli.edu.cn

  • 中图分类号: TB332

Effects of binary plasticizers on driving properties of modified polyurethane dielectric elastomer

Funds: Yangtze River Scholar Innovation Team Development Plan (IRT1187); National Natural Science Foundation of China (52275295); Central Plains Science and Technology Innovation Leading Talents (234200510026); Scientific and Technological Project of Henan Province (242102231003).
  • 摘要:

    介电弹性体驱动器(DEA)与传感器在国防、医疗等领域有广阔的应用空间。纯的热塑性聚氨酯(TPU)弹性体内部存在大量的分子间氢键,柔韧性差,不适合制作DEA。己二酸二丁酯(DBA)与聚乙二醇(PEG)复配增塑剂的引入,既破坏了TPU弹性体内原有的分子间氢键,显著降低了复合膜的弹性模量,又克服了单一增塑剂DBA的迁出与单一增塑剂PEG的增塑效果不足问题。测试结果表明:引入50wt%的DBA与20wt%的PEG,PEG-DBA/TPU复合膜的弹性模量降低到0.21 MPa,仅为纯TPU 膜(弹性模量为14.77 MPa)的1.4 %。与使用单一增塑剂DBA的复合膜(DBA/TPU)相比,PEG-DBA/TPU复合膜的介电常数由2.71增加到6.02,增加了1.22倍。组装DEA后,4.5 kV电压驱动下,PEG-DBA/TPU复合膜DEA展现出了较为稳定的电驱动行为,位移输出与面积形变分别为2.72 mm和4.12 %,与DBA/TPU 复合膜DEA相比,分别增加了7.22和6.92倍。

     

    Abstract:

    Dielectric elastomer actuator (DEA) and sensors have broad application space in national defense, medical and other fields. A large number of hydrogen bonds commonly exist inside thermoplastic polyurethanes (TPU), which severely weaken its flexibility, hampering its use for DEA. The PEG-DBA/TPU composite was prepared by using a binary plasticizer of dibutyl adipate (DBA) - polyethylene glycol (PEG). Addition of the binary plasticizer disrupted the original intermolecular hydrogen bonds of TPU, and significantly reduced the elastic modulus of the composite. Moreover, the addition also overcome the issue of DBA’s migration and the inadequate plasticizing effect of PEG as a sole plasticizer. Results demonstrated that, after loading 50wt% of DBA and 20wt% of PEG, the elastic modulus of PEG-DBA/TPU composite dramatically decreased to 0.21 MPa, only 1.4 % of elastic modulus remained (the elastic modulus of the pure TPU is 14.77 MPa). Meanwhile, dielectric constant increased from the 2.71 of DBA/TPU to the 6.02 of the PEG-DBA/TPU, increasing by 1.22 folds. Driven by 4.5 kV, DEA originated from the PEG-DBA/TPU composite exhibited stable electromechanical behaviors, its detected displacement and counted strain reached to 2.72 mm and 4.12 %, respectively increasing by 7.22 and 6.92 folds when compared to the DEA of DBA/TPU composite.

     

  • 介电弹性体驱动器(DEA) 可作为柔性、智能的聚合物驱动器,直接将电能转化为机械能[1- 4]。DEA由芯层的介电聚合物薄膜和上下柔性电极组成。在电场作用下,两电极分别携带正、负电荷,由此产生Maxwell力,驱动薄膜沿法向运动,将电能转化为机械能,外界电场撤销后又能恢复到原始的形状尺寸。一定的范围内,DEA可取代电机,实现类似天然肌肉的驱动效果,但没有电机的体积制约和发热难题,广泛用于无人飞行器[5]、深海软机器人[6] 、仿生步行机器人[7]、步行辅助设备[8]等领域。

    作为主要组成部分,介电弹性体的物理性能很大程度上决定了DEA的驱动性能。根据Pelrine公式[9],DEA在小应变(< 20%)下,厚度方向上的驱动应变SZ = −ε0εrE2/Y = −ε0βE2,其中:ε0为真空介电常数;εr为材料的相对介电常数;E为施加在DEA两侧的驱动电场强度;Y为介电弹性体的杨氏模量;β=εr/Y,为机电灵敏度。依据该公式,在给定电场下,具有大β值的介电弹性体有利于产生高的驱动应变。

    在现有介电弹性体材料中,由于具有优良可调的力学性能、廉价的生产成本,有关热塑性聚氨酯(TPU)的DEA研究备受关注 [10]。但TPU中氨基甲酸酯单元的氨基(N-H)与羰基(C=O)间存在大量的分子间氢键[11-12],这些氢键一方面限制了TPU大分子链的运动,产生高的弹性模量(> 10 MPa);另一方面阻止了TPU中极性基团的取向,使得TPU膜的介电常数较低(εr=2~4)。依据公式1所述,高模量与低介电常数均导致小β,不利于DEA应用。

    添加增塑剂是降低TPU力学性能的常用方法。常用增塑剂如邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二辛酯(DOP)均为液体,添加量较大时,容易迁出产生喷霜。近期的TPU膜DEA多使用固体增塑剂。田明和宁南英等[13-14]研究发现:添加聚乙二醇(PEG)可破坏TPU的分子间氢键,提升复合膜的介电常数。党智敏等[15]在TPU中掺入不同的固体增塑剂,提高了TPU复合膜的机电耦合效率,获得了低电场、大应变的聚合物驱动器。

