留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

兼具特殊润湿性与光热效应的水净化复合材料研究进展

张志伟 刘浩钥 井一凡 刘冬志 陈诚

张志伟, 刘浩钥, 井一凡, 等. 兼具特殊润湿性与光热效应的水净化复合材料研究进展[J]. 复合材料学报, 2024, 42(0): 1-17.
引用本文: 张志伟, 刘浩钥, 井一凡, 等. 兼具特殊润湿性与光热效应的水净化复合材料研究进展[J]. 复合材料学报, 2024, 42(0): 1-17.
ZHANG Zhiwei, LIU Haoyuo, JING Yifan, et al. Research progress on water purification composites with special wettability and photothermal effect[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Zhiwei, LIU Haoyuo, JING Yifan, et al. Research progress on water purification composites with special wettability and photothermal effect[J]. Acta Materiae Compositae Sinica.

兼具特殊润湿性与光热效应的水净化复合材料研究进展

基金项目: 新疆维吾尔自治区自然科学基金青年科学基金项目(No. 2022D01C68);新疆维吾尔自治区重点研发任务专项项目(No. 2022B01045-4);新疆维吾尔自治区重大科技专项项目:跨境纺织原料类固体废物鉴别及综合利用集成示范(No. 2020A03002-4);新疆维吾尔自治区天池博士计划科研启动项目(No. TCBS202011);新疆大学博士启动基金(No. BS210215);2024年自治区研究生创新项目(No. XJ2024G096)
详细信息
    通讯作者:

    陈诚,博士,副教授,硕士生导师,研究方向为清洁能源驱动的环境治理用表界面材料研发 E-mail: 450548205@qq.com

  • 中图分类号: TB34; TB332

Research progress on water purification composites with special wettability and photothermal effect

Funds: Young Science Foundation of Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2022D01C68); The Key Research and Development Special Task Project of Xinjiang: demonstration of identification and comprehensive utilization of solid waste of cross-border textile raw materials (No. 2022B01045-4); Xinjiang Uygur Autonomous Region Important Science and technology special project: demonstration of identification and comprehensive utilization of solid waste of cross-border textile raw materials (No. 2020A03002-4); Xinjiang Uygur Autonomous Region Tianchi Doctor Program Research Initiation Project (No. TCBS202011); Xinjiang University Doctoral Initiation Fund (No. BS210215); 2024 Autonomous Region Graduate Innovation Project (No. XJ2024G096)
  • 摘要: 当前全球水资源污染,淡水短缺问题日益严重,针对海水、苦咸水、工业废水及生活污水等非常规水资源净化再利用的研究显得尤为迫切,而利用特殊润湿性与光热效应协同作用为非常规水资源净化提供一种行之有效、绿色低碳的解决策略。本文首先概括常规水净化材料研究现状,明确当前技术的优劣与挑战,随后系统论述单一特殊润湿性材料与光热转换材料在水净化领域的作用机制及研究进展,深入解析特殊润湿性及光热效应在水净化应用层面的协同增效机制及工作原理,剖析二者的协同作用在太阳能利用、水净化效益、可持续性能以及应用场景等方面的优势,总结分析超浸润光热复合材料在水净化领域的应用现状。最后,对超浸润光热复合材料在水净化领域中现有的局限性和未来的前景进行阐述与展望。

     

  • 图  1  TFC-0D以及TFC-1D水分输运机理示意图(a)[13],在CA载体上制备GOZMs的实验过程示意图及其选择性保留染料分子的分离机理示意图(b)[14],ZIF-67染料吸附机理示意图(c)[20],Ti/Ti4O7电化学氧化示意图(d)[22]

    Figure  1.  Schematic diagram of TFC-0D and TFC-1D water transport mechanisms (a)[13], Schematic diagram of the experimental process of preparing GOZMs on CA carrier and the separation mechanism of their selective retention dye molecules (b)[14], Schematic diagram of ZIF-67Dye adsorption mechanism (c)[20], Schematic diagram of electrochemical oxidation of Ti/Ti4O7 (d)[22]

    图  2  膜在油水分离和重金属离子吸附示意图(a)[40],Janus多孔膜实现油下定向水传输(b)[43],Janus膜针对不同油水乳液的分离机理(c)[44],Janus海绵用于同时去除染料污染物和油/水乳液分离(d)[46]

    Figure  2.  Schematic diagram use in oil-water separation and heavy metal ion adsorption (a)[40], Janus porous membranes enable directional water transfer under oil (b)[43], Janus membrane for the separation mechanism of different oil-water emulsions (c)[44], Janus sponge is used to simultaneously remove dye contaminants and oil/water emulsion separation (d)[46]

    图  3  光热效应的三种机理及其相应的光吸收范围:等离子体共振热效应(a),半导体非辐射弛豫(b),分子热振动(c)[49]

