Preparation of S−BiOI/BiOBr adsorption photocatalyst and its removal properties for 2,4−dichlorophenoxyacetic acid
-
摘要: 水体的农药污染对人体健康构成潜在威胁。采用一步溶剂热法合成了一种新型S0.1−(3/7)BiOI/BiOBr(S0.1BBI0.3)光催化剂。通过XRD、SEM、XPS、UV−Vis DRS、EIS等手段表征其结构、形貌和光学性能等理化性质。S0.1BBI0.3呈二维纳米片堆积而成的花状微球结构,Z型异质结和S掺杂双策略共修饰拓宽了BiOBr的光响应范围,有效防止光生电子−空穴对在S0.1BBI0.3内部复合,提高光生载流子的氧化还原能力,同时能够提高比表面积,提供更丰富的介孔结构,显著提升吸附性能,并为光催化反应提供了更多的活性位点。光催化实验结果表明,合成的S0.1BBI0.3在可见光下对2,4−二氯苯氧乙酸(2,4−D)具有最佳的吸附和光催化性能,在45 min黑暗和120 min光照条件下,2,4−D去除率最高可达91.8%。ESR技术证实·O2−是S0.1BBI0.3的光催化活性物质。Abstract: Pesticide pollution of water body is a potential threat to human health. In this study, a new S0.1−(0.3/0.7)BiOI/BiOBr (S0.1BBI0.3) photocatalyst was synthesized by one−step solvothermal method. The structure, morphology and optical properties were characterized by XRD, SEM, XPS, UV−Vis DRS, EIS and other methods. S0.1BBI0.3 is a flower−like microsphere structure formed by the accumulation of two−dimensional nanosheets. Z−type heterojunction and S−doped dual−strategy co−modification broaden the photoresponse range of BiOBr, effectively prevent the photogenerated electron−hole pair recombination in S0.1BBI0.3, improve the photogenerated carrier redox ability, and increase the specific surface area. It provides more mesoporous structures, significantly improves adsorption properties, and provides more active sites for photocatalytic reactions. The photocatalytic experiment results showed that S0.1BBI0.3 had the best adsorption and photocatalytic performance for 2,4−dichlorophenoxyacetic acid (2,4−D) under visible light, and the removal rate of 2,4−D was up to 91.8% under 45 min darkness and 120 min light conditions. ESR technology confirmed that ·O2− is a photocatalytic active substance of S0.1BBI0.3.
-
Key words:
- BiOBr /
- S-doped /
- Heterojunction /
- 2,4-dichlorophenoxyacetic acid /
- Pesticide /
- Photocatalysis
-
图 9 BiOBr、BiOI、BBI0.3、S0.1BBIx和SzBBI0.3去除2,4−D曲线((a)、(b))、准一级动力学拟合((c)、(d))、不同S0.1BBI0.3投加量和去除不同浓度2,4−D曲线((e)、(f))
Figure 9. Removal curves of 2,4−D by BiOBr, BiOI, BBI0.3, S0.1BBIx and SzBBI0.3 ((a), (b)), quasi−first−order kinetic fitting ((c), (d)), and Curves of different dosages of S0.1BBI0.3 and removal of different concentrations of 2,4−D ((e)、(f))
Notes: C/C0: The ratio of the residual concentration of 2,4−D to its initial concentration
表 1 S0.1BiOBr、S0.1BiOI和S0.1BBI0.3的EDS数据
Table 1. EDS data for S0.1BiOBr, S0.1BiOI and S0.1BBI0.3
Sample Relative content of element /wt% O Bi Br I S S0.1BiOBr 7.10 68.87 23.71 - 0.33 S0.1BiOI 8.08 68.39 - 23.53 - S0.1BBI0.3 11.06 68.09 17.90 2.91 0.03 表 2 BiOBr、BiOI和S0.1BBI0.3的BET数据
Table 2. BET data for BiOBr, BiOI and S0.1BBI0.3
Sample SBET/
(m2·g−1)Vp/
(cm3·g−1)Pore Size/
nmBiOBr 18.68 0.108 19.60 BiOI 17.99 0.115 19.87 S0.1BBI0.3 26.09 0.123 15.83 Notes: SBET: Specific surface are; Vp: Total pore volume -