    上述工作侧重单一增塑剂的使用,有关复配增塑剂对改性TPU驱动性能的影响却鲜有报道。本文采用液体增塑剂(己二酸二丁酯,DBA)和固体增塑剂(聚乙二醇,PEG)复配的技术,研制了高β值的PEG-DBA/TPU介电母体膜,并将之用于DEA驱动器。由于DBA与PEG之间存在强的分子间作用力,复配有效避免了液体增塑剂在高含量(如50wt% DBA)下使用的迁出,充分发挥了液体增塑剂的强增塑作用,使得复合膜的弹性模量从14.77 MPa急剧降低到0.21 MPa。重要的是:二元增塑剂的联用引入了大量的界面电容,使得弹性体的介电常数迅速由2.71增加到6.02,增加了1.22倍。故,TPU介电膜的β值从1.45增加到28.67,增加了18.8倍,由此制得DEA的驱动位移和面积应变分别增加了7.22和6.92倍。因此,借助于增塑剂的复配效应,本文提供了一个的高机电灵敏度弹性体的制备策略,研制的复合膜可用于商业介电弹性体驱动器与传感器。

    热塑性聚氨酯(TPU,1185A),巴斯夫股份公司;己二酸二丁酯(DBA,分析纯),上海麦克林生化科技有限公司;聚乙二醇(PEG2000),上海泰坦科技有限公司;双组份导电有机硅(ElASTOSIL® LR 3162 A/B)、硅油,瓦克化学(中国)有限公司;其它试剂如N, N-二甲基甲酰胺(DMF)均为分析纯。

    将2.0 g TPU颗粒分批次加入到4.0 ml DBA和15.0 ml DMF的混合液中,磁力搅拌4小时至TPU颗粒完全溶解。同时,将0.2 g PEG完全溶解于5.0 ml DMF中。将两者混合,磁力搅拌混合均匀后,倒入直径为90 mm的玻璃培养皿中,置于60℃恒温鼓风干燥箱中干燥24小时,得到PEG-DBA/TPU复合膜。固定TPU与DBA质量比为1∶2,改变复合膜中PEG的用量,得不同PEG质量分数的PEG-DBA/TPU复合膜,分别记为DBA/TPU、5wt% PEG-DBA/TPU、10wt% PEG-DBA/TPU、15wt% PEG-DBA/TPU和 20wt% PEG-DBA/TPU。

    使用美国Thermo Fisher公司的IS50型傅立叶变换红外光谱仪对PEG-DBA/TPU复合膜进行红外光谱表征,分辨率设置为0.5 cm−1,扫描范围为4000 ~ 400 cm−1。按照GB/T16421-1996标准,将复合膜裁成哑铃状样条,使用日本岛津公司的AG-10 KNISMO型电子万能试验机测试其拉伸强度和断裂伸长率。测试温度为25℃;拉伸速率为50 mm/min。

    将复合膜裁剪成直径为1.0 cm的圆形试样,厚度为1.0 mm,在复合薄膜两侧贴上导电铜箔,使用美国Agilent公司4294A型阻抗分析仪测量其介电常数和介电损耗。测试温度为25℃,测试频率范围为102~106 Hz。

    按等质量称取导电硅胶A、B两组分,添加2倍体积硅油,搅拌混合均匀,得电极浆。将PEG-DBA/TPU复合膜裁剪成直径为80 mm的圆形,置于涂布机上(山东中仪,中国),涂敷电极浆后,于60℃下烘箱中4小时,得单侧电极涂敷的复合膜。使用相同办法,在复合膜的另外一侧涂敷电极,固化后得三层复合膜DEA,如图1所示。使用电子扫描显微镜(JSM-7001F,日本)对复合膜进行表面、剖面形貌测试。

    图  1  PEG-DBA/TPU三元复合母体膜的制备与DEA组装
    Figure  1.  Schematic diagram of assembly and actuation of the PEG-DBA/TPU film and DEA
    DEA—Dielectric elastomer actuator; TPU—thermoplastic polyurethanes; DBA—dibutyl adipate; PEG—polyethylene glycol (a) SEM image of the CB/PDMS composite electrode; (b) a three-layer DEA composite film, where the middle matrix of PEG-DBA/TPU film was sandwiched by two layers of CB/PDMS sheets; (c) chemical structures of TPU, DBA and PEG; (d) typical time-displacement curve of DEA actuator.

    安装DEA的驱动与性能测试平台如图2所示。将DEA膜固定在自制圆框(ϕ = 65 mm)上,中间悬挂砝码,利用其重力使DEA复合膜产生预形变。在100 g砝码作用下,DEA膜中间偏离平面约45°。电源由信号发生器(RIGOL DG4062,中国)和功率放大器(TREK 610,美国)组成,可以提供驱动电压为0-10 kV,频率为0.1-10 Hz的交流电信号。利用激光位移传感器(基恩士,LK3001A,日本)采集不同条件下DEA的驱动位移,光斑聚焦于DEA膜的中心位置,进行驱动性能评价。依据球冠模型[4, 16],式1、2分别为DEA的面外形变计算公式与位移漂移(RDS)计算公式。

    图  2  DEA的驱动与测试平台
    Figure  2.  The driving and testing platforms for DEA
    (a) Driving and testing platform; (b) top-view picture of pre-strained DEA; (c) schematic illustration of the sandwiched DEA film.
    SA=AA0A0×100%=h2(1cosθ0)h20(1cosθ0)1×100% (1)

    式中SA为面积应变,A0θ0h0分别为初始面积、偏离角、初始高度;Aθh分别为驱动后面积、偏离角、高度。

    RDS=DcreepD×100% (2)

    式中D为输出位移,源于单个周期内的波峰与波谷之差;Dcreep为蠕变位移。

    IR光谱监控了复合膜内氢键的演变过程。在DBA/TPU复合膜的红外谱中(图3(a)),由于相邻的胺基与酯基间存在强烈的分子间氢键(N—H…O氢键),N—H键在3100 cm−13500 cm−1之间出现了一个宽的吸收带,光谱中心位于3338 cm−1 附近[12,14]。加入PEG后,PEG-DBA/TPU复合膜的红外光谱在3500 cm−1附近出现一个宽大的吸收带,归属为参与氢键缔合的-OH的伸缩振动峰[17-18]。随着PEG用量的增加,N-H的伸缩振动峰中心逐渐向低波数移动,当PEG含量为20wt%时,TPU分子链上N—H的伸缩振动峰值红移到3325 cm−1。N-H的红移是由于PEG和DBA的加入造成TPU分子间氢键的断裂,并在TPU和PEG之间形成了新的N—H…O氢键 [13-14]

    图  3  PEG-DBA/TPU复合膜的红外光谱及氢键演变示意图
    Figure  3.  IR spectra of PEG-DBA/TPU films and schematic illustration for the evolution of hydrogen bonds
    (a) IR spectra; (b) curve fittings of the carbonyl bonds; (c) intermolecular hydrogen bonds inside DBA/TPU; (d) mixed intermolecular hydrogen bonds among PEG-DBA/TPU; (e) molecular structures of hydrogen bonds.