    Figure  3.  Three mechanisms of the photothermal effect and their corresponding light absorption ranges: Thermal effects of plasmon resonance (a), Nonradiative relaxation in semiconductors (b), Molecular thermal vibration (c)[49]

    图  4  聚吡咯超分子气凝胶蒸发示意图(a)[57],在光照下Pt纳米颗粒和NiO纳米片协同抗菌(b)[60],光热抗菌织物的光热效益及其抗菌应用(c)[61]

    Figure  4.  Schematic diagram of evaporation of polypyrrole supramolecular aerogel (a)[57], Pt nanoparticles and NiO nanosheets synergistically antimicrobial under light (b)[60], Photothermal benefits of photothermal antimicrobial fabrics and their antimicrobial applications (c)[61]

    图  5  Janus型太阳能蒸发器淡化示意图及其抗盐演示(a)[67],在太阳光照下促进油相吸收过程(b)[71],油相蒸发及其收集过程(c)[72],马兰戈尼效应引起物体运动的示意图(d)[73]

    Figure  5.  Schematic diagram of Janus-type solar evaporator desalination and its salt resistance (a)[67], Promotes the oil phase absorption process under sunlight (b)[71], Oil phase evaporation and its collection process (c)[72], Schematic diagram of the motion of an object caused by the Marangoni effect (d)[73]

    图  6  LFSTM的横截面示意图及局部放大细节(a)[88],可用于盐碱水淡化的具有防油、光热转换性能的超亲水复合气凝胶示意图(b)[89],用于太阳能热蒸发的Janus木材蒸发器示意图(c)[90],苦咸水离子的浓度淡化前后的变化(d)[91]

    Figure  6.  Cross-section schematic of LFSTM and partial enlarged details (a)[88], Schematic of the superhydrophilic composite aerogel with anti-oil-fouling and light-to-heat conversion properties for saline alkali water desalination (b)[89], Schematic of a Janus wood evaporator for solar-thermal evaporation (c)[90], Changes in the concentration of brackish water ions before and after desalination (d)[91]

    图  7  集水器及其太阳能驱动水净化示意图(a)[96],ACP/ TPAC以及DPAC对生活污水以及工业废水的淡化(b)[96],CS/BFs/C@MOF对有机染料的吸附演示(c)[99]

    Figure  7.  Schematic of the evaporation process of polymer wastewater collector (a)[96], Comparison of domestic wastewater evaporation rate between ACP, TPAC and DPAC with industrial wastewater evaporation rate at 1.0 kW·m−2 optical power (b)[96], Demonstration of adsorption of organic dyes by CS/BFs/C@MOF (c)[99]

    图  8  PDMS/CNF@PU纳米纤维膜制备过程示意图(a)[105],原油渗透CF@PDA/CNT织物内部所需时间(左为无光条件下,右为光照条件下)(b)[106],STA/PDA@cotton织物的自愈机理示意图(c)[107]

    Figure  8.  Schematic showing the preparation progress of the PDMS/CNF@PU nanofiber membrane (a)[105], Time required for crude oil to penetrate CF@PDA/CNT fabric (left under no light conditions, right under light conditions) (b)[106], Schematic diagram of the self-healing mechanism of STA/PDA@cotton fabric (c)[107]

    表  1  不同类型的水净化材料对比

    Table  1.   Comparison of different types of water purification materials

    TypeAdvantageDisadvantageTarget contaminantRef.
    Membrane typeLow cost, easy to operate and good effectLimited permeability, low selectivity, high energy consumption and serious secondary pollutionOil, emulsion, dye, NaCl, heavy metal ion, bacteria[24, 25, 26, 27]
    Photocatalytic typeLow cost, non-toxic and good chemical stabilityLow conversion efficiency and weak catalytic activityOrganic pollutants, heavy metal ion[28, 29, 30]
    Adsorption type

    Simple design, flexible implementation and easy regenerationDifficulty in recycling and has secondary pollutiondye, Oil, antibiotic
    , heavy metal ion
    [31, 32, 33]
    Advanced oxidation typeHigh catalytic capacity and good stabilitySecondary pollution, dependent on equipmentHeavy metal ion, pharmaceutical contaminant, micropollutant, bacteria[34, 35]
    Flocculation typeHigh efficiency, low cost and easy operationDifficulty in recyclingSuspended solid, heavy metal ion, dye[36, 37]
    下载: 导出CSV

    表  2  不同类型的超浸润光热复合材料对比

    Table  2.   Comparison of different types of superwetting photothermal composites