[1] SONG Y L. Insight into the mode of action of 2, 4-dichlorophenoxyacetic acid (2, 4-D) as an herbicide[J]. Journal of Integrative Plant Biology, 2014, 56(2): 106-113. doi: 10.1111/jipb.12131 [2] DA SILVA A P, MORAIS E R, OLIVEIRA E C, et al. Does exposure to environmental 2, 4-dichlorophenoxyacetic acid concentrations increase mortality rate in animals? A meta-analytic review[J]. Environ Pollut, 2022, 303: 14. [3] ABIGAIL M E A, SAMUEL M S, NEEDHIDASAN S, et al. Stratagems employed for 2, 4-dichlorophenoxyacetic acid removal from polluted water sources[J]. Clean Technol Environ Policy, 2017, 19(6): 1607-1620. doi: 10.1007/s10098-017-1371-8 [4] ISLAM F, WANG J, FAROOQ M A, et al. Potential impact of the herbicide 2, 4-dichlorophenoxyacetic acid on human and ecosystems[J]. Environ Int, 2018, 111: 332-351. doi: 10.1016/j.envint.2017.10.020 [5] BLACHNIO M, KUSMIEREK K, SWIATKOWSKI A, et al. Adsorption of Phenoxyacetic Herbicides from Water on Carbonaceous and Non-Carbonaceous Adsorbents[J]. Molecules, 2023, 28(14): 39. [6] ZHU X W, WANG B Y, KANG J, et al. Interfacial mechanism of the synergy of biochar adsorption and catalytic ozone micro-nano-bubbles for the removal of 2, 4-dichlorophenoxyacetic acid in water[J]. Sep Purif Technol, 2022, 299: 13. [7] GIRóN-NAVARRO R, LINARES-HERNáNDEZ I, TEUTLI-SEQUEIRA E A, et al. Evaluation and comparison of advanced oxidation processes for the degradation of 2, 4-dichlorophenoxyacetic acid (2, 4-D): a review[J]. Environ Sci Pollut R, 2021, 28(21): 26325-26358. doi: 10.1007/s11356-021-13730-y [8] MUSZYNSKI P, BRODOWSKA M S, PASZKO T. Occurrence and transformation of phenoxy acids in aquatic environment and photochemical methods of their removal: a review[J]. Environ Sci Pollut R, 2020, 27(2): 1276-1293. doi: 10.1007/s11356-019-06510-2 [9] 余关龙, 王世涛, 杨凯, et al. BiOI/BiOBr_(0.9)I_(0.1)光催化剂的制备及其对2, 4-二氯苯氧乙酸的降解性能[J]. 复合材料学报, 2023, 40(1): 201-211.YU Guanlong, WANG Shitao, YANG Kai, et al. Preparation of BiOI/BiOBr0.9I0.1 photocatalyst and its degradation performance for 2, 4-dichlorophenoxyacetic acid[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 201-211 (in Chinese). [10] KOE W S, LEE J W, CHONG W C, et al. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane[J]. Environ Sci Pollut R, 2020, 27(3): 2522-2565. doi: 10.1007/s11356-019-07193-5 [11] KEERTHIGA G, BALAKRISHNAN A, SATHIASIVAN K. Response surface methodology based optimization of photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid[J]. Desalin Water Treat, 2022, 251: 57-63. doi: 10.5004/dwt.2022.28114 [12] YUAN Z M, JIANG Z Y. Applications of BiOX in the Photocatalytic Reactions[J]. Molecules, 2023, 28(11): 15. [13] MENGTING Z, KURNIAWAN T A, DUAN L, et al. Advances in BiO<i>X</i>-based ternary photocatalysts for water technology and energy storage applications: Research trends, challenges, solutions, and ways forward[J]. Reviews in Environmental Science and Bio-Technology, 2022, 21(2): 331-370. doi: 