Deflection of RC beams strengthened with FRP grid-ECC matrix composite
-
摘要:
纤维增强复合材料(FRP)凭借其优异的材料性能、力学性能和耐久性能适应于现代工程结构发展的需求,广泛地应用于各类建筑工程。但在FRP材料的实际加固工程中,FRP材料与混凝土间的有机界面粘结剂不耐高温、易老化,使得加固效果和FRP材料利用率降低。在本文试验中将有机粘结剂用工程用水泥基复合材料(ECC)替代,组合成FRP网格-ECC复合材料,对混凝土梁进行加固。其中ECC材料弥补了有机粘结剂易的缺陷、提供了足够的界面粘结力,同时ECC内部短纤维的桥接作用,使得加固材料拥有较好的拉伸性能和控裂能力;FRP材料抗拉性能较好,在钢筋屈服后承担主要拉力,使得加固材料极限拉应力得到提高。该复合材料充分发挥了二者材料的优势,能有效提升加固构件的抗弯性能,随后对加固梁进行抗弯性能试验并推导加固梁挠度计算模型,其极限承载力提升了27.9%~67.4%、跨中挠度降低了30.7%~43.7%,发生破坏时挠度及裂缝等延性特征明显,理论值与试验值吻合良好,优良的加固效果使FRP-ECC复合加固方式的应用前景广泛。 FRP网格-ECC复合材料加固钢筋混凝土梁挠度 Abstract: To study the effect of fiber reinforced plastic (FRP) grid-engineered cementitious composite (ECC) matrix strengthened method on the deflection of reinforced concrete (RC) beams, flexural performance test was carried out on 10 RC beams. Each test variable which does effect on the deflection of RC beams strengthened with FRP grid- ECC matrix composite was analyzed, and a model for calculating the deflection of reinforced beams was derived. The test results show that the FRP grid-ECC matrix strengthened method can significantly improve the ultimate bearing capacity and flexural stiffness of the test beams, in which the ultimate load carrying capacity of the reinforced beam increases from 27.9% to 67.4%, the mid-span deflection decreases from 30.7% to 43.7%, and the reinforced beams occur suitable reinforcement damage with obvious ductile characteristics. The FRP grid has a strong influence on flexural performance of reinforced beams, and its grid thickness is proportional to the strengthening effection. The thickness, matching ratio and interface treatment method of ECC reinforcement layer have little effect on the flexural performance of the reinforced beam, and the sanding treatment improves the interface bonding performance of the reinforcement layer better than other interface treatment methods. The deflection calculation model of reinforced beams is derived based on the specification, and its calculating values agree well with the testing values, so the model is a reference for the deflection calculation of RC beams strengthened with FRP grid-ECC matrix composite.-
Key words:
- FRP grid /
- ECC /
- reinforced beams /
- deflection analysis /
- defection calculate
-
图 7 FRP网格-ECC复合材料加固钢筋混凝土梁开裂前后的换算截面
Figure 7. Converted cross sections of RC beams strengthened with FRP grid-ECC matrix composite before and after cracking
$ {h_0} $ and $ {h_{\text{f}}} $ are the vertical distances from the top of the beam to the center of the tensile reinforcement and the center of the FRP grid, respectively. $ {x_{\text{c}}} $ and $ {x_{{\text{cr}}}} $ are the height of the compression zone of the reinforced beam before and after concrete cracking, respectively. $ {A_{\text{s}}} $, $ {A_{\text{f}}} $ and $ {A_{\text{e}}} $ are the cross-sectional areas of the reinforcement in the tension zone, FRP grid and ECC layer , respectively. $ {\varepsilon _{\text{c}}} $, $ {\varepsilon _{\text{s}}} $ and $ {\varepsilon _{\text{f}}} $ are the stresses at the top of the beam, the center of the tensile reinforcement and the center of the FRP grid, respectively
