留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相控阵雷达T/R模块封装复合材料现状及发展趋势

程东锋 胡晓宇 周达 邱得超 樊思燕 何鹏 牛济泰

程东锋, 胡晓宇, 周达, 等. 相控阵雷达T/R模块封装复合材料现状及发展趋势[J]. 复合材料学报, 2023, 40(8): 4440-4459. doi: 10.13801/j.cnki.fhclxb.20230119.005
引用本文: 程东锋, 胡晓宇, 周达, 等. 相控阵雷达T/R模块封装复合材料现状及发展趋势[J]. 复合材料学报, 2023, 40(8): 4440-4459. doi: 10.13801/j.cnki.fhclxb.20230119.005
CHENG Dongfeng, HU Xiaoyu, ZHOU Da, et al. Research status and development trend of composite materials for phased array radar T/R module packaging[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4440-4459. doi: 10.13801/j.cnki.fhclxb.20230119.005
Citation: CHENG Dongfeng, HU Xiaoyu, ZHOU Da, et al. Research status and development trend of composite materials for phased array radar T/R module packaging[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4440-4459. doi: 10.13801/j.cnki.fhclxb.20230119.005

相控阵雷达T/R模块封装复合材料现状及发展趋势

doi: 10.13801/j.cnki.fhclxb.20230119.005
基金项目: 国家自然科学基金(51245008);河南省科技攻关项目(222102220006);河南省高等学校重点科研项目计划(22B430016);河南理工大学博士基金(B2019-38)
详细信息
    通讯作者:

    牛济泰,本科,俄罗斯自然科学院外籍院士,教授,博士生导师,研究方向为新型材料焊接性及焊接新工艺研究 E-mail: niujitai@163.com

  • 中图分类号: TB331

Research status and development trend of composite materials for phased array radar T/R module packaging

Funds: National Natural Science Foundation of China (51245008); Science and Technology Project of Henan Province (222102220006); Key Project of Science and Technology Research of Henan Provincial Department of Education (22B430016); Ph.D Foundation Program of Henan Polytechnic University (B2019-38)
  • 摘要: 随着航空航天、军工、电子技术的迅猛发展,封装方式与封装材料已成为电子设备进一步实现小型化、轻量化和高性能的重要制约。相控阵雷达T/R模块封装材料经历了从第一代的可伐合金到第二代的铜钨合金及近些年来兴起的以铝为基体的第三代轻质材料—碳化硅颗粒增强铝基复合材料和高硅铝合金,而二者的制备和加工技术仍存在的问题成为限制第三代材料全面推广和应用的重要瓶颈。本文综述了新一代封装材料的制备方法、机械加工性能、焊接工艺及表面处理等,详细介绍了新一代相控阵雷达T/R模块封装复合材料加工和应用的研究技术现状,并对其发展趋势进行展望。

     

  • 图  1  电子封装盒体

    Figure  1.  Electronic packaging box

    图  2  50vol%SiCp/Al合金制备的密封航空电子产品[11]

    Figure  2.  Hermetic aerospace electronic product manufactured with 50vol%SiCp/Al alloy[11]

    图  3  SiCp/Al 复合材料制备的封装外壳[9]

    Figure  3.  Packaging shell prepared with SiCp/Al composite[9]

    图  4  相控阵雷达T/R模块封装盒体制备流程图:(a)颗粒增强铝基复合材料的几种典型的制备方法[12];(b) CE13 合金制备的雷达用封装外壳[11];(c)镀金后铝基复合材料盒体[13];(d)激光封焊铝基复合材料盒体[13]

    Figure  4.  Flow chart of phased array radar T/R module packaging box preparation: (a) Several representative fabrication routes for particle reinforced aluminum matrix composites[12]; (b) Packaging shell for radar application prepared with CE13 alloy[11]; (c) Aluminum matrix composite box after gold plating[13]; (d) Laser sealing aluminum matrix composite box[13]

    图  5  原始参数(a)和优化后参数(b)制备的SiC/Al复合材料心部的组织形貌[13]

    Figure  5.  Microstructure of the core of SiC/Al composite prepared with original parameters (a) and optimized parameters (b)[13]

    图  6  SiCp/Al复合材料的制备工艺路线[10]

    Figure  6.  Preparation process route of SiCp/Al composite[10]

    图  7  SiCp/Al复合材料的机械加工方法[29]

    Figure  7.  Machining methods of SiCp/Al composites[29]

    图  8  复合材料加工微观形貌图[42]

    Figure  8.  Micromorphology images of composite material processing[42]

    图  9  传统车削(a)和振动辅助车削(b)中刀具侧面磨损模式的显微照片[49]

    Figure  9.  Micrograph of the tool flank wear patterns in conventional turning (a) and vibration-assisted turning (b)[49]

    图  10  焊缝横剖面的焊接气孔典型形貌

    Figure  10.  Typical morphology of pores within cross section of weld

    图  11  Cu箔中间层瞬时液相扩散焊(TLP)焊接复合材料SiCp/ZL101和 SiCp/Al焊接接头与母材的剪切强度[71]

    Figure  11.  Shear strengths of welded joints of SiCp/ZL101 and SiCp/Al using Cu foil layer by transient liquid phase diffusion welding (TLP) bonding[71]

    图  12  3种不同钎料钎焊接头的剪切强度对比

    Figure  12.  Comparison of shear strength of brazed joints with three different solders

