留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S−BiOI/BiOBr吸附型光催化剂的制备及其对2,4−二氯苯氧乙酸的去除性能

姚丹 阳艺 郑安妮 王绍兵 余关龙

姚丹, 阳艺, 郑安妮, 等. S−BiOI/BiOBr吸附型光催化剂的制备及其对2,4−二氯苯氧乙酸的去除性能[J]. 复合材料学报, 2024, 41(11): 5922-5933.
引用本文: 姚丹, 阳艺, 郑安妮, 等. S−BiOI/BiOBr吸附型光催化剂的制备及其对2,4−二氯苯氧乙酸的去除性能[J]. 复合材料学报, 2024, 41(11): 5922-5933.
YAO Dan, YANG Yi, ZHENG Anni, et al. Preparation of S−BiOI/BiOBr adsorption photocatalyst and its removal properties for 2,4−dichlorophenoxyacetic acid[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5922-5933.
Citation: YAO Dan, YANG Yi, ZHENG Anni, et al. Preparation of S−BiOI/BiOBr adsorption photocatalyst and its removal properties for 2,4−dichlorophenoxyacetic acid[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5922-5933.

S−BiOI/BiOBr吸附型光催化剂的制备及其对2,4−二氯苯氧乙酸的去除性能

基金项目: 湖南省水利科技项目 (XSKJ2022068-03,XSKJ2023059-37);湖南省生态环境厅科研项目 (HBKT-2021012)
详细信息
    通讯作者:

    余关龙,博士,副教授,硕士生导师,研究方向为光催化材料及污水处理 E-mail:ygl079@csust.edu.cn

  • 中图分类号: O643.36;O644.1;TB332

Preparation of S−BiOI/BiOBr adsorption photocatalyst and its removal properties for 2,4−dichlorophenoxyacetic acid

Funds: Water technology project of Hunan Province (XSKJ2022068-03, XSKJ2023059-37); Department of Ecology and Environment research project of Hunan Province (HBKT-2021012)
  • 摘要: 水体的农药污染对人体健康构成潜在威胁。采用一步溶剂热法合成了一种新型S0.1−(3/7)BiOI/BiOBr(S0.1BBI0.3)光催化剂。通过XRD、SEM、XPS、UV−Vis DRS、EIS等手段表征其结构、形貌和光学性能等理化性质。S0.1BBI0.3呈二维纳米片堆积而成的花状微球结构,Z型异质结和S掺杂双策略共修饰拓宽了BiOBr的光响应范围,有效防止光生电子−空穴对在S0.1BBI0.3内部复合,提高光生载流子的氧化还原能力,同时能够提高比表面积,提供更丰富的介孔结构,显著提升吸附性能,并为光催化反应提供了更多的活性位点。光催化实验结果表明,合成的S0.1BBI0.3在可见光下对2,4−二氯苯氧乙酸(2,4−D)具有最佳的吸附和光催化性能,在45 min黑暗和120 min光照条件下,2,4−D去除率最高可达91.8%。ESR技术证实·O2是S0.1BBI0.3的光催化活性物质。

     

  • 图  1  Sz–(x/y)BiOI/BiOBr(SzBBIx)的制备流程图

    Figure  1.  Flow chart of preparation of Sz–(x/y)BiOI/BiOBr (SzBBIx)

    图  2  BiOBr、BiOI和S0.1BBI0.3的XRD图谱(a)和FT−IR图谱(b)

    Figure  2.  XRD patterns (a) and FT−IR patterns (b) of BiOBr, BiOI and S0.1BBI0.3

    图  3  BiOBr(a)、BiOI(b)和S0.1BBI0.3(c)的SEM图像

    Figure  3.  SEM image of BiOBr, BiOI and S0.1BBI0.3

    图  4  S0.1BBI0.3的EDS图像

    Figure  4.  EDS diagram of S0.1BBI0.3

    图  5  BiOBr、BiOI和S0.1BBI0.3的N2吸附−脱附等温线和BJH孔径分布曲线(插图)