表 1 FRP网格-ECC复合材料加固钢筋混凝土梁设计表
Table 1. Design table of RC beams strengthened with FRP grid-ECC matrix composite
Test piece number ECC layer FRP thickness Interface treatment method U-shaped hoop B0 None None None None JB-1 ECC1-40 2 mm Sanding Exist JB-2 ECC1-40 3 mm Sanding Exist JB-3 ECC1-40 5 mm Sanding Exist JB-4 ECC1-40 3 mm Grooving Exist JB-5 ECC1-40 3 mm Chiseling Exist JB-6 ECC1-50 3 mm Sanding Exist JB-7 ECC2-40 3 mm Sanding Exist JB-8 ECC1-40 3 mm Sanding None JB-9 ECC1-40 None Sanding Exist Note: B0 is the contrast beam; JB-x are strengthened beams; in ECC1-40, “1” means ECC cement-based materials prepared by No.1 matching ratio, “40” means the thickness of ECC layer(mm). 表 2 混凝土力学性能指标
Table 2. Mechanical properties of concrete
Material Elastic modulus/GPa Tensile strength/MPa Compressive strength/MPa C30 35 2.58 30.4 表 3 钢筋材料力学性能指标
Table 3. Mechanical properties of rebars
Specification Elastic modulus/GPa Yield strength/MPa Tensile strength/MPa Elongation/% C8 200 457 625 10.7 C10 200 528 671 12.3 表 4 ECC配合比设计 Table 4 Design of ECC matching ratio
Specimen Cement Water Fly ash Silica fume Quartz sand Water reducing admixture ECC1 1 0.9 1.5 0.05 1 0.014 ECC2 1 0.5 20.4 0.05 0.36 0.007 表 5 FRP网格力学性能指标
Table 5. Mechanical properties of FRP grid
Thickness/mm Cross-section/mm 2 Elastic modulus/GPa Tensile strength/MPa Elongation/% 2 3.62 171.3 1550 2.72 3 5.43 210.7 1913 2.46 5 9.06 224.6 2018 2.07 表 6 ECC力学性能指标
Table 6. Mechanical properties of ECC
Specimen Compressivestrength/MPa Cracking-strength/MPa ECC-1 28.6 3.6 ECC-2 31.2 4.8 表 7 FRP网格-ECC复合材料加固钢筋混凝土梁试验结果汇总
Table 7. Summary of the test results of RC beams strengthened with FRP grid-ECC matrix composite
Test piece number Cracking state Yield state Limit state Des truction
mode$ {P_{{\text{cr}}}} $/
kN$ {f_{{\text{cr}}}} $/
mm$ {P_{{\text{cr}}}} $
increment/%$ {P_{\text{y}}} $/
kN$ {f_{\text{y}}} $/
mm$ {P_{\text{y}}} $
increment/%$ {P_{\text{u}}} $/
kN$ {f_{\text{u}}} $/
mm$ {P_{\text{u}}} $
increment/%B0 28 0.46 0 70 5.3 0 86 26.06 0 C JB-1 40 0.48 42.8 91 5.14 30 110 18.05 27.9 F+C+P JB-2 40 0.51 42.8 103 4.90 47.1 128 15.30 48.8 F+C+P JB-3 44 0.50 57.1 112 5.06 60 144 16.57 67.4 C JB-4 38 0.55 35.7 97 5.31 38.5 120 17.90 39.5 F+C+P JB-5 40 0.49 42.8 100 5.26 42.8 124 16.53 44.2 F+C+P JB-6 42 0.46 50 102 5.29 45.7 124 17.68 44.2 F+C+P JB-7 44 0.44 57.1 104 4.45 48.6 126 16.85 46.5 F+C+P JB-8 42 0.39 50 102 4.90 45.8 126 14.66 46.5 F+C+P JB-9 40 0.50 42.8 79 4.70 12.9 90 22.94 4.7 E+C Notes: $ {P_{{\text{cr}}}} $ is the cracking load of the ECC layer; $ {P_{\text{y}}} $ is the yielding load of the test beam, that is the load corresponding to the inflection point of the load deflection curve; $ {P_{\text{u}}} $ is the limit load of the test beam, that is the load corresponding to the peak point of the load deflection curve; $ {f_{{\text{cr}}}} $、 $ {f_{\text{y}}} $ and $ {f_{\text{u}}} $ are the deflection of the corresponding state of the reinforced beam respectively; C means the concrete in the pressurized area is crushed; F means the FRP grid is pulled off; E means the fracture of ECC layer; P means the partial peeling of ECC. 表 8 FRP网格-ECC复合材料加固钢筋混凝土梁挠度试验值与计算值汇总