    表  1  常用封装材料及其性能指标

    Table  1.   Performance parameters of common packaging materials

    Performance parametersSemiconductor materials1st generation packaging materials2nd generation packaging materials3rd generation packaging materials
    SiGaAsKoverInvarWW/CuMo/CuSiC/AlSi/Al
    CTE/(10−6 −1) 4.1 6.0 5.9 0.4 4.4 7.6-9.1 7.2-8.0 7-17 7-17
    TC/(W·(m·K)−1) 135 39 17 11 174 180-210 160-190 145-215 140-220
    Density/(g·cm−3) 2.3 5.3 8.3 8.1 19.3 15.6 9.9 2.7-2.9 2.4-2.6
    Notes: CTE—Coefficient of thermal expansion; TC—Thermal conductivity.
    下载: 导出CSV

    表  2  铝基复合材料的常用制备方法及优缺点[14]

    Table  2.   Advantages and disadvantages of common preparation methods of aluminum matrix composites[14]

    制备方法优点缺点
    搅拌铸造法工艺简单,制备成本低,
    适合大规模化生产
    增强体的体积分数有限,
    分布不易均匀化
    液态金属浸渗法可制备高体积分数增强体复合材料;增强相和基体
    之间的润湿性好、产品气孔、疏松等缺陷少;同时还
    可制备形状较复杂的零部件
    预制体容易变形,
    设备较复杂,
    生产成本相对较高
    粉末冶金法增强相分布均匀,
    界面反应易于控制、
    工艺参数可选择
    设备成本高,工艺复杂,制备周期长,零件的结构、形状和尺寸都受到一定的限制
    喷射沉积法界面反应易于控制,基体金属的晶粒细小且均匀,无宏观偏析,且增强相的体积分数及粒度也不受限制原料浪费严重,成本很高
    原位生成法增强体表面无污染,与基体相容性好,结合强度高增强相的形成、均匀化分布及有害反应难以有效控制
    下载: 导出CSV
  • [1] ROSKER M J. Technologies for next generation T/R modules[C]//2007 IEEE Radar Conference. Waltham, 2007: 944-947.
    [2] 吴礼群, 孙再吉. T/R组件核心技术最新发展综述(二)[J]. 中国电子科学研究院学报, 2012, 7(2):145-147.

    WU Liqun, SUN Zaiji. A study on the development of transmit/receive module core technologies (2)[J]. Jour-nal of China Academy of Electronics and Information Technology,2012,7(2):145-147(in Chinese).
    [3] TUMMALA J, PULUGURTHA M, SUNDARAM V. Next-generation packaging materials[J]. Advanced Packaging,2007,23(6):524-529.
    [4] 杨会娟, 王志法, 王海山, 等. 电子封装材料的研究现状及进展[J]. 材料导报, 2004, 18(6):86-87, 90.

    YANG Huijuan, WANG Zhifa, WANG Haishan, et al. Present status and progress in study of electronic packaging materials[J]. Materials Review,2004,18(6):86-87, 90(in Chinese).
    [5] MOORES K A, JOSHI Y K. High performance packaging materials and architectures for improved thermal management of power electronics[J]. Future Circuits International, 2001, 7: 45-49.
    [6] OTIABA K C, EKERE N N, AMALU E H, et al. Thermal management materials for electronic control unit: Trends, processing technology and R&D challenges[J]. Advanced Materials Research,2011,367:301-307. doi: 10.4028/www.scientific.net/AMR.367.301
    [7] MALLIK S, EKERE N, BEST C, et al. Investigation of thermal management materials for automotive electronic control units[J]. Applied Thermal Engineering,2011,31(2-3):355-362. doi: 10.1016/j.applthermaleng.2010.09.023
    [8] 曾婧, 彭超群, 王日初, 等. 电子封装用金属基复合材料的研究进展[J]. 中国有色金属学报, 2015, 25(12):3255-3270.

    ZENG Jing, PENG Chaoqun, WANG Richu, et al. Research and development of metal matrix composites for electro-nic packaging[J]. Chinese Journal of Nonferrous Metals,2015,25(12):3255-3270(in Chinese).
    [9] 张晓辉, 王强. 电子封装用金属基复合材料的研究现状[J]. 微纳电子技术, 2018, 55(1):18-25.

    ZHANG Xiaohui, WANG Qiang. Research state of metal-matrix composites for electronic packaging[J]. Micronanoelectronic Technology,2018,55(1):18-25(in Chinese).
    [10] 张维玉, 左涛, 肖伯律, 等. SiCp/Al复合材料制备工艺对组织与性能的影响[J]. 粉末冶金技术, 2004(6):354-358.

    ZHANG Weiyu, ZUO Tao, XIAO Bolv, et al. The effect of fabricating processes on microstructure and properties of SiCp/Al composites[J]. Powder Metallurgy Technology,2004(6):354-358(in Chinese).
    [11] 朱小军, 禹胜林, 严伟. 电子封装用SiCp/Al复合材料的研究应用进展[C]//中国电子学会电子机械工程分会2009年机械电子学学术会议论文集. 北京: 电子工业出版社, 2009: 225-230.

    ZHU Xiaojun, YU Shenglin, YAN Wei. Progress in research and application of SiCp/Al composites for electronic packaging[C]//Proceedings of the 2009 Mechatronics Conference of the Electronic Mechanical Engineering Branch of the Chinese Society of Electronics. Beijing: Publishing House of Electronics Industry, 2009: 225-230.
    [12] 孔亚茹, 郭强, 张荻. 颗粒增强铝基复合材料界面性能的研究[J]. 材料导报, 2015, 29(9): 34-43, 49.

