留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FRP网格-工程用水泥基复合材料复合材料加固钢筋混凝土梁挠度

邓朗妮 杨洲 钟锰军 雷丽贞 廖羚

邓朗妮, 杨洲, 钟锰军, 等. FRP网格-工程用水泥基复合材料复合材料加固钢筋混凝土梁挠度[J]. 复合材料学报, 2023, 40(9): 5212-5224. doi: 10.13801/j.cnki.fhclxb.20230103.004
引用本文: 邓朗妮, 杨洲, 钟锰军, 等. FRP网格-工程用水泥基复合材料复合材料加固钢筋混凝土梁挠度[J]. 复合材料学报, 2023, 40(9): 5212-5224. doi: 10.13801/j.cnki.fhclxb.20230103.004
DENG Langni, YANG Zhou, ZHONG Mengjun, et al. Deflection of reinforced concrete beams strengthened with FRP grid-engineered cementitious composite matrix composite[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5212-5224. doi: 10.13801/j.cnki.fhclxb.20230103.004
Citation: DENG Langni, YANG Zhou, ZHONG Mengjun, et al. Deflection of reinforced concrete beams strengthened with FRP grid-engineered cementitious composite matrix composite[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5212-5224. doi: 10.13801/j.cnki.fhclxb.20230103.004

FRP网格-工程用水泥基复合材料复合材料加固钢筋混凝土梁挠度

doi: 10.13801/j.cnki.fhclxb.20230103.004
基金项目: 国家自然科学基金(51568008);广西创新驱动发展专项资金(桂AA22068066)
详细信息
    通讯作者:

    廖羚,硕士,高级工程师,硕士生导师,研究方向为结构健康监测及加固修复 E-mail: liaoling @gxust.edu.cn

  • 中图分类号: TU528;TB375;TB33

Deflection of reinforced concrete beams strengthened with FRP grid-engineered cementitious composite matrix composite

Funds: National Natural Science Foundation of China (51568008); Guangxi Science and Technology Major Special Project (Guike AA22068066)
  • 摘要: 为研究纤维增强复合材料(FRP)网格-工程用水泥基复合材料(ECC)复合加固方式对钢筋混凝土梁的挠度影响,对10根钢筋混凝土梁进行抗弯性能试验,分析了各试验变量对FRP网格-ECC复合材料加固钢筋混凝土梁挠度的影响,并推导加固梁挠度计算模型。试验结果表明:FRP网格-ECC复合加固方式能显著提升试验梁极限承载力和抗弯刚度,其中加固梁极限承载力提升27.9%~67.4%、跨中挠度降低30.7%~43.7%,且发生延性特征明显的适筋破坏;FRP网格对加固梁抗弯性能影响较大,网格厚度与加固效果成正比;ECC加固层的厚度、配合比和界面处理方式对加固梁抗弯性能影响较小,其中磨砂处理对加固层界面粘结性能提高较好;基于规范推导了加固梁挠度计算模型,其计算值与试验值吻合较好,该模型为FRP网格-ECC复合材料加固梁挠度计算提供一定的参考。

     

  • 图  1  试验梁设计图

    Figure  1.  Design drawing of test beam

    图  2  FRP网格-ECC复合材料加固RC梁构造详图

    Figure  2.  Details of RC beams strengthened with FRP grid-ECC matrix composite

    图  3  FRP网格-ECC复合材料加固RC梁加固流程

    Figure  3.  Reinforcement process of RC beams strengthened with FRP grid-ECC matrix composite

    h—Groove depth

    图  4  FRP网格-ECC复合材料加固RC梁加载示意及测点布置图

    Figure  4.  Loading schematic and measuring point layout of RC beams strengthened with FRP grid-ECC matrix composite

    LVDT—Linear variable differential transformer

    图  5  FRP网格-ECC复合材料加固RC梁破坏形态

    Figure  5.  Damage patterns of RC beams strengthened with FRP grid-ECC matrix composite