    TypeMain applicationRef.
    SuperhydrophilicIncrease the water exchange rate to ensure continuous photothermal
    evaporation and contaminant removal
    [74, 75, 76]
    Superhydrophilic and superoleophobicResist oil pollution and ensure the smooth flow of water transportation pipeline[77, 78, 79]
    Superhydrophobic and superoleophilicAdsorption of viscous oil phase/Optically-Driven[80, 81, 82]
    Asymmetric wettability(Janus structure)Self-cleaning to avoid the effects of salts and other contaminants on the material[83, 84, 85]
    下载: 导出CSV
  • [1] GAO L, YOSHIKAWA S, ISERI Y, et al. An economic assessment of the global potential for seawater desalination to 2050[J]. Water, 2017, 9(10): 763. doi: 10.3390/w9100763
    [2] BAGGIO G, QADIR M, SMAKHTIN V. Freshwater availability status across countries for human and ecosystem needs[J]. Science of The Total Environment, 2021, 792: 148230. doi: 10.1016/j.scitotenv.2021.148230
    [3] ZHU L L, GAO M M, PEH C K N, et al. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications[J]. Nano Energy, 2019, 57: 507-518. doi: 10.1016/j.nanoen.2018.12.046
    [4] KUMMU M, GUILLAUME J H A, MOEL H D, et al. The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability[J]. Scientific Reports, 2016, 6: 38495. doi: 10.1038/srep38495
    [5] BOLISETTY S, PEYDAYESH M, MEZZENGA R. Sustainable technologies for water purification from heavy metals: review and analysis[J]. Chemical Society Reviews, 2019, 48(2): 463-487. doi: 10.1039/C8CS00493E
    [6] ZHUANG P Y, GUO Z Y, WANG S, et al. Interfacial Hydrothermal Assembly of Three-Dimensional Lamellar Reduced Graphene Oxide Aerogel Membranes for Water Self-Purification[J]. ACS Omega, 6(45): 30656-30665.
    [7] EZAZI M, SHRESTHA B, KIM S-I, et al. Selective Wettability Membrane for Continuous Oil−Water Separation and In Situ Visible Light-Driven Photocatalytic Purification of Water[J]. Global Challenges, 2020, 4: 2000009. doi: 10.1002/gch2.202000009
    [8] YANG J, LONG Q X, ZHU Y, et al. Multifunctional self-assembled adsorption microspheres based on waste bamboo shoot shells for multi-pollutant water purification[J]. Environmental Research, 2024, 249: 118452. doi: 10.1016/j.envres.2024.118452
    [9] LEWIS N S. Research opportunities to advance solar energy utilization[J]. Science, 2016, 351: 1920. doi: 10.1126/science.aad1920
    [10] DELGADO W R, BEACH T, LUZZADDER-BEACH S, et al. Solar desalination: Cases, synthesis, and challenges[J]. WIREs Water, 2020, 7(3): e1434. doi: 10.1002/wat2.1434
    [11] ZHENG W W, HUANG J Y, LI S S, et al. Advanced Materials with Special Wettability toward Intelligent Oily Wastewater Remediation[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 67-87.
    [12] CUI L F, WANG P F, CHE H N, et al. Solar-driven interfacial water evaporation for wastewater purification: Recent advances and challenges[J]. Chemical Engineering Journal, 2023, 477: 147158. doi: 10.1016/j.cej.2023.147158
    [13] LI W X, YANG Z, LIU W L, et al. Polyamide reverse osmosis membranes containing 1D nanochannels for enhanced water purification[J]. Journal of Membrane Science, 2020, 618: 118681.
    [14] QU H J, XIAO X, HAN Z Y, et al. Graphene Oxide Nanofiltration Membrane Based on Three-Dimensional Size-Controllable Metal–Organic Frameworks for Water Treatment[J]. ACS Applied Nano Materials, 2022, 5(4): 5196-5207. doi: 10.1021/acsanm.2c00234
    [15] SHEN X F, ZHANG T, XU P F, et al. Growth of C3N4 nanosheets on carbon-fiber cloth as flexible and macroscale filter-membrane-shaped photocatalyst for degrading the flowing wastewater[J]. Applied Catalysis B Environmental, 2017, 219: 425-431. doi: 10.1016/j.apcatb.2017.07.059
    [16] GONÇALVES N P, LOURENÇO M A, BALEURI S R, et al. Biochar waste-based ZnO materials as highly efficient photocatalysts for water treatment[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107256. doi: 10.1016/j.jece.2022.107256
    [17] DEMIRBAS E, DIZGE N , SULAK M T , et al. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon[J]. Chemical Engineering Journal, 2009, 148: 480-487.
    [18] WU Q, YE X X, LV Y C, et al. Lignin-based magnetic activated carbon for p-arsanilic acid removal: Applications and absorption mechanisms[J]. Chemosphere, 2020, 258: 127276. doi: 10.1016/j.chemosphere.2020.127276