Table 8. Deflection summary of tested values and calculated values of RC beams strengthened with FRP grid-ECC matrix composite
Test piece number Crack state Yield state Limit state ${f_{\text{t}}}$ ${f_{\text{c}}}$ ${f_{\text{t}}}/{f_{\text{c}}}$ ${f_{\text{t}}}$ ${f_{\text{c}}}$ ${f_{\text{t}}}/{f_{\text{c}}}$ ${f_{\text{t}}}$ ${f_{\text{c}}}$ ${f_{\text{t}}}/{f_{\text{c}}}$ B0 0.46 0.42 0.915 5.3 3.694 0.697 26.06 28.59 1.097 JB-1 0.48 0.45 0.939 5.14 4.34 0.844 18.05 13.10 0.726 JB-2 0.51 0.45 0.882 4.90 4.65 0.949 15.30 13.20 0.863 JB-3 0.50 0.45 0.917 5.06 4.98 0.986 16.57 18.11 1.093 JB-4 0.55 0.45 0.818 5.31 4.65 0.876 17.90 13.20 0.737 JB-5 0.49 0.45 0.915 5.26 4.65 0.886 16.53 13.20 0.799 JB-6 0.46 0.45 0.985 5.29 4.75 0.899 17.68 13.27 0.751 JB-7 0.44 0.45 1.032 4.45 4.93 1.108 16.85 13.29 0.789 JB-8 0.39 0.45 1.154 4.90 4.65 0.949 14.66 13.20 0.900 JB-9 0.50 0.45 0.896 4.70 3.91 0.832 22.94 25.51 1.112 Average value 0.945 0.903 0.887 Standard dviation 0.088 0.103 0.149 Coefficient of variation 0.093 0.114 0.168 Notes: ${f_{\text{t}}} $ is the tested value of deflection, ${f_{\text{c}}} $ is the calculated value of deflection. Test piece number Cracking state Yield state ${f_{\text{t}}}$ $f_{\text{c}}^{\text{D}}$ $f_{\text{c}}^{\text{D}}/{f_{\text{t}}}$ $f_{\text{c}}^{\text{Z}}$ $f_{\text{c}}^{\text{Z}}/{f_{\text{t}}}$ ${f_{\text{t}}}$ $f_{\text{c}}^{\text{D}}$ $f_{\text{c}}^{\text{D}}/{f_{\text{t}}}$ $f_{\text{c}}^{\text{Z}}$ $f_{\text{c}}^{\text{Z}}/{f_{\text{t}}}$ BB0 0.25 0.28 1.12 0.32 1.28 4.42 3.34 28.59 4.09 0.93 BB1 0.39 0.32 0.82 0.34 0.87 3.16 3.64 13.10 4.19 1.33 BB2 0.57 0.32 0.56 0.34 0.60 4.76 3.64 13.20 4.19 0.88 BB3 0.6 0.35 0.58 0.34 0.57 4.38 3.59 18.11 4.19 0.96 BB4 0.56 0.32 0.57 0.34 0.54 5.13 3.54 13.20 4.20 0.82 BB5 0.49 0.32 0.65 0.34 0.69 4.56 3.54 13.20 4.19 0.92 BB6 0.45 0.32 0.71 0.34 0.76 4.17 3.49 13.27 4.18 1.00 BB7 0.58 0.34 0.59 0.34 0.59 5.63 3.50 13.29 4.18 0.74 Average value 0.701 0.737 0.802 0.946 Standard deviation 0.191 0.246 0.157 0.174 Coefficient of variation 0.273 0.335 0.196 0.183 Notes: ${f_{\text{t}}}$is the tested value of deflection, and $f_{\text{c}}^{\text{D}}$$f_{\text{c}}^{\text{Z}}$ are this paper and Zheng’s calculated values of deflection. -