    图  6  FRP网格-ECC复合材料加固RC梁荷载-挠度曲线

    Figure  6.  Load-deflection curves of RC beams strengthened with FRP grid-ECC matrix composite

    图  7  FRP网格-ECC复合材料加固钢筋混凝土梁开裂前后的换算截面

    Figure  7.  Converted cross sections of RC beams strengthened with FRP grid-ECC matrix composite before and after cracking

    $ {h_0} $ and $ {h_{\text{f}}} $—Vertical distances from the top of the beam to the center of the tensile reinforcement and the center of the FRP grid, respectively; $ {x_{\text{c}}} $ and $ {x_{{\text{cr}}}} $—Height of the compression zone of the reinforced beam before and after concrete cracking, respectively; $ {A_{\text{s}}} $, $ {A_{\text{f}}} $ and $ {A_{\text{e}}} $—Cross-sectional areas of the reinforcement in the tension zone, FRP grid and ECC layer , respectively; b—Section width of reinforced beam; $ {\varepsilon _{\text{c}}} $, $ {\varepsilon _{\text{s}}} $ and $ {\varepsilon _{\text{f}}} $—Stresses at the top of the beam, the center of the tensile reinforcement and the center of the FRP grid, respectively; ns, ns-1, nf, ne

    图  8  FRP网格-ECC复合材料加固RC梁挠度计算值与试验值曲线对比

    Figure  8.  Comparison of load-deflection curves between calculated and tested values of RC beams strengthened with FRP grid-ECC matrix composite

    表  1  纤维增强复合材料(FRP)网格-纤维增强复合材料(ECC)复合材料加固钢筋混凝土(RC)梁设计表

    Table  1.   Design table of reinforced concrete (RC) beams strengthened with fiber reinforced plastic (FRP) grid-engineered cementitious composite (ECC) matrix composite

    Test piece number ECC layer FRP thickness/mm Interface treatment method U-shaped hoop
    B0
    JB-1 ECC1-40 2 Sanding Exist
    JB-2 ECC1-40 3 Sanding Exist
    JB-3 ECC1-40 5 Sanding Exist
    JB-4 ECC1-40 3 Grooving Exist
    JB-5 ECC1-40 3 Chiseling Exist
    JB-6 ECC1-50 3 Sanding Exist
    JB-7 ECC2-40 3 Sanding Exist
    JB-8 ECC1-40 3 Sanding
    JB-9 ECC1-40 Sanding Exist
    Notes: B0—Contrast beam; JB-x—Strengthened beams; in ECC1-40, “1”—ECC cement-based materials prepared by No.1 matching ratio, “40”—Thickness of ECC layer (mm).
    下载: 导出CSV

    表  2  混凝土力学性能指标

    Table  2.   Mechanical properties of concrete

    MaterialElastic modulus/GPaTensile strength/MPaCompressive strength/MPa
    C30352.5830.4
    下载: 导出CSV

    表  3  钢筋材料力学性能指标

    Table  3.   Mechanical properties of rebars

    SpecificationElastic modulus/GPaYield strength/MPaTensile strength/MPaElongation/%
    C820045762510.7
    C1020052867112.3
    下载: 导出CSV

    表  4  ECC配合比设计

    Table  4.   Design of ECC matching ratio

    SpecimenCementWaterFly ashSilica fumeQuartz sandWater reducing admixture
    ECC-110.9 1.50.0510.014
    ECC-210.520.40.050.360.007
    下载: 导出CSV

    表  5  FRP网格力学性能指标

    Table  5.   Mechanical properties of FRP grid

    Thickness/mm Cross-section/mm2 Elastic modulus/GPa Tensile strength/MPa Elongation/%
    2 3.62 171.3 1550 2.72
    3 5.43 210.7 1913 2.46
    5 9.06 224.6 2018 2.07
    下载: 导出CSV