    KONG Yaru, GUO Qiang, ZHANG Di. Review on interfacial properties of particle-reinforced aluminum matrix composites[J]. Materials Review, 2015, 29(9): 34-43, 49.
    [13] 雷党刚, 解启林. 新型电子封装材料的制备及盒体的焊接[C]//2011年机械电子学学术会议论文集. 西安: 中国电子学会电子机械工程分会, 2011: 216-219.

    LEI Danggang, XIE Qilin. Preparation of electronic packaging materials and its box welding technology[C]//Proceedings of the 2011 Mechatronics Conference. Xi'an: Chinese Institute of Electronics Electronic Mechanical Engineering Branch, 2011: 216-219(in Chinese).
    [14] 程东锋. 高体积分数SiC颗粒增强铝基复合材料激光纳米钎接研究[D]. 焦作: 河南理工大学, 2017.

    CHENG Dongfeng. Study on laser welding of SiC particle reinforced aluminum matrix composite based on nano effect[D]. Jiaozuo: Henan Polytechnic University, 2017(in Chinese).
    [15] 吴彤. SiC颗粒增强铝基复合材料的组织与力学性能研究[D]. 长春: 吉林大学, 2021.

    WU Tong. Research on microstructure and mechanical properties of SiC particles reinforced aluminum matrix composites[D]. Changchun: Jilin University, 2021(in Chinese).
    [16] 谢斌, 王晓刚. 无压浸渗制备SiCp/Al-7 Si-5 Mg铝基复合材料的反应过程及热物理性能[J]. 稀有金属材料与工程, 2015, 44(5):1057-1061. doi: 10.1016/S1875-5372(15)30066-7

    XIE Bin, WANG Xiaogang. Thermo-physical properties and reaction process of SiCp/Al-7 Si-5 Mg aluminum matrix composites fabricated by pressureless infiltration[J]. Rare Metal Materials and Engineering,2015,44(5):1057-1061(in Chinese). doi: 10.1016/S1875-5372(15)30066-7
    [17] 史艳艳. 电子封装用β-SiCp/Al复合材料制备与性能研究[D]. 西安: 西安科技大学, 2017.

    SHI Yanyan. Preparation and properties of β-SiCp/Al composite used for electronic packaging[D]. Xi'an: Xi'an University of Science and Technology, 2017(in Chinese).
    [18] 龚燕妮. 真空压力浸渗SiC/Al复合材料工艺过程数值模拟研究[D]. 北京: 北京理工大学, 2015.

    GONG Yanni. Study on numerical simulation of gas pressure infiltration SiC/Al ceramic matrix composites[D]. Beijing: Beijing Institute of Technology, 2015(in Chinese).
    [19] 吉喆, 席锦会, 王延庆, 等. 热加工后SiC颗粒的分布对喷射沉积7075/SiCp复合材料性能的影响[J]. 粉末冶金技术, 2009, 27(4):268-272.

    JI Zhe, XI Jinhui, WANG Yanqing, et al. Effect of particle distribution on mechanical properties of multi-layer spray forming 7075/SiCp composite after hot forming[J]. Powder Metallurgy Technology,2009,27(4):268-272(in Chinese).
    [20] 周晓璐. 高硅铝合金中TiP的演变行为与初晶Si复合形核研究[D]. 济南: 山东大学, 2017.

    ZHOU Xiaolu. Evolution of TiP and coupling nucleation of primary Si in high- Si aluminum alloy[D]. Ji'nan: Shandong University, 2017(in Chinese).
    [21] 刘英莉. 喷射沉积连续挤压高硅铝合金的组织与性能研究[D]. 昆明: 昆明理工大学, 2017.

    LIU Yingli. Study on microstructure and properties of high-silicon aluminum alloys prepared by spray conform[D]. Kunming: Kunming University of Science and Technology, 2017(in Chinese).
    [22] 白光宇. Al-Si-W合金电子封装材料制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    BAI Guangyu. Research on preparation and properties of Al-Si-W alloy for electronic packaging[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [23] 骆文强. 电子封装SiCp/Al复合材料的镀膜金属化、润湿与钎焊研究[D]. 镇江: 江苏大学, 2017.

    LUO Wenqiang. Surface metallization, wetting and brazing of SiCp/Al composites for electronic packaging[D]. Zhenjiang: Jiangsu University, 2017(in Chinese).
    [24] 贺毅强, 周海生, 李俊杰, 等. 喷射共沉积颗粒增强金属基复合材料的研究现状与进展[J]. 材料科学与工程学报, 2016, 34(2):338-344, 320.

    HE Yiqiang, ZHOU Haisheng, LI Junjie, et al. Status and development of spray deposited metal matrix composite reinforced with particle[J]. Journal of Materials Science and Engineering,2016,34(2):338-344, 320(in Chinese).
    [25] 李超, 彭超群, 余琨, 等. 喷射沉积70%Si-Al合金电子封装材料的组织与性能[J]. 中国有色金属学报, 2009, 19(2):303-307. doi: 10.3321/j.issn:1004-0609.2009.02.017

    LI Chao, PENG Chaoqun, YU Kun, et al. Microstructure and properties of spray deposition 70%Si-Al alloy for electronic packaging applications[J]. The Chinese Journal of Nonferrous Metals,2009,19(2):303-307(in Chinese). doi: 10.3321/j.issn:1004-0609.2009.02.017
    [26] 冀恩龙. 高硅铝合金电子封装材料制备工艺及性能研究[D]. 沈阳: 沈阳工业大学, 2021.