    Figure  5.  N2 adsorption−desorption isotherm curves and pore size distribution by BJH method (inset part) of BiOBr, BiOI and S0.1BBI0.3

    图  6  BiOBr、BiOI和S0.1BBI0.3样品的XPS图谱:(a) 全谱;(b) Br 3d;(c) I 3d;(d) O 1s;(e) Bi 4f

    Figure  6.  XPS spectra of BiOBr, BiOI and S0.1BBI0.3 samples: (a) survey, (b) Br 3d, (c) I 3d, (d) O 1s and (e) Bi 4f

    图  7  BiOBr、BiOI、BBI0.3、S0.1BiOBr和S0.1BBI0.3的UV−Vis DRS图(a)和Eg图(b)

    Figure  7.  UV−Vis diffuse reflectance spectrum (a) and band gap diagram (b) of BiOBr, BiOI, BBI0.3, S0.1BiOBr and S0.1BBI0.3

    图  8  BiOBr、BiOI、BBI0.3、S0.1BiOBr和S0.1BBI0.3的EIS图谱(a)和光电流图谱(b)

    Figure  8.  EIS Nyquist plots (a) and photocurrent curve (b) of BiOBr, BiOI, BBI0.3, S0.1BiOBr and S0.1BBI0.3

    图  9  BiOBr、BiOI、BBI0.3、S0.1BBIx和SzBBI0.3去除2,4−D曲线((a)、(b))、准一级动力学拟合((c)、(d))、不同S0.1BBI0.3投加量和去除不同浓度2,4−D曲线((e)、(f))

    Figure  9.  Removal curves of 2,4−D by BiOBr, BiOI, BBI0.3, S0.1BBIx and SzBBI0.3 ((a), (b)), quasi−first−order kinetic fitting ((c), (d)), and Curves of different dosages of S0.1BBI0.3 and removal of different concentrations of 2,4−D ((e)、(f))

    Notes: C/C0: The ratio of the residual concentration of 2,4−D to its initial concentration

    图  10  S0.1BBI0.3的ESR光谱:(a) DMPO−·O2;(b) TEMPO−h+;(c) DMPO−·OH

    Figure  10.  ESR spectra of S0.1BBI0.3: (a) DMPO−·O2, (b) TEMPO−h+ and (c) DMPO−·OH

    图  11  BiOBr、BiOI、BBI0.3、S0.1BiOBr和S0.1BBI0.3的VB−XPS光谱

    Figure  11.  VB−XPS spectra of BiOBr, BiOI, BBI0.3, S0.1BiOBr and S0.1BBI0.3

    图  12  S0.1BBI0.3光催化机制示意图

    Figure  12.  Schematic diagram of the photocatalytic mechanism of S0.1BBI0.3

    表  1  S0.1BiOBr、S0.1BiOI和S0.1BBI0.3的EDS数据

    Table  1.   EDS data for S0.1BiOBr, S0.1BiOI and S0.1BBI0.3

    Sample Relative content of element /wt%
    O Bi Br I S
    S0.1BiOBr 7.10 68.87 23.71 - 0.33
    S0.1BiOI 8.08 68.39 - 23.53 -
    S0.1BBI0.3 11.06 68.09 17.90 2.91 0.03
    下载: 导出CSV