    表  6  ECC力学性能指标

    Table  6.   Mechanical properties of ECC

    Specimen Compressivestrength/MPa Cracking-strength/MPa
    ECC-1 28.6 3.6
    ECC-2 31.2 4.8
    下载: 导出CSV

    表  7  FRP网格-ECC复合材料加固RC梁试验结果汇总

    Table  7.   Summary of the test results of RC beams strengthened with FRP grid-ECC matrix composite

    Test piece numberCracking stateYield stateLimit stateDestruction
    mode
    $ {P_{{\text{cr}}}} $/
    kN
    $ {f_{{\text{cr}}}} $/
    mm
    $ {P_{{\text{cr}}}} $
    increment/%
    $ {P_{\text{y}}} $/
    kN
    $ {f_{\text{y}}} $/
    mm
    $ {P_{\text{y}}} $
    increment/%
    $ {P_{\text{u}}} $/
    kN
    $ {f_{\text{u}}} $/
    mm
    $ {P_{\text{u}}} $
    increment/%
    B0280.460705.308626.060C
    JB-1400.4842.8915.143011018.0527.9F+C+P
    JB-2400.5142.81034.9047.112815.3048.8F+C+P
    JB-3440.5057.11125.066014416.5767.4C
    JB-4380.5535.7975.3138.512017.9039.5F+C+P
    JB-5400.4942.81005.2642.812416.5344.2F+C+P
    JB-6420.46501025.2945.712417.6844.2F+C+P
    JB-7440.4457.11044.4548.612616.8546.5F+C+P
    JB-8420.39501024.9045.812614.6646.5F+C+P
    JB-9400.5042.8794.7012.99022.944.7E+C
    Notes: $ {P_{{\text{cr}}}} $—Cracking load of the ECC layer; $ {P_{\text{y}}} $—Yielding load of the test beam, that is the load corresponding to the inflection point of the load deflection curve; $ {P_{\text{u}}} $—Limit load of the test beam, that is the load corresponding to the peak point of the load deflection curve; $ {f_{{\text{cr}}}} $, $ {f_{\text{y}}} $ and $ {f_{\text{u}}} $—Deflection of the corresponding state of the reinforced beam respectively; C—Concrete in the pressurized area is crushed; F—FRP grid is pulled off; E—Fracture of ECC layer; P—Partial peeling of ECC.
    下载: 导出CSV

    表  8  FRP网格-ECC复合材料加固钢筋混凝土梁挠度试验值与计算值汇总

    Table  8.   Deflection summary of tested values and calculated values of RC beams strengthened with FRP grid-ECC matrix composite

    Test piece numberCrack stateYield stateLimit state
    ${f_{\text{t}}}$${f_{\text{c}}}$${f_{\text{t}}}/{f_{\text{c}}}$${f_{\text{t}}}$${f_{\text{c}}}$${f_{\text{t}}}/{f_{\text{c}}}$${f_{\text{t}}}$${f_{\text{c}}}$${f_{\text{t}}}/{f_{\text{c}}}$
    B0 0.46 0.42 0.915 5.3 3.694 0.697 26.06 28.59 1.097
    JB-1 0.48 0.45 0.939 5.14 4.34 0.844 18.05 13.10 0.726
    JB-2 0.51 0.45 0.882 4.90 4.65 0.949 15.30 13.20 0.863
    JB-3 0.50 0.45 0.917 5.06 4.98 0.986 16.57 18.11 1.093
    JB-4 0.55 0.45 0.818 5.31 4.65 0.876 17.90 13.20 0.737
    JB-5 0.49 0.45 0.915 5.26 4.65 0.886 16.53 13.20 0.799
    JB-6 0.46 0.45 0.985 5.29 4.75 0.899 17.68 13.27 0.751
    JB-7 0.44 0.45 1.032 4.45 4.93 1.108 16.85 13.29 0.789
    JB-8 0.39 0.45 1.154 4.90 4.65 0.949 14.66 13.20 0.900
    JB-9 0.50 0.45 0.896 4.70 3.91 0.832 22.94 25.51 1.112
    Average value 0.945 0.903 0.887
    Standard dviation 0.088 0.103 0.149
    Coefficient of variation 0.093 0.114 0.168
    Notes: ${f_{\text{t}}} $—Tested value of deflection; ${f_{\text{c}}} $—Calculated value of deflection.
    下载: 导出CSV