    图3(c)~(e)示意了N—H…O氢键的变化。图3(c)中,酯基上的O原子与相邻N-H基团中H原子形成了分子间N—H…O氢键,而DBA分子则分散在TPU分子链间,起着溶胀分子链的作用。当加入PEG后,由于PEG分子与DBA分子存在强烈的分子间作用,大量的PEG分子被拉入到TPU的分子链中,并与TPU的N-H键形成了新的分子间N—H…O氢键(图3(d))。同时,原始的分子内N—H…O氢键遭到破坏,释放了一个自由的酯基。为了对TPU中酯基进行定量分析,本文采用高斯分布函数对羰基的红外谱峰进行拟合[19-20],并对峰面积进行积分,结果列于图3(b)。依据文献所述[17-18],参与氢键缔合的酯基在1705 cm−1处出现了C=O基的吸收峰,而未参与缔合后的酯基的吸收峰出现在1732 cm−1处。DBA/TPU中,两个峰的面积比为1∶1.58。PEG-DBA/TPU中,随着PEG用量从5wt%增加到20wt%,1705 cm−1处的峰强度逐渐减小,1732 cm−1处的峰强度逐渐增大,峰面积比逐渐降低为1∶2.56。酯基的演变进一步表明:PEG的引入破环了原有的分子间氢键,在TPU和PEG之间形成了新的分子间氢键。

    为了评价PEG用量对PEG-DBA/TPU复合膜力学性能的影响,本文分析了其应力-应变行为,相关数据列于图4(a)与表1中。纯TPU膜内部存在强的分子间氢键,拉伸强度高(41.46 MPa)。添加50wt%增塑剂DBA后,DBA/TPU复合薄膜的拉伸强度降至7.51 MPa。再加入复配增塑剂PEG后,随着PEG用量的增加,PEG-DBA/TPU复合膜的拉伸强度进一步降低。当PEG用量为10wt%和15wt%时,复合膜的拉伸强度分别为4.04 MPa和3.74 MPa;当PEG用量为20wt%时,复合膜的拉伸强度仅有1.25 MPa。弹性模量的演变与之相似。如图4(b)所示,纯TPU膜的弹性模量为14.77 MPa。添加增塑剂DBA后,DBA/TPU复合膜的弹性模量降低至1.86 MPa。加入复配增塑剂PEG后,PEG-DBA/TPU复合膜的弹性模量呈现持续降低的趋势,进一步降低至0.21 MPa,仅有纯TPU膜的1.42 %保留下来。断裂伸长率呈现先增后减的变化趋势。添加增塑剂后的复合膜的伸长率均明显高于纯TPU膜的伸长率。综上所述,增塑剂DBA的加入大大降低了DBA/TPU复合膜的弹性模量和拉伸强度,同时提高了其断裂伸长率,而复配增塑剂PEG的加入进一步降低了PEG-DBA/TPU复合膜的弹性模量和拉伸强度,提高了其断裂伸长率;且随着PEG用量的增加,PEG-DBA/TPU复合膜的弹性模量和拉伸强度显著降低,彰显了复配增塑剂的协同效应。力学性能变化的原因如下:增塑剂引入后,DBA小分子进入TPU分子链间,增大了TPU分子间的距离,降低了TPU分子间作用力,使TPU变软;加入PEG后,PEG与TPU分子间形成了弱的分子间氢键,代替了TPU内原有的强分子间氢键,削弱了TPU分子间的作用力,复合膜的柔韧性进一步加强,有助于复合膜DEA在较低电场下发生较大的驱动应变[21-23]

    图  4  TPU和PEG-DBA/TPU复合膜的力学性能
    Figure  4.  Mechanical properties of the TPU related films
    表  1  TPU相关膜的力学性能和介电性能
    Table  1.  Mechanical and dielectric properties of TPU related films
    Samples Tensile strength/
    MPa
    Elongation at
    Break /%
    Modulus (Y)/
    MPa
    εrat
    1 kHz
    β/MPa−1 Dielectric loss
    at 1 kHz
    TPU 41.46 691.83 14.77 2.58 0.17 0.77
    DBA/TPU 7.51 1237.12 1.86 2.71 1.46 0.79
    5wt% PEG-DBA/TPU 5.72 1556.43 0.81 3.45 4.26 1.03
    10wt% PEG-DBA/TPU 4.04 1712.49 0.48 3.92 8.17 1.32
    15wt% PEG-DBA/TPU 3.74 1772.81 0.45 4.93 10.96 1.46
    20wt% PEG-DBA/TPU 1.25 1262.43 0.21 6.02 28.67 2.06
    PEG/TPU (10 wt %)[13] 14.65 2135.00 1.75 8.7 4.97 0.42
    PEG/TPU (45 wt %)[13] 0.50 1654.00 0.25 14 56 5.26
    TiO2-RGO/TPU (3 wt %)[27]] 41.00 200.00 166.4 4.66
    BT/TPU (6 wt %) [28] 16.00 574.00 7.7 3.5 0.45 0.20
    RGO/TPU (0.5 wt %)[29] 15.00 1000.00 4.8 16 3.3 0.03
    Notes: ϵris the relative dielectric constant; β is the electromechanical sensitivity (β = εr/Y).
    下载: 导出CSV 
    | 显示表格