    [19] ZHAO Y J, CUI Y, MENG X R, et al. Metal organic framework composites as adsorbents: Synergistic effect for water purification[J]. Coordination Chemistry Reviews, 2022, 473: 214815. doi: 10.1016/j.ccr.2022.214815
    [20] LI A L, XIONG J, LIU Y, et al. Fiber-intercepting-particle structured MOF fabrics for simultaneous solar vapor generation and organic pollutant adsorption[J]. Chemical Engineering Journal, 2022, 428: 131365. doi: 10.1016/j.cej.2021.131365
    [21] JIA X , PEYDAYESH M , HUANG Q , et al. Amyloid Fibril Templated MOF Aerogels for Water Purification[J]. Small, 2022, 18: 2105502.
    [22] ZHI D, ZHANG J, WANG J B, et al. Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti4O7 and Ti/RuO2–IrO2 anodes[J]. Journal of Environmental Management, 2020, 265: 110571. doi: 10.1016/j.jenvman.2020.110571
    [23] LUO M F, ZHANG H, SHI Y, et al. Electrochemical activation of periodate with graphite electrodes for water decontamination: Excellent applicability and selective oxidation mechanism[J]. Water Research, 2023, 240: 120128. doi: 10.1016/j.watres.2023.120128
    [24] ZHANG X, WEI C, HAO Y J, et al. Spraying-assisted construction of robust polyvinylidene fluoride membrane with superhydrophobic property for water-in-oil emulsions purification[J]. Journal of Environmental Chemical Engineering, 2023, 11(4): 110212. doi: 10.1016/j.jece.2023.110212
    [25] JAHANKHAH S, SABZEHMEIDANI M M, GHAEDI M, et al. Hydrophilic magnetic molecularly imprinted resin in PVDF membrane for efficient selective removal of dye[J]. Journal of Environmental Management, 2021, 300: 113707. doi: 10.1016/j.jenvman.2021.113707
    [26] CHEN Y, LIU H, XIA M S, et al. Green multifunctional PVA composite hydrogel-membrane for the efficient purification of emulsified oil wastewater containing Pb2+ ions[J]. Science of The Total Environment, 2023, 856: 159271. doi: 10.1016/j.scitotenv.2022.159271
    [27] FUWAD A, RYU H, MALMSTADT N, et al. Biomimetic membranes as potential tools for water purification: Preceding and future avenues[J]. Desalination, 2019, 458: 97-115. doi: 10.1016/j.desal.2019.02.003
    [28] GUO R J, LIU M Q, XING Y R, et al. Piezoelectrically enhanced photocatalysis of KxNa1−xNbO3 (KNN) microstructures for efficient water purification[J]. Nanoscale, 2023, 15(15): 6920-6933. doi: 10.1039/D2NR07311K
    [29] MAFA P J, MALEFANE M E, OPOKU F, et al. Experimental and theoretical confirmation of CeFeCu trimetal oxide/Bi2O3 S-scheme heterojunction for boosted photocatalytic degradation of sulfamethoxazole and toxicity evaluation[J]. Journal of Cleaner Production, 2023, 429: 139519. doi: 10.1016/j.jclepro.2023.139519
    [30] ZHANG M L, YANG Y, AN X Q, et al. A critical review of g-C3N4-based photocatalytic membrane for water purification[J]. Chemical Engineering Journal, 2021, 412: 128663. doi: 10.1016/j.cej.2021.128663
    [31] XU H, ZHANG Z, JIANG W, et al. Multifunctional amphibious superhydrophilic-oleophobic cellulose nanofiber aerogels for oil and water purification[J]. Carbohydrate Polymers, 2024, 330: 121774. doi: 10.1016/j.carbpol.2023.121774
    [32] LIN T Y , CHAI W S , CHEN S J , et al. Removal of soluble microbial products and dyes using heavy metal wastes decorated on eggshell[J]. Chemosphere, 2020, 270: 128615.
    [33] SANKARAN R , SHOW P L , OOI C W , et al. Feasibility assessment of removal of heavy metals and soluble microbial products from aqueous solutions using eggshell wastes[J]. Clean Technologies and Environmental Policy, 2020, 22(4): 773–786.
    [34] TIAN X, LIU S Q, ZHANG B N, et al. Carbonized polyaniline-activated peracetic acid advanced oxidation process for organic removal: Efficiency and mechanisms[J]. Environmental Research, 2023, 219: 115035. doi: 10.1016/j.envres.2022.115035
    [35] LAN X Q, HAN S P, HUA T, et al. Activation of peroxodisulfate by Ag3PO4/N, S-doped graphene for efficient organic degradation and bacterial disinfection[J]. Separation and Purification Technology, 2023, 317: 128803.
    [36] THOMBARE N, JHA U, MISHRA S, et al. Borax cross-linked guar gum hydrogels as potential adsorbents for water purification[J]. Carbohydrate Polymers, 2017, 168: 274-281. doi: 10.1016/j.carbpol.2017.03.086