    表  9  文献[24]计算结果汇总

    Table  9.   Summary of calculated results of reference [24]

    Test piece numberCracking stateYield state
    ${f_{\text{t}}}$$f_{\text{c}}^{\text{D}}$$f_{\text{c}}^{\text{D}}/{f_{\text{t}}}$$f_{\text{c}}^{\text{Z}}$$f_{\text{c}}^{\text{Z}}/{f_{\text{t}}}$${f_{\text{t}}}$$f_{\text{c}}^{\text{D}}$$f_{\text{c}}^{\text{D}}/{f_{\text{t}}}$$f_{\text{c}}^{\text{Z}}$$f_{\text{c}}^{\text{Z}}/{f_{\text{t}}}$
    BB0 0.25 0.28 1.12 0.32 1.28 4.42 3.34 28.59 4.09 0.93
    BB1 0.39 0.32 0.82 0.34 0.87 3.16 3.64 13.10 4.19 1.33
    BB2 0.57 0.32 0.56 0.34 0.60 4.76 3.64 13.20 4.19 0.88
    BB3 0.6 0.35 0.58 0.34 0.57 4.38 3.59 18.11 4.19 0.96
    BB4 0.56 0.32 0.57 0.34 0.54 5.13 3.54 13.20 4.20 0.82
    BB5 0.49 0.32 0.65 0.34 0.69 4.56 3.54 13.20 4.19 0.92
    BB6 0.45 0.32 0.71 0.34 0.76 4.17 3.49 13.27 4.18 1.00
    BB7 0.58 0.34 0.59 0.34 0.59 5.63 3.50 13.29 4.18 0.74
    Average value 0.701 0.737 0.802 0.946
    Standard deviation 0.191 0.246 0.157 0.174
    Coefficient of variation 0.273 0.335 0.196 0.183
    Notes: ${f_{\text{t}}}$—Tested value of deflection; $f_{\text{c}}^{\text{D}}$, $f_{\text{c}}^{\text{Z}}$—Calculated values of this paper and reference [24].
    下载: 导出CSV
  • [1] 杨书灵. 粘钢法和增大截面法加固梁的优缺点分析[J]. 林产工业, 2016, 43(1):61-62. doi: 10.3969/j.issn.1001-5299.2016.01.016

    YANG Shuling. The advantages and disadvantages of structure member strengthening by bonding steel plate and increasing section methods[J]. China Forest Products Industry,2016,43(1):61-62(in Chinese). doi: 10.3969/j.issn.1001-5299.2016.01.016
    [2] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2):1-97. doi: 10.3969/j.issn.1001-7372.2021.02.002

    Editorial Department of China Journal of Highway and Transport. Review on China’s bridge engineering research: 2021[J]. China Journal of Highay and Transport,2021,34(2):1-97(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.02.002
    [3] 吴智深, 汪昕, 吴刚. FRP增强工程结构体系[M]. 北京: 科学出版社, 2016.

    WU Zhishen, WANG Xin, WU Gang. FRP reinforced engi-neering structure systems[M]. Beijing: Science Press, 2016, 1-15(in Chinese).
    [4] MIRMIRAN A, SHAHAWY M. A novel FRP-concrete composite construction for the infrastructure[J]. Proceedings of the Restructuring: America and Beyond. Reston: ASCE,1995:1-20.
    [5] 邓朗妮, 周峥, 黄晓霞, 等. 碳纤维-光纤光栅板加固钢筋混凝土梁疲劳性能试验研究[J]. 建筑结构学报, 2022,43(12): 91-101.