    图5展示了不同PEG用量下PEG-DBA/TPU复合膜的介电性能,相关数据见表1图5(a)描述了复合膜介电常数与频率的关系。由于复合膜内部极性基团的极性变化总是滞后于电场变化[24-26],故所有复合膜的介电常数呈现随频率增大而减小的趋势。PEG用量为0、5wt%、10wt%、15wt%、20wt%时,检测的介电常数分别为2.71、3.45、3.92、4.93、6.02 @1 kHz。即随着PEG用量的增加,介电常数呈现一个稳步增加的趋势;添加20wt% PEG后,PEG-DBA/TPU复合膜的介电常数较DBA/TPU复合膜增加了1.22倍。介电常数的增加源于两个原因:(1)加入PEG后,TPU分子中的部分分子间氢键被破坏,释放了一定量的酯基,使其在电场诱导下,产生取向电容;(2) PEG的引入,在复合膜内部形成了更多的杂相界面,增加了界面电容。图5(b)为复合膜的介电损耗与频率的关系曲线,与介电常数一样,随着PEG用量的增加,介电损耗增加。20wt% PEG-DBA/TPU复合膜的介电损耗为2.06@1 kHz,与表1中文献报道的数据相比[13,27],仍处于较低水平。重要的是:由于本文中两种增塑剂的协同作用,在提升复合膜内部界面电容的同时,显著降低了复合膜的弹性模量。因此,本文制备的PEG-DBA/TPU复合材料具有高的机电灵敏度β,高于现有文献报道的数据[13,28,29]

    图  5  TPU相关膜的介电性能
    Figure  5.  Dielectric properties of TPU related films

    图6为20wt% PEG用量下DEA和不同PEG用量的PEG-DBA/TPU复合膜的扫描电镜图片。由图6(a)可见,DEA的截面呈现典型的三明治结构,中间为PEG-DBA/TPU复合膜,两侧为导电硅胶电极层。由于导电性差异,介电层与电极层连接处积累了大量电荷,SEM图片呈现了极高的亮度,使得介电层与电极层的分辨十分明朗[16]。整个DEA的厚度约为300 μm,其中PEG-DBA/TPU复合膜的厚度约为270 μm,上、下层电极的厚度均为15 μm。图6(b)记录了高分辨下的介电层与电极层的连接,可以观察到电极膜与基体膜结合紧密,无增塑剂迁移、渗漏现象。这种牢固的结合有利于DEA驱动器在长时间的连续工作下不发生电极脱离现象,进而产生稳定的形变。复合膜的断面呈现明显的塑性断面,没有团聚结构出现,表明PEG和DBA均匀地分散在TPU的内部,没有发生相分离。图6(c)记录了高分辨下的电极的形貌结构。电极内部的导电颗粒呈现高密度均匀分布,有利于形成多通道的导电通路,产生理想的导电性能。图6(d)-(h)为不同PEG用量的PEG-DBA/TPU复合膜横截面的SEM照片,图中增塑剂DBA与PEG均呈颗粒状分散在TPU基体中,增塑剂与基体之间未出现孔洞等缺陷,表明增塑剂与TPU基体相容性良好[15,30],图中出现的褶皱为制样时断裂处应力释放,TPU收缩造成的。且随着PEG用量的增大,相界面逐渐变得模糊,表明PEG的加入改善了TPU基体与增塑剂DBA间的界面相容性,这也与前面红外分析的结果一致。

    图  6  DEA和PEG-DBA/TPU复合膜的扫描电镜图片
    Figure  6.  SEM images of DEA and TPU related films
    (a) Cross sectional SEM image of DEA containing 20wt% PEG; (b) interfacial morphology between the PEG-DBA/TPU matrix and the electrode; (c) top-view morphology of the electrode; (d)~(h) cross sectional SEM image of DBA/TPU and PEG-DBA/TPU composite films with different PEG additive amount.

    图7(a)记录了不同PEG含量PEG-DBA/TPU复合膜DEA的位移-时间曲线。所有DEA均展现出稳定的、周期性的电驱动行为。为评价驱动效果,指认每个周期的波峰与波谷之差为偏转位移。显然,所有DEA在10个周期内的偏转位移保持相对稳定。图7(b)提供了所有DEA的具体位移数据。随着PEG用量的增加,DEA位移从未添加PEG的0.33 mm增加到添加20wt%PEG后的2.72 mm,增加了7.22倍。因DEA发生面外形变,复合膜形变近似球冠,我们利用球冠面积计算了DEA膜的形变,列于图7(b)。结果显示:当PEG的用量分别为0、5wt%、10wt%、15wt%、20wt%时,对应的面积应变分别为0.52、0.95、1.62、2.36、4.12 %,面积应变增加6.92倍,与位移形变相当。上述结果表明:增加PEG用量可显著提升驱动器的驱动位移和面积应变。这是因为,随着PEG用量的增加,复合膜的介电常数(εr)增大,同时其弹性模量(Y) 明显降低,使得机电灵敏度β大幅度增加,其数值从1.45快速增加到28.67,增加了18.8倍,进而导致驱动位移和面积应变的增加[31,32]

    图  7  DEA的驱动性能
    Figure  7.  Actuation properties of DEA
    Time-Displacement curves (a) and the counted displacements and strains (b) for DEAs with varying PEG contents under a constant electric field of 1 Hz and 4.5 kV; Time-Displacement curves (c) and the counted displacements and strains (d) for DEAs containing a fixed PEG content of 20wt% under varying electric fields from 2.5 kV to 4.5 kV; (e) duration tests within 1000 cycles for DEA containing a fixed PEG content of 20wt% under a constant electric field of 3.5 kV, inserted: representative Time-Displacement curve during 900-910 s.