    [37] MITTAL H, ALILI A A, ALHASSAN S M, et al. Advances in the role of natural gums-based hydrogels in water purification, desalination and atmospheric-water harvesting[J]. International Journal of Biological Macromolecules, 2022, 222: 2888-2921. doi: 10.1016/j.ijbiomac.2022.10.067
    [38] CHEN J, WU J L, ZHONG Y Y, et al. Multifunctional superhydrophilic/underwater superoleophobic lignin-based polyurethane foam for highly efficient oil-water separation and water purification[J]. Separation and Purification Technology, 2023, 311: 123284. doi: 10.1016/j.seppur.2023.123284
    [39] WU M , MU P , LI B , et al. Pine powders-coated PVDF multifunctional membrane for highly efficient switchable oil/water emulsions separation and dyes adsorption[J]. Separation and Purification Technology, 2020, 248: 117028.
    [40] ZHANG H , ZHANG Y , FU L , et al. Superhydrophilic Sandwich Structure Aerogel Membrane for Emulsion Separation and Heavy Metal Ion Removal[J]. ACS Applied Polymer Materials, 2021, 3: 5470-5480.
    [41] ZHENG L , LI H , LAI X , et al. Superwettable Janus nylon membrane for multifunctional emulsion separation[J]. Journal of Membrane Science, 2022, 642: 119995.
    [42] LV Y , LI Q , HOU Y , et al. Facile Preparation of an Asymmetric Wettability Janus Cellulose Membrane for Switchable Emulsions' Separation and Antibacterial Property[J]. ACS Sustainable Chemistry And Engineering, 2019, 7(17): 15002-15011.
    [43] WANG Z C, YANG J L, DAI X D, et al. An integrated Janus porous membrane with controllable under-oil directional water transport and fluid gating property for oil/water emulsion separation[J]. Journal of Membrane Science, 2021, 627: 119229. doi: 10.1016/j.memsci.2021.119229
    [44] ZHANG R X, REN X X, CAI P X, et al. Designing integrated Janus membrane based on a double-cross-linked polyphenol hydrophilic layer for complex emulsion separation[J]. Separation and Purification Technology, 2024, 330: 125417. doi: 10.1016/j.seppur.2023.125417
    [45] CHEN T Y, XIA J Y, GU J C, et al. Engineering Janus CNTs/OCS composite membrane at air/water interface for excellent dye molecules screening[J]. Chemical Engineering Journal, 2021, 417: 127947. doi: 10.1016/j.cej.2020.127947
    [46] ZENG X J, CAI W C, FU S Y, et al. A novel Janus sponge fabricated by a green strategy for simultaneous separation of oil/water emulsions and dye contaminants[J]. Journal of Hazardous Materials, 2022, 424: 127543. doi: 10.1016/j.jhazmat.2021.127543
    [47] CHEN C J, KUANG Y D, HU L B. Challenges and Opportunities for Solar Evaporation[J]. Joule, 2019, 3(3): 683-718. doi: 10.1016/j.joule.2018.12.023
    [48] FURUBE A, HASHIMOTO S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication[J]. NPG Asia Materials, 2017, 9(12): e454. doi: 10.1038/am.2017.191
    [49] GAO M M, ZHU L L, PEH C K , et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science, 2019, 12(3): 841-864.
    [50] ZHU L L, GAO M M, PEH C K, et al. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications[J]. Nano Energy, 2018, 57: 507-518.
    [51] ZHU L L, GAO M M, PEH C K N, et al. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications[J]. Nano Energy, 2019, 57: 507-518. doi: 10.1016/j.nanoen.2018.12.046
    [52] HE W, ZHOU L, WANG M, et al. Structure development of carbon-based solar-driven water evaporation systems[J]. Science Bulletin, 2021, 66(14): 1472-1483. doi: 10.1016/j.scib.2021.02.014
    [53] MING X, GUO A K, ZHANG Q, et al. 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification[J]. Carbon, 2020, 167: 285-295. doi: 10.1016/j.carbon.2020.06.023
    [54] SHI L, HE Y R, WANG X Z, et al. Recyclable photo-thermal conversion and purification systems via Fe3O4@TiO2 nanoparticles[J]. Energy Conversion and Management, 2018, 171: 272-278. doi: 10.1016/j.enconman.2018.05.106
    [55] CHEN C L, ZHOU L, YU J Y, et al. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection[J]. Nano Energy, 2018, 51: 451-456. doi: 10.1016/j.nanoen.2018.06.077
    [56] XIONG Z C, ZHU Y J, WANG Z Y, et al. Tree-Inspired Ultralong Hydroxyapatite Nanowires-Based Multifunctional Aerogel with Vertically Aligned Channels for Continuous Flow Catalysis, Water Disinfection, and Solar Energy-Driven Water Purification[J]. Advanced Functional Materials, 2022, 32(9): 2106978. doi: 10.1002/adfm.202106978