    DENG Langni, ZHOU Zheng, HUANG Xiaoxia, et al. Experimental study on fatigue performance of reinforced concrete beams strengthened with CFRP-OFBG plates[J]. Journal of Building Structures, 2022, 43(12): 91-101(in Chinese).
    [6] DENG L N, ZHONG M J, LIU Y, et al. Study on the flexural fatigue performance of CFRP-OFBG plate reinforced damaged steel beams[J]. KSCE Journal of Civil Engineering, 2021, 25(12): 4686-4697.
    [7] 邓朗妮, 罗日生, 钱香国, 等. 智能碳纤维板嵌入式加固矩形截面钢筋混凝土梁试验研究[J]. 建筑结构, 2019, 49(3):92-97. doi: 10.19701/j.jzjg.2019.03.017

    DENG Langni, LUO Risheng, QIAN Xiangguo, et al. Experimental study on intelligent carbon fiber slab embedded reinforced concrete beam with rectangular section[J]. Building Structure,2019,49(3):92-97(in Chinese). doi: 10.19701/j.jzjg.2019.03.017
    [8] 蒋轩昂, 金浏, 杜修力. 配纤率对CFRP布加固大尺寸混凝土梁受剪性能影响试验研究[J]. 建筑结构学报, 2023, 44(7): 172-182.

    JIANG Xuanang, JIN Liu, DU Xiuli. Experimental study on the effect of CFRP ratio on shear performance of large-size concrete beams wrapped with CFRP sheets[J]. Journal of Building Structures, 2023, 44(7): 172-182(in Chinese).
    [9] 董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10):1-19, 29. doi: 10.15951/j.tmgcxb.2019.10.001

    DONG Zhiqiang, WU Gang. Research progress on durability of FRP bars reinforced concrete structures[J]. China Civil Engineering Journal,2019,52(10):1-19, 29(in Chinese). doi: 10.15951/j.tmgcxb.2019.10.001
    [10] 汪昕, 周竞洋, 宋进辉, 等. 大吨位FRP复合材料拉索整体式锚固理论分析[J]. 复合材料学报, 2019, 36(5):1169-1178. doi: 10.13801/j.cnki.fhclxb.20180725.002

    WANG Xin, ZHOU Jingyang, SONG Jinghui, et al. Theoretical analysis on integral anchor for large-tonnage FRP composites cable[J]. Acta Materiae Compositae Sinica,2019,36(5):1169-1178(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180725.002
    [11] WANG X, ZHOU J Y, DING L N, et al. Static behavior of circumferential stress-releasing anchor for large-capacity FRP cable[J]. Journal of Bridge Engineering,2020,25(1):04019114.
    [12] 徐世烺, 尹世平, 蔡新华. 纤维编织网增强混凝土加固钢筋混凝土梁受弯性能研究[J]. 土木工程学报, 2011, 44(4):23-34. doi: 10.15951/j.tmgcxb.2011.04.012

    XU Shiliang, YIN Shiping, CAI Xinhua. Investigation on the flexural behavior of reinforced concrete beam strengthened with textile-reinforced concrete[J]. China Civil Engineering Journal,2011,44(4):23-34(in Chinese). doi: 10.15951/j.tmgcxb.2011.04.012
    [13] 吴智深, 汪昕, 史健喆. 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37(5):1-14.