    图7(c)为20wt% PEG用量下DEA在不同驱动电压下位移-时间曲线,其驱动位移和面积应变列于图7(d)。结果显示:当驱动电压为2.5、3.0、3.5、4.0、4.5 kV时,DEA的驱动位移分别是0.78、1.53、1.81、2.14、2.72 mm,对应的面积应变分别为1.10、2.13、2.59、3.12、4.12 %。显然:随着驱动电压的增加,DEA的输出位移与面积应变随着增加,表明制备的DEA驱动器具有高度的可控性,可以通过电压来调控DEA的驱动性能[33]。需要说明的是:由于电极的成分与厚度总是存在一定的差异,发生面内形变时,DEA膜内部会产生不均匀的应力分布,导致褶皱的发生[34];一旦在活动区域出现轻微的褶皱触发点,褶皱就会迅速淹没整个电极区域[35];且随着电场强度增加,褶皱增强,DEA存在潜在的电击穿风险[36]。与之相比,本实验中DEA在重力的诱导下发生面外形变,复合膜振动时始终受到向下的重力作用,一定程度上消除了褶皱产生的根源—应力的不均匀分布;同时本论文实验的驱动电压较低(小于5 kV),故制备的PEG-DBA/TPU复合膜DEA并未出现褶皱等驱动不稳现象。

    为评价DEA的驱动稳定性,图7(e)记录了1000 s内20wt% PEG用量下DEA位移-时间曲线。由于复合膜存在蠕变,DEA的位移输出显示了一定的漂移。利用位移漂移公式,计算出1000 s内DEA的相对位移漂移(RDS)为30.8 %。需要说明的是:尽管长时间DEA存在较为明显的RDS,但小范围位移-时间曲线(如900-910 s)的RDS很小,只有0.09 %,几乎可以忽略;且在1000 s内的驱动周期内,位移输出维持在1.814~1.847 mm之间小幅波动,展现出了高度的驱动稳定性[37]

    (1) 增塑剂己二酸二丁酯(DBA)和聚乙二醇(PEG)具有明显的协同效应,可显著降低热塑性聚氨酯(TPU)的弹性模量与拉伸强度,当PEG加入量为20wt%时,复合膜的弹性模量降低至0.21 MPa,仅为纯TPU的1.42 %。

    (2) PEG破坏了TPU内部原有的强分子间氢键,增加了TPU链段的偶极极化能力和PEG与TPU基体的界面极化能力,改善了TPU的介电性能。加入20wt% PEG的TPU复合膜在1 kHz时的介电常数为6.02,为DBA/TPU复合膜的2.22倍。

    (3) 随着PEG用量的增加,PEG-DBA/TPU复合膜DEA在同一驱动电压下的位移明显提高,在4.5 kV驱动电压下,当PEG加入量为20wt%时,复合膜的驱动位移和面积应变分别为2.72 mm和4.12 %,是未添加PEG时的8.22和7.92倍。

  • 图  1   PEG-DBA/TPU三元复合母体膜的制备与DEA组装

    Figure  1.   Schematic diagram of assembly and actuation of the PEG-DBA/TPU film and DEA

    DEA—Dielectric elastomer actuator; TPU—thermoplastic polyurethanes; DBA—dibutyl adipate; PEG—polyethylene glycol (a) SEM image of the CB/PDMS composite electrode; (b) a three-layer DEA composite film, where the middle matrix of PEG-DBA/TPU film was sandwiched by two layers of CB/PDMS sheets; (c) chemical structures of TPU, DBA and PEG; (d) typical time-displacement curve of DEA actuator.

    图  2   DEA的驱动与测试平台

    Figure  2.   The driving and testing platforms for DEA

    (a) Driving and testing platform; (b) top-view picture of pre-strained DEA; (c) schematic illustration of the sandwiched DEA film.

    图  3   PEG-DBA/TPU复合膜的红外光谱及氢键演变示意图

    Figure  3.   IR spectra of PEG-DBA/TPU films and schematic illustration for the evolution of hydrogen bonds

    (a) IR spectra; (b) curve fittings of the carbonyl bonds; (c) intermolecular hydrogen bonds inside DBA/TPU; (d) mixed intermolecular hydrogen bonds among PEG-DBA/TPU; (e) molecular structures of hydrogen bonds.

    图  4   TPU和PEG-DBA/TPU复合膜的力学性能

    Figure  4.   Mechanical properties of the TPU related films

    图  5   TPU相关膜的介电性能

    Figure  5.   Dielectric properties of TPU related films

    图  6   DEA和PEG-DBA/TPU复合膜的扫描电镜图片

    Figure  6.   SEM images of DEA and TPU related films

    (a) Cross sectional SEM image of DEA containing 20wt% PEG; (b) interfacial morphology between the PEG-DBA/TPU matrix and the electrode; (c) top-view morphology of the electrode; (d)~(h) cross sectional SEM image of DBA/TPU and PEG-DBA/TPU composite films with different PEG additive amount.

    图  7   DEA的驱动性能

    Figure  7.   Actuation properties of DEA

    Time-Displacement curves (a) and the counted displacements and strains (b) for DEAs with varying PEG contents under a constant electric field of 1 Hz and 4.5 kV; Time-Displacement curves (c) and the counted displacements and strains (d) for DEAs containing a fixed PEG content of 20wt% under varying electric fields from 2.5 kV to 4.5 kV; (e) duration tests within 1000 cycles for DEA containing a fixed PEG content of 20wt% under a constant electric field of 3.5 kV, inserted: representative Time-Displacement curve during 900-910 s.