[1] 杨书灵. 粘钢法和增大截面法加固梁的优缺点分析[J]. 林产工业, 2016, 43(1):61-62. doi: 10.3969/j.issn.1001-5299.2016.01.016YANG Shuling. Analysis of the advantages and disadvantages of reinforcing beams by glued steel method and increased section method[J]. China Forest Products Industry,2016,43(1):61-62(in Chinese). doi: 10.3969/j.issn.1001-5299.2016.01.016 [2] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2):1-97. doi: 10.3969/j.issn.1001-7372.2021.02.002Editorial Department of China Journal of Highway and Transport. Review on China’s Bridge Engineering Research: 2021[J]. China Journal of Highay and Transport,2021,34(2):1-97(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.02.002 [3] 吴智深, 汪昕, 吴刚. FRP增强工程结构体系[J]. 北京:科学出版社, 2016:1-15.WU Zhishen, WANG Xin, WU Gang. FRP Reinforced Engineering Structure Systems[J]. China:Science Press,2016:1-15(in Chinese). [4] MIRMIRAN A, SHAHAWY M. A Novel FRP-concrete Composite Construction for the Infrastructure[J]. Proceedings of the Restructuring:America and Beyond. Reston:ASCE,1995:1-20. [5] 邓朗妮, 周峥, 黄晓霞, 雷丽贞, 廖羚. 反复荷载下碳纤维-光纤光栅板加固钢筋混凝土梁疲劳试验[J/OL]. 建筑结构学报: 1-132022-09-03]. DENG Langni, ZHOU Zheng, HUANG Xiaoxia, et al. Fatigue tests on reinforced concrete beams strengthened with CFRP-OFBG plates under repeated loading [J/OL]. Journal of Building Structures: 1-13[2022-09-03](in Chinese). [6] Deng L N, Zhong M J, Liu Y, et al. Study on the Flexural Fatigue Performance of CFRP-OFBG Plate Reinforced Damaged Steel Beams[J]. 2021, 25(12): 486-497. [7] 邓朗妮, 罗日生, 钱香国, 等. 智能碳纤维板嵌入式加固矩形截面钢筋混凝土梁试验研究[J]. 建筑结构, 2019, 49(3):92-97. doi: 10.19701/j.jzjg.2019.03.017DENG Langni, LUO Risheng, QIAN Xiangguo, et al. Experimental study on intelligent carbon fiber slab embedded reinforced concrete beam with rectangular section[J]. Building Structure,2019,49(3):92-97(in Chinese). doi: 10.19701/j.jzjg.2019.03.017 [8] 蒋轩昂, 金浏, 杜修力. 配纤率对CFRP布包裹大尺寸混凝土梁受剪性能影响试验研究[J/OL]. 建筑结构学报: 1-122022-08-29]. JIANG Xuanang, JIN Liu, DU Xiuli. Experimental study on the effect of CFRP ratio on shear performance of large-size concrete beams wrapped with CFRP sheets [J/OL]. Journal of Building Structures: 1-12[2022-08-29](in Chinese). [9] 董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10):1-19+29. doi: 10.15951/j.tmgcxb.2019.10.001DONG Zhiqiang, WU Gang. Research progress on durability of FRP bars reinforced concrete structures[J]. China Civil Engineering Journal,2019,52(10):1-19+29(in Chinese). doi: 10.15951/j.tmgcxb.2019.10.001 [10] 汪昕, 周竞洋, 宋进辉, 等. 大吨位FRP复合材料拉索整体式锚固理论分析[J]. 复合材料学报, 2019, 36(5):1169-1178. doi: 10.13801/j.cnki.fhclxb.20180725.002WANG Xin, ZHOU Jingyang, SONG Jinghui, et al. Theoretical analysis of integral anchor for large-tonnage FRP composites cable[J]. Acta Materiae Compositae Sinica,2019,36(5):1169-1178(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180725.002 [11] Wang X, Zhou J, Ding L, et al. Static Behavior of Circumferential Stress-Releasing Anchor for Large-Capacity FRP Cable[J]. Journal of Bridge Engineering,2020,25(1):04019114. [12] 徐世烺, 尹世平, 蔡新华. 纤维编织网增强混凝土加固钢筋混凝土梁受弯性能研究[J]. 土木工程学报, 2011, 44(4):23-34. doi: 10.15951/j.tmgcxb.2011.04.012XU Shiliang, YIN Shiping, CAI Xinhua. Investigation on the flexural behavior of reinforced concrete beam strengthened with textile-reinforced concrete[J]. China Civil Engineering Journal,2011,44(4):23-34(in Chinese). doi: 10.15951/j.tmgcxb.2011.04.012 [13] 吴智深, 汪昕, 史健喆. 