    JI Enlong. Study on preparation and properties of electronic packaging materials in high aluminum-silicon alloy[D]. Shenyang: Shenyang University of Technology, 2021(in Chinese).
    [27] 方杰, 崔西会, 何东, 等. 梯度硅铝合金在高密度微波组件封装中的应用研究[J]. 中国电子科学研究院学报, 2021, 16(5):426-429. doi: 10.3969/j.issn.1673-5692.2021.05.002

    FANG Jie, CUI Xihui, HE Dong, et al. Application study of gradient high-silicon aluminium alloy in the packaging of high density intergrated microwave components[J]. Journal of China Academy of Electronics and Information Technology,2021,16(5):426-429(in Chinese). doi: 10.3969/j.issn.1673-5692.2021.05.002
    [28] 李艳霞, 张巨成, 王云霄, 等. 高硅含量铝硅梯度合金制备及其组织、性能研究[J]. 北华航天工业学院学报, 2017, 27(6):1-4. doi: 10.3969/j.issn.1673-7938.2017.06.001

    LI Yanxia, ZHANG Jucheng, WANG Yunxiao, et al. Preparation of Al-Si gradient alloy with high Si content and study of its microstructures and properties[J]. Journal of North China Institute of Aerospace Engineering,2017,27(6):1-4(in Chinese). doi: 10.3969/j.issn.1673-7938.2017.06.001
    [29] 王兴文. 超声激励下的SiCp/Al铣削机理及表面质量研究[D]. 太原: 中北大学, 2018.

    WANG Xingwen. SiCp/Al milling mechanism and surface quality under ultrasonic excitation[D]. Taiyuan: North University of China, 2018(in Chinese).
    [30] DANDEKAR C R, SHIN Y C. Modeling of machining of composite materials: A review[J]. International Journal of Machine Tools & Manufacture,2012,57:102-121.
    [31] PRASAD B S, PRABHA K A, KUMAR P V S. Condition monitoring of turning process using infrared thermography technique: An experimental approach[J]. Infrared Physics and Technology,2017,81:137-147. doi: 10.1016/j.infrared.2016.12.023
    [32] DAVIM J P, BAPTISTA A M. Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium[J]. Journal of Materials Processing Technology,2000,103(3):417-423. doi: 10.1016/S0924-0136(00)00495-7
    [33] RASCH N. Machinability of particulate aluminium matrix composites[J]. CIRP Annals-Manufacturing Technology, 1992, 41(1): 55-58.
    [34] KUMAR J, SINGH D, KALSI N S, et al. Investigation on the mechanical, tribological, morphological and machinability behavior of stir-casted Al/SiC/Mo reinforced MMCs[J]. Journal of Materials Research and Technology,2021,12:930-946. doi: 10.1016/j.jmrt.2021.03.034
    [35] KANNAN S, KISHAWY H A. Surface characteristics of machined aluminium metal matrix composites[J]. International Journal of Machine Tools & Manufacture,2006,46(15):2017-2025.
    [36] SUN F H, WU Z Y, ZHONG J W, et al. High speed milling of SiC particle reinforced aluminum-based MMC with coated carbide inserts[J]. Key Engineering Materials,2004,274-276:457-462. doi: 10.4028/www.scientific.net/KEM.274-276.457
    [37] AROKIADASS R, PALANIRADJA K, ALAGUMOORTHI N. Prediction and optimization of end milling process parameters of cast aluminium based MMC[J]. Transactions of Nonferrous Metals Society of China,2012,22(7):1568-1574. doi: 10.1016/S1003-6326(11)61357-5
    [38] TURGUT Y, INICI H C, AHIN I, et al. Study of cutting force and surface roughness in milling of Al/SiC metal matrix composites[J]. Entific Research and Essays,2011,6(10):2056-2062. doi: 10.5897/SRE10.496
    [39] BARNES S, PASHBY I R, HASHIM A B. Effect of heat treatment on the drilling performance of aluminium/SiC MMC[J]. Applied Composite Materials,1999,6(2):121-138. doi: 10.1023/A:1008853525975
    [40] TOSUN G, MURATOGLU M. The drilling of an Al/SiCp metal-matrix composites. Part I: Microstructure[J]. Composites Science & Technology,2004,64(2):299-308.
    [41] ZHOU L, HOU N, HUANG S, et al. An experimental study on formation mechanisms of edge defects in orthogonal cutting of SiCp/Al composites[J]. International Journal of Advanced Manufacturing Technology,2014,72(9-12):1407-1414. doi: 10.1007/s00170-014-5743-5
    [42] 李德溥. 颗粒增强铝基复合材料磨削加工研究[J]. 哈尔滨商业大学学报(自然科学版), 2011, 27(2):248-251.

    LI Depu. Research on grinding machining of particle reinforced aluminum matrix composites[J]. Journal of Harbin University of Commerce (Natural Sciences Edition),2011,27(2):248-251(in Chinese).
    [43] 关佳亮, 张龙月, 杨洋, 等. 铝基复合材料专用ELID磨削液的开发[J]. 制造技术与机床, 2020(8):80-83, 88.

    GUAN Jialiang, ZHANG Longyue, YANG Yang, et al. Development of specialized ELID grinding fluid for aluminum matrix composites[J]. Manufacturing Technology & Machine Tool,2020(8):80-83, 88(in Chinese).
    [44] YU X L. Finite element analysis of influence of grinding parameters on grinding force[C]//International Conference on Electronic & Mechanical Engineering & Information Technology. Harbin: EMEIT, 2011.
    [45] DHAR S, PUROHIT R, SAINI N, et al. Mathematical modeling of electric discharge machining of cast Al-4 Cu-6 Si alloy-10wt%SiC P composites[J]. Journal of Materials Processing Technology,2007,194(1-3):24-29. doi: 10.1016/j.jmatprotec.2007.03.121
    [46] 张文超. 颗粒增强金属基复合材料电火花加工放电及材料蚀除机理研究[D]. 大连: 大连交通大学, 2020.