    [57] ZHAO X, WANG T, JIANG Y, et al. Robust and versatile polypyrrole supramolecular network packed photothermal aerogel for solar-powered desalination[J]. Desalination, 2023, 561: 116674. doi: 10.1016/j.desal.2023.116674
    [58] QIN D D, ZHU J, CHEN F F, et al. Self-floating aerogel composed of carbon nanotubes and ultralong hydroxyapatite nanowires for highly efficient solar energy-assisted water purification[J]. Carbon, 2019, 150: 233-243. doi: 10.1016/j.carbon.2019.05.010
    [59] ZHANG H C, GUO P C, ZHANG X, et al. Developing a solar photothermal method for peroxydisulfate activation for water purification: Taking degradation of sulfamethoxazole as an example[J]. Chemical Engineering Journal, 2021, 403: 126324. doi: 10.1016/j.cej.2020.126324
    [60] GAO H, LI Q, ZHANG M, et al. Pt Nanoparticles and NiO Nanosheets on Ni Foam for Photothermal Degradation of Toluene[J]. ACS Applied Nano Materials, 2022, 5(12): 18821-18831. doi: 10.1021/acsanm.2c04596
    [61] REN Y W, YAN B B, WANG P, et al. Construction of a Rapid Photothermal Antibacterial Silk Fabric viaQCS-GuidedIn SituDeposition of CuSNPs[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(6): 2192-2203.
    [62] ZHANG Y F, WANG D W, LIU F, et al. Enhancing the drug sensitivity of antibiotics on drug-resistant bacteria via the photothermal effect of FeTGNPs[J]. Journal of Controlled Release, 2022, 341: 51-59. doi: 10.1016/j.jconrel.2021.11.018
    [63] CHEN J H, ZHANG D N, HE S, et al. Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification[J]. Journal of Materials Science & Technology, 2021, 66: 157-162.
    [64] LIU Z X, WU B H, ZHU B, et al. Continuously Producing Watersteam and Concentrated Brine from Seawater by Hanging Photothermal Fabrics under Sunlight[J]. Advanced Functional Materials, 2019, 29: 1905485. doi: 10.1002/adfm.201905485
    [65] ZHANG B Y, SONG C Y, LIU C, et al. Molten salts promoting the “controlled carbonization” of waste polyesters into hierarchically porous carbon for high-performance solar steam evaporation[J]. Journal of Materials Chemistry A, 2019, 7(40): 22912-22923. doi: 10.1039/C9TA07663H
    [66] ZHANG B, WONG P W, GUO J, et al. Transforming Ti3C2Tx MXene’s intrinsic hydrophilicity into superhydrophobicity for efficient photothermal membrane desalination[J]. Nature Communications, 2022, 13(1): 3315. doi: 10.1038/s41467-022-31028-6
    [67] XU W, HU X, ZHUANG S, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14): 1702884. doi: 10.1002/aenm.201702884
    [68] CHEN J X , YIN J, LI L J, et al. Janus Evaporators with Self-Recovering Hydrophobicity for Salt-Rejecting Interfacial Solar Desalination[J]. ACS Nano, 2020, 14(12): 17419-17427.
    [69] WANG S S, XIAO C H, LU S, et al. Integrated Solar Evaporator with Salt Resistance and Lipophobicity Derived from Waste Newspapers for Efficient Desalination[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(6): 2586-2598.
    [70] MA W J, CAO W X, CUI M, et al. Biomass-derived 3D evaporator with antifouling and salt-rejecting toward solar-enabled steam generation, desalination, and electricity generation[J]. Chemical Engineering Journal, 2023, 478: 147404. doi: 10.1016/j.cej.2023.147404
    [71] CAI W, LI Z X, PAN Y, et al. A novel approach simultaneously imparting well-hydrophobicity and photothermal conversion effect to polymer materials: solar-promoted absorption of organic solvents and oils[J]. Journal of Hazardous Materials, 2022, 437: 129446. doi: 10.1016/j.jhazmat.2022.129446
    [72] ZHU Z, FU S, LUCIA L A. A fiber-aligned thermal-managed wood-based superhydrophobic aerogel for efficient oil recovery[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16428-16439.
    [73] WU H P, LUO J C, HUANG X W, et al. Superhydrophobic mechanically durable coatings for controllable light and magnetism driven actuators[J]. Journal of Colloid and Interface Science, 2021, 603: 282-290. doi: 10.1016/j.jcis.2021.06.106
    [74] WANG S, NIU Y, YAN L J, et al. Polyimide-based superhydrophilic porous membrane with enhanced thermal insulation for efficient interfacial solar evaporation[J]. Composites Science and Technology, 2022, 228: 109683. doi: 10.1016/j.compscitech.2022.109683