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37(5):1-14.WU Z S, WANG X, SHI J Z. Advancement of Basalt Fiber-Reinforced Polymers (BFRPS) and The Novel Structures Reinforced with BFRPS[J]. Engineering Mechanics,2020,37(5):1-14(in Chinese). [14] 滕晓丹, 姚淇耀, 陆宸宇, 等. BFRP筋与分级粒径河砂ECC粘结滑移性能试验研究[J]. 硅酸盐通报, 2022, 41(4):1264-1275. doi: 10.3969/j.issn.1001-1625.2022.4.gsytb202204019TENG Xiaodan, YAO Qiyao, LU Chenyu, et al. Experimental Study on Bond-Slip Performance Between BFRP Bars and ECC with Graded Particle Size River Sand[J]. Bulletin of the Chinese Ceramic Society,2022,41(4):1264-1275(in Chinese). doi: 10.3969/j.issn.1001-1625.2022.4.gsytb202204019 [15] 周英武, 王苏岩, 李宏男, 等. 环氧树脂基碳纤维布粘结胶性能的研究[J]. 建筑结构, 2007, 37(S1):401-405. doi: 10.19701/j.jzjg.2007.s1.124ZHOU Yingwu, WANG Suyan, LI Hongnan, et al. Research on Performance of Epoxy Resin Adhesive for CFRP[J]. Building Structure,2007,37(S1):401-405(in Chinese). doi: 10.19701/j.jzjg.2007.s1.124 [16] 姜天华, 万聪聪, 颜斌. BFRP筋与钢-PVA混杂ECC粘结性能[J/OL]. 复合材料学报: 1-162022-10-27]. JIANG Tianhua, WAN Chongchong, YAN Bin. Adhesion properties of BFRP reinforcement and steel-PVA hybrid ECC [J/OL]. Acta Materiae Compositae Sinica: 1-16[2022-10-27](in Chinese). [17] 曹明莉, 许玲, 张聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015, 43(5):632-642.CAO Mingli, XU Ling, ZHANG Chong. Review on Micromechanical Design, Performance and Development Tendency of Engineering Cementitous Composite[J]. Journal of the Chinese Ceramic Society,2015,43(5):632-642(in Chinese). [18] Deng L N, Lei L Z, Lai S J, et al. Experimental Study on the Axial Tensile Properties of FRP Grid-Reinforced ECC Composites[J]. MATERIALS,2021,14(14):1-16. [19] 朱忠锋, 王文炜. 玄武岩格栅增强水泥基复合材料单轴拉伸力学性能试验及本构关系模型[J]. 复合材料学报, 2017, 34(10):2367-2374.ZHU Zhongfeng, WANG Wenwei. Experiment on the uniaxial tensile mechanical behavior of basalt grid reinforced engineering cementitious composites and its constitutive model[J]. Acta Materiae Compositae Sinica,2017,34(10):2367-2374(in Chinese). [20] Al-Gemeel A N, Zhuge Y, Youssf O. Experimental Investigation of Basalt Textile Reinforced Engineered Cementitious Composite under Apparent Hoop Tensile Loading[J]. Journal of Building Engineering,2019,23:270-79. doi: 10.1016/j.jobe.2019.01.037 [21] Xu Y, Gao W Y, Dai J G, et al. Flexural Strengthening of RC Beams with CFRP Grid-Reinforced ECC Matrix[J]. Composite Structures,2018,189:9-26. doi: 10.1016/j.compstruct.2018.01.048 [22] 惠迎新, 王文炜, 朱忠锋. FRP-ECC复合约束混凝土圆柱反复受压力学性能[J/OL]. 复合材料学报: 1-102022-08-30]. HUI Xinying, WANG Wenwei, ZHU Zhongfeng. Cyclic compression behavior of FRP-ECC confined concrete cylinder [J]. Acta Materiae Compositae Sinica: 1-10[2022-08-30](in Chinese). [23] 袁方, 赵修远. FRP筋-钢筋增强ECC-混凝土组合柱抗震性能研究[J]. 工程力学, 2021, 38(8):55-65+144. doi: 10.6052/j.issn.1000-4750.2020.08.0532YUAN Fang, ZHAO Xiuyuan. Seismic behaviors of hybrid FRP-steel reinforced ECC concrete composite columns[J]. Engineering Mechanics,2021,38(8):55-65+144(in Chinese). doi: 10.6052/j.issn.1000-4750.2020.08.0532 [24] 丁里宁, 贺卫东, 汪昕, 等. BFRP网格-PCM薄面黏贴加固钢筋混凝土板抗弯性能[J]. 