    ZHANG Wenchao. Research on the discharge and material removal mechanisms of PRMMCs in EDM[D]. Dalian: Dalian Jiaotong University, 2020(in Chinese).
    [47] MÜLLER F, MONAGHAN J. Non-conventional machining of particle reinforced metal matrix composites[J]. Journal of Materials Processing Technology, 2001, 118(1-3): 278-285.
    [48] MONAGHAN F M. Non-conventional machining of particle reinforced metal matrix composite[J]. International Journal of Machine Tools and Manufacture, 2000, 40(9):1351-1366.
    [49] DONG G J, ZHANG H, ZHOU M, et al. Experimental investigation on ultrasonic vibration-assisted turning of SiCp/Al composites[J]. Advanced Manufacturing Processes,2013,28(9):999-1002.
    [50] HUMBERTO G, DELCIE D, XIAO X C, et al. Adhesion analysis and dry machining performance of CVD diamond coatings deposited on surface modified WC-Co turning inserts[J]. Journal of Materials Processing Technology,2012,212(2):523-533. doi: 10.1016/j.jmatprotec.2011.10.020
    [51] SOARES R B, JESUS A D, NETO R, et al. Comparison between cemented carbide and PCD tools on machinabi-lity of a high silicon aluminum alloy[J]. Journal of Materials Engineering & Performance, 2017, 26(9): 4638-4657.
    [52] OUSSAMA C, OLUFAYO O A, SONGMENE V, et al. Investigation on surface quality of a rapidly solidified Al-50%Si alloy component for deep-space applications[J]. Materials,2020,13(15):3412. doi: 10.3390/ma13153412
    [53] FARID A A, SHARIF S, IDRIS M H. Performance and wear mechanisms of uncoated, TiAlN, and AlTiN-coated carbide tools in high-speed drilling of Al-Si alloy[J]. The International Journal of Advanced Manufacturing Technology,2021,113(6):1-14.
    [54] 高敦升. 金刚石和氮化碳涂层刀具加工高硅铝合金[J]. 中国设备工程, 2018(6):174-175. doi: 10.3969/j.issn.1671-0711.2018.06.092

    GAO Dunsheng. Diamond and carbon nitride coated tool machining high silicon aluminum alloy[J]. China Plant Engineering,2018(6):174-175(in Chinese). doi: 10.3969/j.issn.1671-0711.2018.06.092
    [55] 李晓臣, 周利平, 刘小莹, 等. 高硅铝合金切削性能的试验研究[J]. 工具技术, 2017, 51(6):31-34.

    LI Xiaochen, ZHOU Liping, LIU Xiaoying, et al. Experimental study of high silicon aluminum alloy cutting performance[J]. Tool Engineering,2017,51(6):31-34(in Chinese).
    [56] 周晓晖. 高硅铝合金CE11铣削加工的切削性能研究[D]. 成都: 西华大学, 2017.

    ZHOU Xiaohui. Study on cutting performance of milling for high silicon aluminum alloy CE11[D]. Chengdu: Xihua University, 2017(in Chinese).
    [57] 胡富强, 曹福洋, 魏军齐, 等. 高硅铝合金超声电火花复合加工表面性能研究[C]//第15届全国特种加工学术会议论文集(上). 苏州: 电加工与模具杂志社, 2013: 198-202.

    HU Fuqiang, CAO Fuyang, WEI Junqi, et al. Study on the surface properties of high silicon aluminum alloy in ultrasonic combined EDM[C]//Proceedings of the 15th National Conference on Special Machining (Part 1). Suzhou: Journal of Electrical Processing and Tooling, 2013: 198-202(in Chinese).
    [58] 高增, 牛济泰, 王西涛. SiCp/Al复合材料焊接方法及其填充材料研究进展[J]. 热加工工艺, 2014, 43(15):11-15.

    GAO Zeng, NIU Jitai, WANG Xitao. Review on welding method and filling material research progress of SiC particle reinforced aluminium matrix composite[J]. Hot Working Technology,2014,43(15):11-15(in Chinese).
    [59] URENA A, ESCALERA M D, GIL L. Influence of interface reactions on fracture mechanisms in TIG arc-welded aluminium matrix composites[J]. Composites Science and Technology, 2000, 60(4): 613-622.
    [60] 陈永, 汪喜和, 刘胜新, 等. SiC颗粒增强铝基复合材料氦-氩混合气体TIG焊研究[J]. 电焊机, 2007(7):28-30, 37.

    CHEN Yong, WANG Xihe, LIU Shengxin, et al. Research on TIG welding of He-Ar mixed gas for SiCp/6061 Al composite[J]. Electric Welding Machine,2007(7):28-30, 37(in Chinese).
    [61] 程东锋. SiCp/6061 Al复合材料的氩弧焊工艺及机理研究[D]. 郑州: 郑州大学, 2009.

    CHENG Dongfeng. Technology and mechanism on argon arc welding of SiC particle reinforced 6061 Al composites[D]. Zhengzhou: Zhengzhou University, 2009(in Chinese).
    [62] 李俐群, 左智成, 陶汪, 等. 高比分SiCp/2024铝基复合材料激光原位焊接头断裂行为[J]. 焊接学报, 2012, 33(4):61-64, 116.