    表  2  BiOBr、BiOI和S0.1BBI0.3的BET数据

    Table  2.   BET data for BiOBr, BiOI and S0.1BBI0.3

    Sample SBET/
    (m2·g−1)
    Vp/
    (cm3·g−1)
    Pore Size/
    nm
    BiOBr 18.68 0.108 19.60
    BiOI 17.99 0.115 19.87
    S0.1BBI0.3 26.09 0.123 15.83
    Notes: SBET: Specific surface are; Vp: Total pore volume
    下载: 导出CSV
  • [1] SONG Y L. Insight into the mode of action of 2, 4-dichlorophenoxyacetic acid (2, 4-D) as an herbicide[J]. Journal of Integrative Plant Biology, 2014, 56(2): 106-113. doi: 10.1111/jipb.12131
    [2] DA SILVA A P, MORAIS E R, OLIVEIRA E C, et al. Does exposure to environmental 2, 4-dichlorophenoxyacetic acid concentrations increase mortality rate in animals? A meta-analytic review[J]. Environ Pollut, 2022, 303: 14.
    [3] ABIGAIL M E A, SAMUEL M S, NEEDHIDASAN S, et al. Stratagems employed for 2, 4-dichlorophenoxyacetic acid removal from polluted water sources[J]. Clean Technol Environ Policy, 2017, 19(6): 1607-1620. doi: 10.1007/s10098-017-1371-8
    [4] ISLAM F, WANG J, FAROOQ M A, et al. Potential impact of the herbicide 2, 4-dichlorophenoxyacetic acid on human and ecosystems[J]. Environ Int, 2018, 111: 332-351. doi: 10.1016/j.envint.2017.10.020
    [5] BLACHNIO M, KUSMIEREK K, SWIATKOWSKI A, et al. Adsorption of Phenoxyacetic Herbicides from Water on Carbonaceous and Non-Carbonaceous Adsorbents[J]. Molecules, 2023, 28(14): 39.
    [6] ZHU X W, WANG B Y, KANG J, et al. Interfacial mechanism of the synergy of biochar adsorption and catalytic ozone micro-nano-bubbles for the removal of 2, 4-dichlorophenoxyacetic acid in water[J]. Sep Purif Technol, 2022, 299: 13.
    [7] GIRóN-NAVARRO R, LINARES-HERNáNDEZ I, TEUTLI-SEQUEIRA E A, et al. Evaluation and comparison of advanced oxidation processes for the degradation of 2, 4-dichlorophenoxyacetic acid (2, 4-D): a review[J]. Environ Sci Pollut R, 2021, 28(21): 26325-26358. doi: 10.1007/s11356-021-13730-y
    [8] MUSZYNSKI P, BRODOWSKA M S, PASZKO T. Occurrence and transformation of phenoxy acids in aquatic environment and photochemical methods of their removal: a review[J]. Environ Sci Pollut R, 2020, 27(2): 1276-1293. doi: 10.1007/s11356-019-06510-2
    [9] 余关龙, 王世涛, 杨凯, et al. BiOI/BiOBr_(0.9)I_(0.1)光催化剂的制备及其对2, 4-二氯苯氧乙酸的降解性能[J]. 复合材料学报, 2023, 40(1): 201-211.