    [75] WANG J L, WANG W K, FENG L, et al. A salt-free superhydrophilic metal-organic framework photothermal textile for portable and efficient solar evaporator[J]. Solar Energy Materials and Solar Cells, 2021, 231: 111329. doi: 10.1016/j.solmat.2021.111329
    [76] HAN J, XING W Q, YAN J, et al. Stretchable and Superhydrophilic Polyaniline/Halloysite Decorated Nanofiber Composite Evaporator for High Efficiency Seawater Desalination[J]. Advanced Fiber Materials, 2022, 4: 1233-1245. doi: 10.1007/s42765-022-00172-5
    [77] CUI Z X, ZHOU J Q, WANG H R, et al. Facile fabrication of electrospinning cellulose acetate/graphene composite nanofiber membrane with high solar-to-thermal conversion and oil resistance performance for efficient solar-driven water evaporation[J]. Solar Energy Materials and Solar Cells, 2023, 263: 112597. doi: 10.1016/j.solmat.2023.112597
    [78] CHEN L H, XIA M M, DU J B, et al. Superhydrophilic and Oleophobic Porous Architectures Based on Basalt Fibers as Oil-Repellent Photothermal Materials for Solar Steam Generation[J]. ChemSusChem, 13(3): 493-500.
    [79] WANG S S, XIAO C H, LU S, et al. Integrated Solar Evaporator with Salt Resistance and Lipophobicity Derived from Waste Newspapers for Efficient Desalination[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(6): 2586-2598.
    [80] YANG C X, BAI B, HE Y H, et al. Novel Fabrication of Solar Light-Heated Sponge through Polypyrrole Modification Method and Their Applications for Fast Cleanup of Viscous Oil Spills[J]. Industrial & Engineering Chemistry Research, 2018, 57(14): 4955-4966.
    [81] MIN D, SHI H K, YIN R, et al. TDA/rGO@WS with Joule heat and photothermal synergistic effect: A promising adsorption material for all–weather recovery of viscous oil spills at sea[J]. Journal of Hazardous Materials, 2024, 466: 133542. doi: 10.1016/j.jhazmat.2024.133542
    [82] WANG J Y, LI P H, JING Z M, et al. Fast and Multifunctional Optically-Driven Actuators based on Stable, Efficient, and Superhydrophobic Photothermal Paper Films[J]. Advanced Optical Materials, 2023, 11: 2202201. doi: 10.1002/adom.202202201
    [83] YANG Y B, YANG X D, FU L N, et al. Two-Dimensional Flexible Bilayer Janus Membrane for Advanced Photothermal Water Desalination[J]. ACS Energy Letters, 2018, 3(5): 1165-1171. doi: 10.1021/acsenergylett.8b00433
    [84] SU J B, XIE Y N, ZHANG P K, et al. Janus MXene-based photothermal membrane for efficient and durable water evaporation[J]. Desalination, 2023, 566: 116905. doi: 10.1016/j.desal.2023.116905
    [85] DENG X F, SU Q Q, HE Y, et al. Preparation of antifouling Janus photo evaporator by in-situ growth of carbon nanotubes/graphene on zeolite surface[J]. Applied Energy, 2024, 359: 122673. doi: 10.1016/j.apenergy.2024.122673
    [86] SANNA A, BUCHSPIES B, ERNST M, et al. Decentralized brackish water reverse osmosis desalination plant based on PV and pumped storage - Technical analysis[J]. Desalination, 2021, 516: 115232. doi: 10.1016/j.desal.2021.115232
    [87] TAO M J, CHENG S Q, HAN X L, et al. Alignment of MXene based membranes to enhance water purification[J]. Journal of Membrane Science, 2022, 662: 120965. doi: 10.1016/j.memsci.2022.120965
    [88] SONG L, MU P, GENG L, et al. A Novel Salt-Rejecting Linen Fabric-Based Solar Evaporator for Stable and Efficient Water Desalination under Highly Saline Water[J]. ACS Sustainable Chemistry And Engineering, 2020, 8(31): 11845-11852. doi: 10.1021/acssuschemeng.0c04407
    [89] YAN J Y, ZHANG Z, SHI Y X, et al. An anti-oil-fouling superhydrophilic composite aerogel for solar saline alkali water desalination[J]. New Journal of Chemistry, 2022, 46(30): 14479. doi: 10.1039/D2NJ01743A
    [90] CHEN X, HE S M, FALINSKI M M, et al. Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators[J]. Energy & Environmental Science, 2021, 14(10): 5347-5357.
    [91] ZHANG H, LUO W M, DU Y P, et al. The g-C3N4 decorated carbon aerogel with integrated solar steam generation and photocatalysis for effective desalination and water purification[J]. Desalination, 2023, 564: 116821. doi: 10.1016/j.desal.2023.116821
    [92] THAKUR A K, SATHYAMURTHY R, SAIDUR R, et al. Exploring the potential of MXene-based advanced solar-absorber in improving the performance and efficiency of a solar-desalination unit for brackish water purification[J]. Desalination, 2022, 526: 115521. doi: 10.1016/j.desal.2021.115521