    LI Liqun, ZUO Zhicheng, TAO Wang, et al. Welded joints fracture behavior of laser in-situ welding of high volume fraction SiCp/2024 Al MMC[J]. Transactions of the China Welding Institution,2012,33(4):61-64, 116(in Chinese).
    [63] LEI Y C, XUE H, HU W, et al. Effect of Ti-Si-Mg-Al wire on microstructure and mechanical properties of plasma arc in-situ welded joint of SiCp/Al composites[J]. Transactions of Nonferrous Metals Society of China,2012,22(2):305-311. doi: 10.1016/S1003-6326(11)61175-8
    [64] 刘一. 高硅铝合金电子封装材料激光封焊界面组织与性能研究[D]. 合肥: 合肥工业大学, 2019.

    LIU Yi. Microstructure and properties of laser sealing interface of high silicon aluminum alloy electronic packaging materials[D]. Hefei: Hefei University of Technology, 2019(in Chinese).
    [65] 张文梅, 纪红, 刘彦强, 等. Si/Al电子封装复合材料的激光焊接气孔成因分析[J]. 稀有金属, 2017, 41(11):1214-1223.

    ZHANG Wenmei, JI Hong, LIU Yanqiang, et al. Reasons for formation of pores during laser-beam welding of electronic-packaging Si/Al composites[J]. Chinese Journal of Rare Metals,2017,41(11):1214-1223(in Chinese).
    [66] 李仲勋. 高硅铝薄壁壳体的激光焊接工艺研究[D]. 西安: 西安理工大学, 2018.

    LI Zhongxun. Research on laser welding process of high silicon aluminum thin-walled shell[D]. Xi'an: Xi'an University of Technology, 2018(in Chinese).
    [67] 石磊, 甄立玲, 程朝峰, 等. AlSi12 CuMgNi铝合金的真空电子束焊接接头组织及性能[J]. 焊接技术, 2011, 40(11):14-16, 20, 78. doi: 10.3969/j.issn.1002-025X.2011.11.004

    SHI Lei, ZHEN Liling, CHENG Chaofeng, et al. Microstructures and mechanical properties of AlSi12 CuMgNi aluminium alloy joint welded by vacuum electron beam welding[J]. Welding Technology,2011,40(11):14-16, 20, 78(in Chinese). doi: 10.3969/j.issn.1002-025X.2011.11.004
    [68] 郭磊磊. SiC颗粒增强铝基复合材料连接技术研究现状[J]. 热加工工艺, 2019, 48(11):6-9.

    GUO Leilei. Research status of joining technique of SiC particle reinforced aluminium matrix composites[J]. Hot Working Technology,2019,48(11):6-9(in Chinese).
    [69] 刘卫红, 孙大谦, 邱小明, 等. 用纯金属Ni作中间层扩散连接铝基复合材料[J]. 材料工程, 2006(11):9-12. doi: 10.3969/j.issn.1001-4381.2006.11.002

    LIU Weihong, SUN Daqian, QIU Xiaoming, et al. Diffusion bonding of aluminum mental matrix composite with Ni interlayer[J]. Journal of Materials Engineering,2006(11):9-12(in Chinese). doi: 10.3969/j.issn.1001-4381.2006.11.002
    [70] 陈思杰, 朱春莉, 魏明强. 铝基复合材料TLP扩散焊接头的组织及性能[J]. 热加工工艺, 2014, 43(17):187-189.

    CHEN Sijie, ZHU Chunli, WEI Mingqiang. Microstructure and properties of aluminum matrix compositite joint with transient liquid-phase diffusion bonding process[J]. Hot Working Technology,2014,43(17):187-189(in Chinese).
    [71] 廖先金, 连晨姿, 张贵锋. SiC颗粒增强铝基复合材料的纯铜中间层液相扩散焊[J]. 复合材料学报, 2021, 38(2):572-582.

    LIAO Xianjin, LIAN Chenzi, ZHANG Guifeng. Liquid phase diffusion bonding for SiC particles reinforced aluminum matrix composites using pure copper inter-layer[J]. Acta Materiae Compositae Sinica,2021,38(2):572-582(in Chinese).
    [72] UZUN H. Friction stir welding of SiC particulate reinforced AA2124 aluminium alloy matrix composite[J]. Materials & Design, 2007, 28(5): 1440-1446.
    [73] 曹金营, 曹贺, 欧阳求保, 等. 多道次搅拌摩擦加工对SiCP/2A14铝合金复合材料显微组织和力学性能的影响[J]. 复合材料学报, 2020, 37(11):2861-2869.

    CAO Jinying, CAO He, OUYANG Qiubao, et al. Effect of multi-pass friction stir processing on microstructure and mechanical properties of SiCP/2A14 aluminum alloy composites[J]. Acta Materiae Compositae Sinica,2020,37(11):2861-2869(in Chinese).
    [74] 高增, 程东锋, 王鹏, 等. 低体积分数SiCp/Al复合材料封装盒体搅拌摩擦焊研究[J]. 硅酸盐通报, 2017, 36(5):1735-1739.

    GAO Zeng, CHENG Dongfeng, WANG Peng, et al. Friction stir welding of packaging container made of SiCp/Al composites with low volume fraction[J]. Bulletin of the Chinese Ceramic Society,2017,36(5):1735-1739(in Chinese).
    [75] 刘进伟. 高硅铝合金的接触反应钎焊/扩散焊实验研究[D]. 合肥: 合肥工业大学, 2015.