中南大学学报(自然科学版), 2020, 51(4):1085-1096.DING Lining, HE Weidong, WANG Xin, et al. Flexural behavior of reinforced concrete slabs strengthened with BFRP grids and PCM[J]. Journal of Central South University(Science and Technology),2020,51(4):1085-1096(in Chinese). [25] 郑宇宙. FRP格栅增强ECC复合加固混凝土梁试验与计算方法研究[D]. 东南大学, 2018.ZHENG Yuzhou. Experiment and calculation method research on reinforced concrete beams strengthened with the composite of FRP grid and ECC [D]. Southeast University, 2018(in Chinese). [26] Zheng Y Z, Wang W W, John C B. Flexural Behavior of Reinforced Concrete Beams Strengthened with a Composite Reinforcement Layer: BFRP Grid and ECC[J]. Construction and Building Materials,2016,115(115):424-437. [27] 韩振宇, 张鹏, 郑天宇, 等. 纤维增强树脂复合材料网格结构成型工艺研究进展[J]. 复合材料学报, 2020, 37(4):845-858. doi: 10.13801/j.cnki.fhclxb.20190628.003HAN Zhenyu, ZHANG Peng, ZHENG Tianyu, et al. Research progress of forming process of fiber reinforced polymer composite grid structure[J]. Acta Materiae Compositae Sinica,2020,37(4):845-858(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190628.003 [28] GB/T 50152-2012. 混凝土结构试验方法标准[S]. 北京: 中国建筑工业出版社, 2012.GB/T 50152-2012. Standard of test method of concrete structures[S]. Beijing: China Architecture & Building Press, 2012(in Chinese). [29] GB/T 1499.2-2018. 钢筋混凝土用钢[S]. 北京: 中国建筑工业出版社, 2018.GB/T 1499.2-2018. Steel for the reinforcement of concrete [S]. Beijing: China Architecture & Building Press, 2018(in Chinese) [30] JC/T 2461-2018. 高延性纤维增强水泥基复合材料力学性能试验方法[S]. 北京: 中国建材工业出版社, 2018.JC/T 2461-2018, Standard test method for the mechanical properties of ductile fiber reinforced cementitious composites [S]. Beijing: China Building Materials Press, 2018(in Chinese). [31] Aram M R, Czaderski C, Motavalli M. Debonding failure modes of flexural FRP-strengthened RC beams[J]. Composites Part B:Engineering,2008,39(5):826-841. doi: 10.1016/j.compositesb.2007.10.006 [32] 郑宇宙, 王文炜. 复材网格-UHTCC复合增强钢筋混凝土梁抗弯性能试验研究[J]. 土木工程学报, 2017, 50(6):23-32. doi: 10.15951/j.tmgcxb.2017.06.003ZHENG Yuzhou, WANG Wenwei. Experimental research on flexural behavior of RC beams strengthened with FRP grid-UHTCC composite[J]. China Civil Engineering Journal,2017,50(6):23-32(in Chinese). doi: 10.15951/j.tmgcxb.2017.06.003 [33] ZHENG A H, LIU Z Z, LI F P, et al. Experimental investigation of corrosion-damaged RC beams strengthened in flexure with FRP grid-reinforced ECC matrix composites, Engineering Structures, Volume 244, 2021, 112779, ISSN 0141-0296. [34] GB 50010-2010. 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.GB 50010-2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010(in Chinese). [35] GB 50608-2020. 纤维增强复合材料工程应用技术标准[S]. 北京: 中国计划出版社, 2020.GB 50608-2020. Technical standard for reinforced polymer(FRP) in construction [S]. Beijing: China Planning Press, 2020(in Chinese). [36] ACI Committee 435. Proposed revisions by committee 435 to ACI building code and commentary provisions on deflections[J]. ACI,1978,75(6):229-238. -

计量
- 文章访问数: 214
- HTML全文浏览量: 133
- 被引次数: 0