10.1007/s11157-022-09617-0 [14] LIU Y B, WEI Y, LIU C, et al. Efficient photodegradation of 2, 4-D by B-doped g-C<sub>3</sub>N<sub>4</sub> nanosheets prepared by a two-step thermal polymerization method[J]. Res Chem Intermediat, 2023, 49(11): 5061-5682. doi: 10.1007/s11164-023-05141-0 [15] HAYATI P, MEHRABADI Z, KARIMI M, et al. Photocatalytic activity of new nanostructures of an Ag(i) metal-organic framework (Ag-MOF) for the efficient degradation of MCPA and 2, 4-D herbicides under sunlight irradiation[J]. New J Chem, 2021, 45(7): 3408-3417. doi: 10.1039/D0NJ02460K [16] LIU Y, HU Z F, YU J C. Photocatalytic degradation of ibuprofen on S-doped BiOBr[J]. Chemosphere, 2021, 278: 8. [17] WANG C Y, ZENG Q, ZHU G C. Novel S-doped BiOBr nanosheets for the enhanced photocatalytic degradation of bisphenol A under visible light irradiation[J]. Chemosphere, 2021, 268: 11. [18] SU J L, XIAO Y, REN M. Direct hydrolysis synthesis of BiOI flowerlike hierarchical structures and it's photocatalytic activity under simulated sunlight irradiation[J]. Catal Commun, 2014, 45: 30-33. doi: 10.1016/j.catcom.2013.10.020 [19] XIAO Y X, WU J, JIA T, et al. Fabrication of BiOI nanosheets with exposed (001) and (110) facets with different methods for photocatalytic oxidation elemental mercury[J]. Colloid Interface Sci Commun, 2021, 40: 8. [20] DU M X, DU Y, FENG Y B, et al. Advanced photocatalytic performance of novel BiOBr/BiOI/cellulose composites for the removal of organic pollutant[J]. Cellulose, 2019, 26(9): 5543-5557. doi: 10.1007/s10570-019-02474-1 [21] GAO J C, GAO Y, SUI Z Y, et al. Hydrothermal synthesis of BiOBr/FeWO<sub>4</sub> composite photocatalysts and their photocatalytic degradation of doxycycline[J]. J Alloy Compd, 2018, 732: 43-51. doi: 10.1016/j.jallcom.2017.10.092 [22] JING H X, GAO Y L, WANG X, et al. Preparation of Z-scheme spherical BiOI/Fe<sub>2</sub>O<sub>3</sub>/BiOBr for water pollution treatment[J]. Appl Organomet Chem, 2023, 37(2): 10. [23] AHMAD A, MENG X C, YUN N, et al. Preparation of Hierarchical BiOBr Microspheres for Visible Light-Induced Photocatalytic Detoxification and Disinfection[J]. J Nanomater, 2016, 2016: 10. [24] WANG Q, LIU Z, LIU D, et al. Oxygen vacancy-rich ultrathin sulfur-doped bismuth oxybromide nanosheet as a highly efficient visible-light responsive photocatalyst for environmental remediation[J]. Chem Eng J, 2019, 360: 838-847. doi: 10.1016/j.cej.2018.12.038 [25] YU G L, YANG Y, WANG S T, et al. Preparation of Bi2O2CO3/BiOBr0.9I0.1 photocatalyst and its degradation performance for 2, 4-dichlorophenoxyacetic acid[J]. J Alloy Compd, 2023, 952: 13. [26] 余关龙, 李培媛, 杨凯, et al. Fe3+掺杂BiOCl光催化剂降解盐酸四环素的性能[J]. 复合材料学报, 2023, 40(11): 6182-93.YU Guanlong, LI Peiyuan, YANG Kai, et al. Performance of Fe3+-doped BiOCl photocatalyst for degradation of tetracycline hydrochloride[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6182-6193 (in Chinese)