    WU Z S, WANG X, SHI J Z. Advancement of basalt fiber-reinforced polymers (BFRPS) and the novel structures reinforced with BFRPS[J]. Engineering Mechanics,2020,37(5):1-14(in Chinese).
    [14] 滕晓丹, 姚淇耀, 陆宸宇, 等. BFRP筋与分级粒径河砂ECC粘结滑移性能试验研究[J]. 硅酸盐通报, 2022, 41(4):1264-1275. doi: 10.3969/j.issn.1001-1625.2022.4.gsytb202204019

    TENG Xiaodan, YAO Qiyao, LU Chenyu, et al. Experimental study on bond-slip performance between BFRP bars and ECC with graded particle size river sand[J]. Bulletin of the Chinese Ceramic Society,2022,41(4):1264-1275(in Chinese). doi: 10.3969/j.issn.1001-1625.2022.4.gsytb202204019
    [15] 周英武, 王苏岩, 李宏男, 等. 环氧树脂基碳纤维布粘结胶性能的研究[J]. 建筑结构, 2007, 37(S1):401-405. doi: 10.19701/j.jzjg.2007.s1.124

    ZHOU Yingwu, WANG Suyan, LI Hongnan, et al. Research on performance of epoxy resin adhesive for CFRP[J]. Building Structure,2007,37(S1):401-405(in Chinese). doi: 10.19701/j.jzjg.2007.s1.124
    [16] 姜天华, 万聪聪, 颜斌. BFRP筋与钢-PVA混杂ECC粘结性能[J]. 复合材料学报, 2023, 40(6): 3499-3512.

    JIANG Tianhua, WAN Chongchong, YAN Bin. Adhesion properties of BFRP reinforcement and steel-PVA hybrid ECC[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3499-3512(in Chinese).
    [17] 曹明莉, 许玲, 张聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015, 43(05):632-642.

    CAO Mingli, XU Ling, ZHANG Chong. Review on micromechanical design, performance and development tendency of engineering cementitous composite[J]. Jour-nal of the Chinese Ceramic Society,2015,43(05):632-642(in Chinese).
    [18] DENG L N, LEI L Z, LAI S J, et al. Experimental study on the axial tensile properties of FRP grid-reinforced ECC composites[J]. Materials,2021,14(14):1-16.
    [19] 朱忠锋, 王文炜. 玄武岩格栅增强水泥基复合材料单轴拉伸力学性能试验及本构关系模型[J]. 复合材料学报, 2017, 34(10):2367-2374.

    ZHU Zhongfeng, WANG Wenwei. Experiment on the uniaxial tensile mechanical behavior of basalt grid reinforced engineered cementitious composites and its constitutive model[J]. Acta Materiae Compositae Sinica,2017,34(10):2367-2374(in Chinese).
    [20] AL-GEMEEL A N, ZHUGE Y, YOUSSF O. Experimental investigation of basalt textile reinforced engineered cementitious composite under apparent hoop tensile loading[J]. Journal of Building Engineering,2019,23:270-279. doi: 10.1016/j.jobe.2019.01.037
    [21] XU Y, GAO W Y, DAI J G, et al. Flexural strengthening of RC beams with CFRP grid-reinforced ECC matrix[J]. Compo-site Structures,2018,189:9-26. doi: 10.1016/j.compstruct.2018.01.048
    [22] 惠迎新, 王文炜, 朱忠锋. FRP-ECC复合约束混凝土圆柱反复受压力学性能[J]. 复合材料学报, 2022, 39(11): 5586-5598.

    HUI Xinying, WANG Wenwei, ZHU Zhongfeng. Cyclic compression behavior of FRP-ECC confined concrete cylinder[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5586-5598(in Chinese).
    [23] 袁方, 赵修远. FRP筋-钢筋增强ECC-混凝土组合柱抗震性能研究[J]. 工程力学, 2021, 38(8):55-65, 144. doi: 10.6052/j.issn.1000-4750.2020.08.0532

    YUAN Fang, ZHAO Xiuyuan. Seismic behaviors of hybrid FRP-steel reinforced ECC concrete composite columns[J]. Engineering Mechanics,2021,38(8):55-65, 144(in Chinese). doi: 10.6052/j.issn.1000-4750.2020.08.0532
    [24] 丁里宁, 贺卫东, 汪昕, 等. BFRP网格-PCM薄面黏贴加固钢筋混凝土板抗弯性能[J]. 中南大学学报(自然科学版), 2020, 51(4):1085-1096.