    表  1   TPU相关膜的力学性能和介电性能

    Table  1   Mechanical and dielectric properties of TPU related films

    Samples Tensile strength/
    MPa
    Elongation at
    Break /%
    Modulus (Y)/
    MPa
    εrat
    1 kHz
    β/MPa−1 Dielectric loss
    at 1 kHz
    TPU 41.46 691.83 14.77 2.58 0.17 0.77
    DBA/TPU 7.51 1237.12 1.86 2.71 1.46 0.79
    5wt% PEG-DBA/TPU 5.72 1556.43 0.81 3.45 4.26 1.03
    10wt% PEG-DBA/TPU 4.04 1712.49 0.48 3.92 8.17 1.32
    15wt% PEG-DBA/TPU 3.74 1772.81 0.45 4.93 10.96 1.46
    20wt% PEG-DBA/TPU 1.25 1262.43 0.21 6.02 28.67 2.06
    PEG/TPU (10 wt %)[13] 14.65 2135.00 1.75 8.7 4.97 0.42
    PEG/TPU (45 wt %)[13] 0.50 1654.00 0.25 14 56 5.26
    TiO2-RGO/TPU (3 wt %)[27]] 41.00 200.00 166.4 4.66
    BT/TPU (6 wt %) [28] 16.00 574.00 7.7 3.5 0.45 0.20
    RGO/TPU (0.5 wt %)[29] 15.00 1000.00 4.8 16 3.3 0.03
    Notes: ϵris the relative dielectric constant; β is the electromechanical sensitivity (β = εr/Y).
    下载: 导出CSV
  • [1]

    YANG L, WANG H, ZHANG D S, et al. Large deformation, high energy density dielectric elastomer actuators: Principles, factors, optimization, applications, and prospects[J]. Chemical Engineering Journal, 2024, 489: 151402 DOI: 10.1016/j.cej.2024.151402

    [2] 马丽, 丁井鲜, 张晓蝶, 等. MWCNT-CB/PDMS 复合电极介电弹性体驱动器的制备与性能优化[J]. 复合材料学报, 2023, 40(1): 290-299.

    MA Li, DING Jingxian, ZHANG Xiaodie, et al. Fabrication and optimization of dielectric elastomer actuator using MWCNT-CB/PDMS composite electrodes[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 290-299(in Chinese).

    [3]

    DOU X, CHEN Z, REN F, et al. Dielectric Elastomer Network with Large Side Groups Achieves Large Electroactive Deformation for Soft Robotic Grippers[J]. Advanced Functional Materials, 2024.

    [4]

    HUANG J, ZHANG X, LIU R, et al. Polyvinyl chloride-based dielectric elastomer with high permittivity and low viscoelasticity for actuation and sensing[J]. Nature Communications, 2023, 14: 1483. DOI: 10.1038/s41467-023-37178-5

    [5]

    CHEN Y, ZHAO H, MAO J, et al. Controlled flight of a microrobot powered by soft artificial muscles[J]. Nature, 2019, 575(7782): 324-329. DOI: 10.1038/s41586-019-1737-7

    [6]

    LI G, CHEN X, ZHOU F, et al. Self-powered soft robot in the Mariana Trench[J]. Nature, 2021, 591(7848): 66-71. DOI: 10.1038/s41586-020-03153-z

    [7]

    PEI Q, PELRINE R, STANFORD S, et al. Electro elastomer Rolls and Their Application for Biomimetic Walking Robots[J]. Synthetic Metals, 2003, 135: 129-131.

    [8]

    LI Y, HASHIMOTO M. PVC gel soft actuator-based wearable assist wear for hip joint support during walking[J]. Smart Materials and Structures, 2017, 26(12): 125003. DOI: 10.1088/1361-665X/aa9315

    [9]

    PELRINE R, KORNBLUH R, PEI Q, et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science, 2000, 287(5454): 836-839. DOI: 10.1126/science.287.5454.836

    [10]

    RUPAN N, HAO L, LI Y, et al. Dynamic chemical bonds design strategy for fabricating fast room-temperature healable dielectric elastomer with significantly improved actuation performance[J]. Chemical Engineering Journal, 2022, 439: 135683. DOI: 10.1016/j.cej.2022.135683

    [11]

    PEI A, MALHO J, RUOKOLAINEN J, et al. Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals[J]. Macromolecules, 2011, 44(11): 4422-4427. DOI: 10.1021/ma200318k

    [12]

    MATTIA J, PAINTER P. A Comparison of Hydrogen Bonding and Order in a Polyurethane and Poly(urethane-urea) and Their Blends with Poly(ethylene glycol)[J]. Macromolecules, 2007, 40: 1546-1554. DOI: 10.1021/ma0626362

    [13]

    TIAN M, YAN B, YAO Y, et al. Largely improved actuation strain at low electric field of dielectric elastomer by combining disrupting hydrogen bonds with ionic conductivity[J]. Journal of Materials Chemistry C, 2014, 2: 8388-8397. DOI: 10.1039/C4TC01140F

    [14]

    NING N, LI S, SUN H, et al. Largely improved electromechanical properties of thermoplastic polyurethane dielectric elastomers by the synergistic effect of polyethylene glycol and partially reduced graphene oxide[J]. Composites Science and Technology, 2017, 142: 311-320. DOI: 10.1016/j.compscitech.2017.02.015

    [15]

    RENARD C, WANG D, YANG Y, et al. Plasticized thermoplastic polyurethanes for dielectric elastomers with improved electromechanical actuation[J]. Journal of Applied Polymer Science 2017, 134 (30): 45123.