    YU Guanlong, WANG Shitao, YANG Kai, et al. Preparation of BiOI/BiOBr0.9I0.1 photocatalyst and its degradation performance for 2, 4-dichlorophenoxyacetic acid[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 201-211 (in Chinese).
    [10] KOE W S, LEE J W, CHONG W C, et al. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane[J]. Environ Sci Pollut R, 2020, 27(3): 2522-2565. doi: 10.1007/s11356-019-07193-5
    [11] KEERTHIGA G, BALAKRISHNAN A, SATHIASIVAN K. Response surface methodology based optimization of photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid[J]. Desalin Water Treat, 2022, 251: 57-63. doi: 10.5004/dwt.2022.28114
    [12] YUAN Z M, JIANG Z Y. Applications of BiOX in the Photocatalytic Reactions[J]. Molecules, 2023, 28(11): 15.
    [13] MENGTING Z, KURNIAWAN T A, DUAN L, et al. Advances in BiO<i>X</i>-based ternary photocatalysts for water technology and energy storage applications: Research trends, challenges, solutions, and ways forward[J]. Reviews in Environmental Science and Bio-Technology, 2022, 21(2): 331-370. doi: 10.1007/s11157-022-09617-0
    [14] LIU Y B, WEI Y, LIU C, et al. Efficient photodegradation of 2, 4-D by B-doped g-C<sub>3</sub>N<sub>4</sub> nanosheets prepared by a two-step thermal polymerization method[J]. Res Chem Intermediat, 2023, 49(11): 5061-5682. doi: 10.1007/s11164-023-05141-0
    [15] HAYATI P, MEHRABADI Z, KARIMI M, et al. Photocatalytic activity of new nanostructures of an Ag(i) metal-organic framework (Ag-MOF) for the efficient degradation of MCPA and 2, 4-D herbicides under sunlight irradiation[J]. New J Chem, 2021, 45(7): 3408-3417. doi: 10.1039/D0NJ02460K
    [16] LIU Y, HU Z F, YU J C. Photocatalytic degradation of ibuprofen on S-doped BiOBr[J]. Chemosphere, 2021, 278: 8.
    [17] WANG C Y, ZENG Q, ZHU G C. Novel S-doped BiOBr nanosheets for the enhanced photocatalytic degradation of bisphenol A under visible light irradiation[J]. Chemosphere, 2021, 268: 11.
    [18] SU J L, XIAO Y, REN M. Direct hydrolysis synthesis of BiOI flowerlike hierarchical structures and it's photocatalytic activity under simulated sunlight irradiation[J]. Catal Commun, 2014, 45: 30-33. doi: 10.1016/j.catcom.2013.10.020
    [19] XIAO Y X, WU J, JIA T, et al. Fabrication of BiOI nanosheets with exposed (001) and (110) facets with different methods for photocatalytic oxidation elemental mercury[J]. Colloid Interface Sci Commun, 2021, 40: 8.
    [20] DU M X, DU Y, FENG Y B, et al. Advanced photocatalytic performance of novel BiOBr/BiOI/cellulose composites for the removal of organic pollutant[J]. Cellulose, 2019, 26(9): 5543-5557. doi: 10.1007/s10570-019-02474-1
    [21] GAO J C, GAO Y, SUI Z Y, et al. Hydrothermal synthesis of BiOBr/FeWO<sub>4</sub> composite photocatalysts and their photocatalytic degradation of doxycycline[J]. J Alloy Compd, 2018, 732: 43-51. doi: 10.1016/j.jallcom.2017.10.092
    [22] JING H X, GAO Y L, WANG X, et al. Preparation of Z-scheme spherical BiOI/Fe<sub>2</sub>O<sub>3</sub>/BiOBr for water pollution treatment[J]. Appl Organomet Chem, 2023, 37(2): 10.
    [23] AHMAD A, MENG X C, YUN N, et al. Preparation of Hierarchical BiOBr Microspheres for Visible Light-Induced Photocatalytic Detoxification and Disinfection[J]. J Nanomater, 2016, 2016: 10.
    [24] WANG Q, LIU Z, LIU D, et al. Oxygen vacancy-rich ultrathin sulfur-doped bismuth oxybromide nanosheet as a highly efficient visible-light responsive photocatalyst for environmental remediation[J]. Chem Eng J, 2019, 360: 838-847. doi: 10.1016/j.cej.2018.12.038
    [25] YU G L, YANG Y, WANG S T, et al. Preparation of Bi2O2CO3/BiOBr0.9I0.1 photocatalyst and its degradation performance for 2, 4-dichlorophenoxyacetic acid[J]. J Alloy Compd, 2023, 952: 13.
    [26] 余关龙, 李培媛, 杨凯, et al. Fe3+掺杂BiOCl光催化剂降解盐酸四环素的性能[J]. 复合材料学报, 2023, 40(11): 6182-93.

    YU Guanlong, LI Peiyuan, YANG Kai, et al. Performance of Fe3+-doped BiOCl photocatalyst for degradation of tetracycline hydrochloride[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6182-6193 (in Chinese)
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  115
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 修回日期:  2024-01-24
  • 录用日期:  2024-01-28
  • 网络出版日期:  2024-03-08
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回