    LIU Jinwei. Experimental study on contact reactive brazing and diffusion bonding of aluminum alloy with high silicon[D]. Hefei: Hefei University of Technology, 2015(in Chinese).
    [76] 张伟华, 邱小明, 陈晓伟, 等. Al-Si合金瞬间液相扩散连接接头组织与力学性能[J]. 焊接学报, 2009, 30(2):121-124, 159.

    ZHANG Weihua, QIU Xiaoming, CHEN Xiaowei, et al. Microstructure and mechanical property of transient liquid phase bonded aluminum silicon alloy instantaneous diffusion joint[J]. Transactions of the China Welding Institution,2009,30(2):121-124, 159(in Chinese).
    [77] 朱琳. 超声波诱导瞬间液相连接高硅铝合金焊缝的形成机理及力学性能研究[D]. 天津: 天津理工大学, 2018.

    ZHU Lin. Study on the formation mechanism and mechanical properties of joints by rapid ultrasound-induced transient liquid phase joining hypereutectic Al-Si alloys[D]. Tianjin: Tianjin University of Technology, 2018(in Chinese).
    [78] RODRIGUEZ N A, ALMANZA E, ALVAREZ C J, et al. Study of friction stir welded A319 and A413 aluminum casting alloys[J]. Journal of Materials Science,2005,40(16):4307-4312. doi: 10.1007/s10853-005-2837-3
    [79] 燕振君. 高硅铝合金搅拌摩擦焊及激光焊的工艺研究[D]. 合肥: 合肥工业大学, 2015.

    YAN Zhenjun. Experimental researches on friction stir welding and pulsed laser welding of high-silicon aluminum alloy[D]. Hefei: Hefei University of Technology, 2015(in Chinese).
    [80] 蔡亮. 高硅铝合金钎焊及搅拌摩擦焊研究[D]. 大连: 大连交通大学, 2017.

    CAI Liang. Study on brazing and friction stir welding of high silicon aluminum alloy[D]. Dalian: Dalian Jiaotong University, 2017(in Chinese).
    [81] 牛济泰, 程东锋, 高增, 等. SiC颗粒增强铝基复合材料的连接现状[J]. 焊接学报, 2019, 40(3):155-160, 167-168.

    NIU Jitai, CHENG Dongfeng, GAO Zeng, et al. Reviews on welding method of SiC particle reinforced aluminum matrix composites[J]. Transactions of the China Welding Institution,2019,40(3):155-160, 167-168(in Chinese).
    [82] 陈思杰, 魏明强, 赵丕峰. 钎焊时间对SiCp/Al6063复合材料真空钎焊组织性能影响[J]. 焊接学报, 2015, 36(10):87-90.

    CHEN Sijie, WEI Mingqiang, ZHAO Pifeng. Study on microstructure and property of aluminum matrix compo-sites SiCp/Al6063 vacuum brazing joint with different holding time[J]. Transactions of the China Welding Institution,2015,36(10):87-90(in Chinese).
    [83] 王鹏, 高增, 李锦竹, 等. 高体积比SiCp/6063 Al复合材料的铝基钎料制备及钎焊工艺研究[J]. 材料导报, 2017, 31(2):69-72, 91.

    WANG Peng, GAO Zeng, LI Jinzhu, et al. Preparation of aluminum base filler metals and brazing process of 6063 Al matrix composites with high SiC content[J]. Materials Reports,2017,31(2):69-72, 91(in Chinese).
    [84] 陈碧强, 张贵锋, 王士元. 高体积分数铝基复合材料Zn基钎料钎焊接头组织与性能[J]. 焊管, 2019, 42(8):19-25.

    CHEN Biqiang, ZHANG Guifeng, WANG Shiyuan. Microstructure and property of aluminium matrix composites joint with high volume fraction using Zn-based brazing filler metal[J]. Welded Pipe and Tube,2019,42(8):19-25(in Chinese).
    [85] 张洋, 闫久春, 陈晓光. SiCp/A356复合材料超声波辅助钎焊[J]. 焊接学报, 2009, 30(3):89-92, 117-118. doi: 10.3321/j.issn:0253-360X.2009.03.023

    ZHANG Yang, YAN Jiuchun, CHEN Xiaoguang. Ultrasonically aided brazing of SiCp/A356 composites[J]. Transactions of the China Welding Institution,2009,30(3):89-92, 117-118(in Chinese). doi: 10.3321/j.issn:0253-360X.2009.03.023
    [86] 冷雪松, 王长文, 张洋, 等. 铝基复合材料超声波钎焊陶瓷颗粒增强接头强度机理[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(S2):290-294.

    LENG Xuesong, WANG Changwen, ZHANG Yang, et al. Strengthening mechanism of ceramic particle reinforced bonds by ultrasonic brazing of AlMMCs[J]. Transactions of Nonferrous Metals Society of China,2011,21(S2):290-294(in Chinese).
    [87] 侯玲. 新型高硅铝合金的钎焊工艺研究[D]. 合肥: 合肥工业大学, 2012.

    HOU Ling. Investigation on brazing process of new high silicon aluminum alloy[D]. Hefei: Hefei University of Technology, 2012(in Chinese).
    [88] 杨环宇, 高增, 赵明辉, 等. 镀镍高硅铝合金真空钎焊工艺研究[J]. 兵器材料科学与工程, 2019, 42(3):86-90.

    YANG Huanyu, GAO Zeng, ZHAO Minghui, et al. Vacuum brazing of nickel-plated high silicon aluminum alloy[J]. Ordnance Material Science and Engineering,2019,42(3):86-90(in Chinese).
    [89] 杨环宇. 高硅铝与可伐合金钎焊工艺及机理研究[D]. 焦作: 河南理工大学, 2020.