    [16]

    GUO D, HAN Y, DING Y, et al. Prestrain-free electrostrictive film sandwiched by asymmetric electrodes for out-of-plane actuation[J]. Chemical Engineering Journal, 2018, 352: 876-885. DOI: 10.1016/j.cej.2018.07.094

    [17]

    COLEMAN M M, SOBKOWIAK M, PEHLERT G J, et al. Infrared temperature studies of a simple polyurea[J]. Macromolecular Chemistry and Physics, 1997, 198(1): 117-136. DOI: 10.1002/macp.1997.021980110

    [18]

    COLEMAN M M, SKROVANEK D J, HU J, et al. Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends Click to copy article link[J]. Macromolecules, 1988, 21(1): 59-65. DOI: 10.1021/ma00179a014

    [19]

    COLEMAN M M, LEE K H, SKROVANEK D J, et al. Painter Hydrogen bonding in polymers. 4. Infrared temperature[J]. Macromolecules, 1986, 19(8): 2149-2157. DOI: 10.1021/ma00162a008

    [20] 刘苏亭, 王秀娟, 宁南英, 等. 调控聚氨酯聚集态结构制备高性能介电弹性体[J]. 高分子学报 2023, 54 (2): 266-276.

    LIU Suting, WANG Xiujuan, NING Nanying, et al. Preparation of high performance dielectric elastomers by adjusting the polymer structure of polyurethane[J]. Journal of polymers. 2023, 54 (2): 266-276(in Chinese).

    [21]

    YOON J U, BAE J W. Phthalate-free plasticizer-based polyvinyl chloride gels for electrically focus-tunable microlens applications[J]. Polymer, 2024, 308: 127338. DOI: 10.1016/j.polymer.2024.127338

    [22]

    VAHID N, HOSSEIN A. Internally plasticized PVC by four different green plasticizer compounds[J]. European Polymer Journal, 2020, 128: 109620. DOI: 10.1016/j.eurpolymj.2020.109620

    [23]

    ZAREI M A, BAYAT Y, OSKUEYAN G. Thermal, mechanical and morphological properties of plasticized polyurethane binders based on PEG and HTPB blends[J]. Journal Of Macromolecular Science Part A: Pure and Applied Chemistry, 2022, 59(10): 666-674. DOI: 10.1080/10601325.2022.2108442

    [24]

    ERYTHROPEL H C, SHIPLEY S, BÖRMANN A, et al. Designing green plasticizers: Influence of molecule geometry and alkyl chain length on the plasticizing effectiveness of diester plasticizers in PVC blends[J]. Polymer, 2016, 89: 18-27. DOI: 10.1016/j.polymer.2016.02.031

    [25]

    ALI M, UEKI T, TSURUMI D, et al. Influence of Plasticizer Content on the Transition of Electromechanical Behavior of PVC Gel Actuator[J]. Langmuir, 2011, 27: 7902-7908. DOI: 10.1021/la2009489

    [26]

    XIA H, HASHIMOTO Y, NI Q. Electrically Triggered Actuation of Plasticized Thermoplastic Polyurethane Gels[J]. Macromolecular Materials and Engineering, 2016, 301(7): 864-869. DOI: 10.1002/mame.201600050

    [27]

    CHEN T, QIU J, ZHU K, et al. Electro-mechanical performance of polyurethane dielectric elastomer flexible micro-actuator composite modified with titanium dioxide-graphene hybrid fillers[J]. Materials & Design, 2016, 90: 1069-1076.

    [28]

    XUE R, HE S, HE Y, et al. Enhanced dielectric, energy storage, and actuated performance of TPU/BaTiO3 dielectric elastomer composites by thermal treatment[J]. Polymer Composites, 2023, 44: 992-1003. DOI: 10.1002/pc.27149

    [29]

    LIU S, TIAN M, YAN B, et al. High performance dielectric elastomers by partially reduced graphene oxide and disruption of hydrogen bonding of polyurethanes[J]. Polymer, 2015, 56: 375-384. DOI: 10.1016/j.polymer.2014.11.012

    [30]

    BEE S, MOK W, LEE T, et al. Evaluation performance of multiple plasticizer systems on the physicomechanical, crystallinity and thermogravimetry of polyvinyl chloride[J]. Journal of Polymer Engineering, 2014, 34(6): 521-529. DOI: 10.1515/polyeng-2013-0324

    [31] 周海洁, 王彩艳, 陈玮珑, 等. 高极性、低模量介电弹性体的合成及力电耦合性能[J]. 科学通报 2024, 69 (20): 3047-3058.

    ZHOU Haijie, WANG Caiyan, CHEN Weilong, et al. Synthesis and electro-mechanical coupling properties of high polarity and low modulus dielectric elastomers[J]. Chinese Science Bulletin. 2024, 69 (20): 3047-3058. (in Chinese)

    [32] 王明路, 宁南英, 张静, 等. 氧化石墨烯核-壳杂化粒子/硅橡胶介电弹性体复合材料的制备与性能[J]. 复合材料学报 2016, 33 (6): 1192-1197.

    WANG Minglu, NING Nanying, ZHANG Jing, et al. Preparation and properties of graphene oxide core-shell hybrid particle/silicone rubber dielectric elastomer composites[J]. Journal of composite materials. 2016, 33 (6): 1192-1197. (in Chinese)

    [33]

    HUANG J, WANG F, MA L, et al. Vinylsilane-rich silicone filled by polydimethylsiloxane encapsulated carbon black particles for dielectric elastomer actuator with enhanced out-of-plane actuations[J]. Chemical Engineering Journal, 2022, 428: 131354. DOI: 10.1016/j.cej.2021.131354

    [34]

    WANG Q, ZHANG L, ZHAO X. Creasing to Cratering Instability in Polymers under Ultrahigh Electric Fields[J]. Physical Review Letters, 2011, 106(11): 118301. DOI: 10.1103/PhysRevLett.106.118301

    [35]

    ZHAO H, ZHAO J, ZHA J, et al. Electrical-Induced Wrinkling and Bulging Phenomena in Flexible electroactive Polymer Composites[J]. Journal of Advanced Physics, 2013, 2: 13-19. DOI: 10.1166/jap.2013.1043

    [36]

    PLANTEA J, Steven DUBOWSKY S. Large-scale failure modes of dielectric elastomer actuators[J]. International Journal of Solids and Structures, 2006, 43(25-26): 7727-7751. DOI: 10.1016/j.ijsolstr.2006.03.026

    [37]

    MEI L, GUO X, LI C, et al. Sulfonic silica enhanced IPMC actuator carrying an interdigital electrode sensor for real-time strain monitoring. Sensors and Actuators: B[J]. Chemical 2024, 419: 136434.