    DING Lining, HE Weidong, WANG Xin, et al. Flexural behavior of reinforced concrete slabs strengthened with BFRP grids and PCM[J]. Journal of Central South University (Science and Technology),2020,51(4):1085-1096(in Chinese).
    [25] 郑宇宙. FRP格栅增强ECC复合加固混凝土梁试验与计算方法研究[D]. 南京: 东南大学, 2018.

    ZHENG Yuzhou. Experiment and calculation method research on reinforced concrete beams strengthened with the composite of FRP grid and ECC[D]. Nanjing: Southeast University, 2018(in Chinese).
    [26] ZHENG Y Z, WANG W W, BRIGHAM J C. Flexural behaviour of reinforced concrete beams strengthened with a composite reinforcement layer: BFRP grid and ECC[J]. Construction and Building Materials,2016,115(115):424-437.
    [27] 韩振宇, 张鹏, 郑天宇, 等. 纤维增强树脂复合材料网格结构成型工艺研究进展[J]. 复合材料学报, 2020, 37(4):845-858. doi: 10.13801/j.cnki.fhclxb.20190628.003

    HAN Zhenyu, ZHANG Peng, ZHENG Tianyu, et al. Research progress of forming process of fiber reinforced polymer composite grid structure[J]. Acta Materiae Compositae Sinica,2020,37(4):845-858(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190628.003
    [28] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard of test method of concrete structures: GB/T 50152—2012[S]. Beijing: China Architecture & Building Press, 2012(in Chinese).
    [29] 中国国家标准化管理委员会. 钢筋混凝土用钢: GB/T 1499.2—2018[S]. 北京: 中国建筑工业出版社, 2018.

    Standardization Administration of the People's Republic of China. Steel for the reinforcement of concrete: GB/T 1499.2—2018[S]. Beijing: China Architecture & Building Press, 2018(in Chinese).
    [30] 中华人民共和国工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461—2018[S]. 北京: 中国建材工业出版社, 2018.

    Ministry of Industry and Information Technology of the People's Republic of China. Standard test method for the mechanical properties of ductile fiber reinforced cementitious composites: JC/T 2461—2018[S]. Beijing: China Building Materials Press, 2018(in Chinese).
    [31] ARAM M R, CZADERSKI C, MOTAVALLI M. Debonding failure modes of flexural FRP-strengthened RC beams[J]. Composites Part B: Engineering,2008,39(5):826-841. doi: 10.1016/j.compositesb.2007.10.006
    [32] 郑宇宙, 王文炜. 复材网格-UHTCC复合增强钢筋混凝土梁抗弯性能试验研究[J]. 土木工程学报, 2017, 50(6):23-32. doi: 10.15951/j.tmgcxb.2017.06.003

    ZHENG Yuzhou, WANG Wenwei. Experimental research on flexural behavior of RC beams strengthened with FRP grid-UHTCC composite[J]. China Civil Engineering Jour-nal,2017,50(6):23-32(in Chinese). doi: 10.15951/j.tmgcxb.2017.06.003
    [33] ZHENG A H, LIU Z Z, LI F P, et al. Experimental investigation of corrosion-damaged RC beams strengthened in flexure with FRP grid-reinforced ECC matrix composites[J]. Engineering Structures, 2021, 244:112779.
    [34] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2010(in Chinese).
    [35] 中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术标准: GB 50608—2020[S]. 北京: 中国计划出版社, 2020.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for reinforced polymer(FRP) in construction: GB 50608—2020[S]. Beijing: China Planning Press, 2020(in Chinese).
    [36] ACI Committee 435. Proposed revisions by committee 435 to ACI building code and commentary provisions on deflections[J]. Journal Proceedings,1978,75(6):229-238.
  • 加载中
图(8) / 表(9)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  347
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 修回日期:  2022-12-15
  • 录用日期:  2022-12-18
  • 网络出版日期:  2023-01-04
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回