    YANG Huanyu. Study on brazing process and mechanism of high silicon aluminum and kovar alloy[D]. Jiaozuo: Henan Polytechnic University, 2020(in Chinese).
    [90] WANG Z, GAO Z, CHU J, et al. Low temperature sealing process and properties of kovar alloy to DM305 electro-nic glass[J]. Metals-Open Access Metallurgy Journal,2020,10(7):941.
    [91] 解立川, 彭超群, 王日初, 等. 高硅铝合金电子封装材料研究进展[J]. 中国有色金属学报, 2012, 22(9):2578-2587.

    XIE Lichuan, PENG Chaoqun, WANG Richu, et al. Research progress of high aluminum-silicon alloys in electronic packaging[J]. The Chinese Journal of Nonferrous Metals,2012,22(9):2578-2587(in Chinese).
    [92] 李青林. ADC12高硅铝合金酸洗工艺及Ni-P光亮化学镀技术研究[D]. 广州: 华南理工大学, 2019.

    LI Qinglin. Study on pickling and Ni-P bright electroless plating technology of ADC12 high silicon aluminum alloy[D]. Guangzhou: South China University of Technology, 2019(in Chinese).
    [93] 卢海燕, 周明智. SiCp/Al复合材料镀金工艺研究[J]. 电子工艺技术, 2015, 36(2):107-109.

    LU Haiyan, ZHOU Mingzhi. Study gold-plating technology of SiCp/Al packaging material[J]. Electronics Process Technology,2015,36(2):107-109(in Chinese).
    [94] 李志辉, 张永安, 熊柏青, 等. 喷射成形硅铝电子封装材料的电镀及钎焊性能[J]. 稀有金属, 2010, 34(5):633-637.

    LI Zhihui, ZHANG Yong'an, XIONG Baiqing, et al. Plating and brazing performance of spray-formed Si-Al materials for electronic packaging[J]. Chinese Journal of Rare Metals,2010,34(5):633-637(in Chinese).
    [95] 王浩, 封正龙. 化学镀研究现状及其应用[J]. 化工技术与开发, 2018, 47(8):37-40. doi: 10.3969/j.issn.1671-9905.2018.08.011

    WANG Hao, FENG Zhenglong. Research status quo of electroless plating and its application in specific fields[J]. Technology & Development of Chemical,2018,47(8):37-40(in Chinese). doi: 10.3969/j.issn.1671-9905.2018.08.011
    [96] 宋启良, 胡振峰, 杜晓坤, 等. 非金属表面化学镀覆的研究现状[J]. 电镀与涂饰, 2019, 38(3):125-131. doi: 10.19289/j.1004-227x.2019.03.009

    SONG Qiliang, HU Zhenfeng, DU Xiaokun, et al. Advances in electroless plating on nonmetals[J]. Electroplating& Finishing,2019,38(3):125-131(in Chinese). doi: 10.19289/j.1004-227x.2019.03.009
    [97] 范晓杰. SiCp/6063 Al复合材料真空软钎焊工艺研究[D]. 焦作: 河南理工大学, 2016.

    FAN Xiaojie. Research on vacuum soldering process of SiCp/6063 Al composites[D]. Jiaozuo: Henan Polytechnic University, 2016(in Chinese).
    [98] ZHAO H F, TANG W Z, LI C M, et al. Thermal conductive properties of Ni-P electroless plated SiCp/Al composite electronic packaging material[J]. Surface & Coatings Technology,2008,202(12):2540-2544.
    [99] 姚怀, 朱广林. pH值对碳化硅粉体表面镀镍的影响[J]. 表面技术, 2013, 42(2):20-22.

    YAO Huai, ZHU Guanglin. The effect of pH on the electroless Ni plating on the SiC powder[J]. Surface Technology,2013,42(2):20-22(in Chinese).
    [100] 朱琳. SiC颗粒表面金属化工艺及其对铜基复合材料性能影响的研究[D]. 南京: 东南大学, 2018.

    ZHU Lin. Study on surface metallization process of SiC particles and its effect on the properties of copper-based composites[D]. Nanjing: Southeast University, 2018(in Chinese).
    [101] 刘凯, 杨旭一, 高翔, 等. 一种铝硅合金盒体的表面处理方法: 中国, CN105132924 A[P]. 2015-12-09.

    LIU Kai, YANG Xuyi, GAO Xiang, et al. A surface treatment method for aluminum-silicon alloy box body: China, CN105132924 A[P]. 2015-12-09(in Chinese).
    [102] 张鸿, 郭红霞, 顾朝桥, 等. SiC JBS二极管和SiC MOSFET的空间辐照效应及机理[J]. 太赫兹科学与电子信息学报, 2022, 20(9): 884-896.

    ZHANG Hong, GUO Hongxia, GU Zhaoqiao, et al. Radiation effects of SiC JBS diodes and SiC MOSFETs[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(9): 884-896(in Chinese).
    [103] 李效白. SiC和GaN电子材料和器件的几个科学问题[J]. 微纳电子技术, 2004, 41(11):1-6.

    LI Xiaobai. Scientific problems of electro-material & device of SiC and GaN[J]. Micronanoelectronic Technology,2004,41(11):1-6(in Chinese).
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  804
  • HTML全文浏览量:  328
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-20
  • 修回日期:  2022-12-05
  • 录用日期:  2023-01-03
  • 网络出版日期:  2023-01-20
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回