  • 其他相关附件

  • 目的 

    介电弹性体驱动器(DEA)与传感器在国防、医疗等领域有广阔的应用空间。热塑性聚氨酯(TPU)弹性体内部存在大量分子间氢键,柔韧性差,不适合制作DEA。添加增塑剂是降低TPU力学性能的常用方法,但现有文献侧重单一增塑剂的使用。本文采用增塑剂复配技术,提供了一个高机电灵敏度弹性体的制备策略。

    方法 

    本文采用液体增塑剂(己二酸二丁酯,DBA)和固体增塑剂(聚乙二醇,PEG)复配的技术,既破坏了TPU弹性体内原有的分子间氢键,显著降低了复合膜的弹性模量,又克服了单一增塑剂DBA的迁出与单一增塑剂PEG的增塑效果不足问题。通过改变增塑剂PEG的用量,制备了一系列不同力学、介电性能的PEG/DBA/TPU介电弹性体复合膜,将电极膜粘附在介电弹性体复合膜的两侧,导入脉冲高压电信号,获得一系列电驱动行为变化的介电聚合物驱动器,并测试了驱动器的位移输出。

    结果 

    红外光谱结果表明,PEG的引入破环了原有的分子间氢键,在TPU和PEG之间形成了新的分子间氢键。力学性能测试结果显示,增塑剂DBA的加入大大降低了DBA/TPU复合膜的弹性模量和拉伸强度,而复配增塑剂PEG的加入进一步降低了PEG/DBA/TPU复合膜的弹性模量和拉伸强度,彰显了复配增塑剂的协同效应。介电性能测试结果表明,随着PEG用量的增加,介电常数呈现稳步增加的趋势;添加20wt% PEG后,PEG/DBA/TPU复合膜的介电常数较DBA/TPU复合膜增加了1.22倍;此时复合膜的介电损耗为2.06@1kHz,与文献报道的数据相比,仍处于较低水平。扫描电镜结果显示DEA的截面呈现典型的三明治结构,中间为PEG/DBA/TPU复合膜,两侧为导电硅胶电极层。电极膜与基体膜结合紧密,无增塑剂迁移、渗漏现象。增塑剂DBA与PEG均呈颗粒状分散在TPU基体中,增塑剂与基体之间未出现孔洞等缺陷。驱动性能测试结果显示,增加PEG用量可显著提升驱动器的驱动位移和面积应变。随着PEG用量的增加,DEA位移从未添加PEG的0.33 mm增加到添加20wt%PEG后的2.72 mm,增加了7.22倍,面积应变增加6.92倍。 随着驱动电压的增加,DEA的输出位移与面积应变随着增加,表明制备的DEA驱动器具有高度的可控性。在1000 s内的驱动周期内,驱动器位移输出维持在1.814~1.847 mm之间小幅波动,展现出了高度的驱动稳定性。

    结论 

    (1) 增塑剂己二酸二丁酯(DBA)和聚乙二醇(PEG)具有明显的协同效应,可显著降低热塑性聚氨酯(TPU)的弹性模量与拉伸强度,当PEG加入量为20wt%时,复合膜的弹性模量降低至0.21 MPa,仅为纯TPU的1.42 %。 (2) PEG破坏了TPU内部原有的强分子间氢键,增加了TPU链段的偶极极化能力和PEG与TPU基体的界面极化能力,改善了TPU的介电性能。加入20wt% PEG的TPU复合膜在1 kHz时的介电常数为6.02,为DBA/TPU复合膜的2.22倍。(3) 随着PEG用量的增加,PEG/DBA/TPU复合膜DEA在同一驱动电压下的位移明显提高,在4.5 kV驱动电压下,当PEG加入量为20wt%时,复合膜的驱动位移和面积应变分别为2.72 mm和4.12 %,是未添加PEG时的8.22和7.92倍。

  • 介电弹性体驱动器(DEA)与传感器在国防、医疗等领域有广阔的应用空间。纯的热塑性聚氨酯(TPU)弹性体内部存在大量的分子间氢键,柔韧性差,不适合制作DEA。

    本文采用液体增塑剂(己二酸二丁酯,DBA)和固体增塑剂(聚乙二醇,PEG)复配的技术,研制了高机电灵敏度(β)的PEG-DBA/TPU介电母体膜,并将之用于DEA驱动器。由于DBA与PEG之间存在强的分子间作用力,复配有效避免了液体增塑剂在高含量(如50wt% DBA)下使用的迁出,充分发挥了液体增塑剂的强增塑作用,使得复合膜的弹性模量从14.77 MPa急剧降低到0.21 MPa。重要的是:二元增塑剂的联用引入了大量的界面电容,使得弹性体的介电常数迅速由2.71增加到6.02,增加了1.22倍。故,TPU介电膜的β值从1.45增加到28.67,增加了18.8倍,由此制得DEA的驱动位移和面积应变分别增加了7.22和6.92倍。因此,借助于增塑剂的复配效应,本文提供了一个的高机电灵敏度弹性体的制备策略,研制的复合膜可用于商业介电弹性体驱动器与传感器。

    PEG-DBA/TPU三元复合母体膜的制备与DEA组装

    (a) SEM image of the CB/PDMS composite electrode; (b) a three-layer DEA composite film, where the middle matrix of PEG-DBA/TPU film was sandwiched by two layers of CB/PDMS sheets; (c) chemical structures of TPU, DBA and PEG; (d) typical time-displacement curve of DEA actuator.
图(7)  /  表(1)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  30
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2024-11-18
  • 录用日期:  2024-11-27
  • 网络出版日期:  2024-12-06

目录

/

返回文章
返回