    [93] SUN S J, WANG Y M, SUN B B, et al. Versatile Janus Composite Nonwoven Solar Absorbers with Salt Resistance for Efficient Wastewater Purification and Desalination[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24945-24956.
    [94] TIAN Y, ZHANG H, PAN S, et al. Amine-functionalized magnetic microspheres from lignosulfonate for industrial wastewater purification[J]. International Journal of Biological Macromolecules, 2023, 224: 133-142. doi: 10.1016/j.ijbiomac.2022.10.110
    [95] JIA X Q, YUAN S, LI B, et al. Carbon Nanomaterials: Application and Prospects of Urban and Industrial Wastewater Pollution Treatment Based on Abrasion and Corrosion Resistance[J]. Frontiers in Chemistry, 2020, 8: 600594. doi: 10.3389/fchem.2020.600594
    [96] YANG T Z, WANG S, BENETT D, et al. Efficient solar domestic and industrial sewage purification via polymer wastewater collector[J]. Chemical Engineering Journal, 2022, 428: 131199. doi: 10.1016/j.cej.2021.131199
    [97] ZHANG Y, MA T Y, ZHANG F, et al. Yolk-like non-stoichiometric nickel sulfide-based Janus hydrogel photothermal film for enhanced solar-driven water evaporation and multi-media purification[J]. Journal of Colloid and Interface Science, 2022, 607: 1446-1456. doi: 10.1016/j.jcis.2021.09.074
    [98] Hui M, SHENGYAN P, YAQI H, et al. A highly efficient magnetic chitosan “fluid” adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification[J]. Chemical Engineering Journal, 2018, 345: 556-565. doi: 10.1016/j.cej.2018.03.115
    [99] SUN X S, JIA X H, WENG H K, et al. Bioinspired photothermal sponge for simultaneous solar-driven evaporation and solar-assisted wastewater purification[J]. Separation and Purification Technology, 2022, 301: 122010. doi: 10.1016/j.seppur.2022.122010
    [100] HE Y Q, CAI J B, XU Y Q, et al. Chitin nanocrystals scaffold by directional freezing for high-efficiency water purification[J]. Separation and Purification Technology, 2023, 310: 123177. doi: 10.1016/j.seppur.2023.123177
    [101] YANG M, JIANG C, LIU W, et al. A less harmful system of preparing robust fabrics for integrated self-cleaning, oil-water separation and water purification[J]. Environmental Pollution, 2019, 255: 113277. doi: 10.1016/j.envpol.2019.113277
    [102] DUAN M, HE Z, WANG X, et al. A novel interface-active cationic flocculant for the oil-water separation of oily wastewater produced from polymer flooding[J]. Journal of Molecular Liquids, 2019, 286: 110868. doi: 10.1016/j.molliq.2019.04.145
    [103] WANG G, XU Y, ZHANG R, et al. Fire-resistant MXene composite aerogels for effective oil/water separation[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109127. doi: 10.1016/j.jece.2022.109127
    [104] CHEN H, TANG H, DUAN M, et al. Oil–water separation property of polymer-contained wastewater from polymer-flooding oilfields in Bohai Bay, China[J]. Environmental technology, 2015, 36(11): 1373-1380. doi: 10.1080/09593330.2014.990522
    [105] ZHANG S , HUANG X , WANG D , et al. Flexible and Superhydrophobic Composites with Dual Polymer Nanofiber and Carbon Nanofiber Network for High-Performance Chemical Vapor Sensing and Oil/Water Separation[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 47076-47089.
    [106] WEN H, LIANG L Z, XU N Y, et al. Multi-functional self-cleaning superhydrophobic cotton fabric as photothermal-reinforced crude oil separator, oil skimmer and underwater oil absorbent[J]. Separation and Purification Technology, 2024, 337: 126258. doi: 10.1016/j.seppur.2023.126258
    [107] DONG, X L, GAO S W, HUANG J Y, et al. A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil–water separation ability[J]. Journal of Materials Chemistry A, 2019, 7(5): 2122-2128. doi: 10.1039/C8TA10869B
    [108] WU M C, SHI Y, JIAN C, et al. Sunlight Induced Rapid Oil Absorption and Passive Room-Temperature Release: An Effective Solution toward Heavy Oil Spill Cleanup[J]. Advanced Materials Interfaces, 2018, 5: 1800412. doi: 10.1002/admi.201800412
  • 加载中
计量
  • 文章访问数:  33
  • HTML全文浏览量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-09
  • 修回日期:  2024-06-05
  • 录用日期:  2024-06-08
  • 网络出版日期:  2024-06-25

目录

    /

    返回文章
    返回