Research progress of aqueous magnesium ion battery
-
摘要: 水系镁离子电池作为一种新兴的储能体系具有低成本、原料来源充足、高理论储能能力等优势。但水系电解液和镁自身带来的问题都极大地限制了水系镁离子电池的进一步发展。本文主要从水系电解液的阴离子类型、浓度和电解液添加剂三方面阐述对电池性能的影响,并介绍了一些电极材料的研究,包括新材料和新理论,最后总结了一些高效表征分析方法。Abstract: As a newly developed energy storage system, aqueous magnesium ion battery takes its edge by lower cost, more abundant source of raw materials, higher theoretical energy storage capacity. However, the problems brought by aqueous electrolytes and magnesium themselves greatly limit the further development of aqueous magnesium ion batteries. Here, the influence of the type and concentration of anions in aqueous electrolyte and electrolyte additives on the battery performance is described, and the research of some electrode materials, including new materials and new theories, is introduced. Finally, some efficient characterization and analysis methods are summarized.
-
1994年,加拿大科学家Dahn首次报道的以LiMn2O4为正极材料,VO2为负极材料,Li2SO4水溶液为电解液的电池研究开启了人们对水系二次电池的一系列探索[1]。之后水系二次钠离子电池(SIBs)[2-4]、钾离子电池(KIBs)[5-7]、铝离子电池(AIBs)[8-9]、锌离子电池(ZIBs)[10-12]和镁离子电池(MIBs)等体系相继得到一定发展。水系电池相比非水系电池有着更高的离子电导率[13]和安全性、更为简单的制造环境和使用条件要求、更加广泛的原料来源。近年来,镁离子电池的发展备受瞩目,优势在于:(1) 镁在地壳中的储量丰富、经济成本低;(2) 镁理论比容量大(2205 mA·h/g),且理论体积比容量高达3833 mA·h/cm3[14];(3) 镁离子具有+2价,单个Mg2+离子在电化学过程中对应两电子过程,则参与电化学反应的电荷载子数量是具有+1价Li+和Na+的一半,这样不仅能减少电极材料的使用,也能够减弱电荷载子之间的静电作用,从而能在一定程度上避免活性材料产生相变。因此,在大规模储能领域,水系镁离子电池被认为是未来最具潜力的可充电电池体系之一。
然而,水系电池的本征特性使其具有如下问题:(1) 传统水系电解液的电化学窗口较非水系电解液来说更窄,因此对电极材料的要求也更加严格,所选择的电极材料的工作电位应当在水系电解液的电化学稳定窗口内,以避免析氢析氧等副反应使电池内部压力增大及溶剂消耗所导致盐析出等问题[15];(2) 在水系电解液中,正极材料存在溶解、质子共嵌入、负极材料腐蚀、钝化等问题影响电池性能[16],造成电池容量衰减严重而致其失效。而水系镁离子电池除了面临上述水系电池所共有的问题外,由Mg元素自身带来的问题同样不可忽视。其一,Mg2+离子电荷密度大,具有强极化性,在很多插层主体中动力学扩散缓慢,迁移速率低,较难形成嵌入式化合物,影响电池性能[17-19];其二,镁电池存在电压滞后现象[20],即使用镁或其合金的电极会在水系电解液中形成主要由氧化镁、氢氧化镁组成的致密钝化膜,在电池放电初期,镁离子难以穿过钝化膜迁移至电解液主体,需经过一段时间才能达到正常输出电压,而这段时间被称为滞后时间,是衡量这种现象影响大小的参数;其三,可充电镁电池在最初报道中具有“无枝晶”特点,但研究人员还是在后续对镁电池的充放电过程研究中观察到枝晶的生成,这些枝晶与锂电池中锂负极表面所形成的枝晶形貌类似,但与锂枝晶相比硬度更大,在负极上形成并随着电池充放电生长,最终会穿破隔膜直接使电池正负极相连,造成短路,引发热失控,进而引起电池爆炸和火灾[21-23]。此外镁负极腐蚀、自腐蚀、块效应等问题也制约着水系镁离子电池进一步发展。图1总结了上述水系镁离子电池所面临的问题。
虽然水系镁离子电池需要解决的问题多而繁杂,但对其研究仍取得了一定进展。从Mg和Li在化学元素周期表上的对角线位置可以看出二者在性质上有很多相似之处[24],又鉴于锂离子电池成功的发展应用,针对镁离子电池的研究可以从锂离子电池的发展中汲取很多经验,现已有不少研究人员取得了不错的进展[24-25]。对水系电池的研究中也出现了很多高效新兴的数据建模计算和表征方法来观测分析电化学过程,可为今后对水系镁离子电池的研究发展提供借鉴。
本文主要围绕水系镁离子电池近年发展的情况,从电解液、电极材料、新兴表征分析方法等方面总结存在的问题及相应研究成果,并对未来水系镁离子电池研究方向进行展望。
1. 电解液
水系电池以水溶液为电解液,表1总结了近年对水系电解液的主要研究方向及类型[19, 26-44]。
表 1 水系电解液主要研究方向Table 1. Main research directions of aqueous electrolyteResearch direction Specific research Ref. Anion type Cl− as the main anion [26-29] Kosmotropic anion as the main anion, e.g., SO42− [30-32] Chaotropic anion as the main anion, e.g., NO3− [19] Electrolyte concentration “Water-in-salt” electrolyte [33-35] Hydrated eutectic electrolyte system [19] Hydrate melts, water in water ionomers, molecular crowding, etc. [36-40] Mixed cation Mg/Na, Mg/Zn, etc. [29, 41-42] Electrolyte additive Improve battery performance or alleviate various problems caused by electrolyte [43-44] 1.1 电解质阴离子类型
水系镁离子电池电解液中采用的无机镁盐一般包括MgCl2、MgSO4、Mg(NO3)2和双三氟甲基磺酰亚胺镁(Mg(TFSI)2)等。电解质盐阴离子的类型对电池性能有着重要影响,而且对于同一种阴离子,配用不同电极材料构成的体系所表现出的性能也不尽相同。
氯(Cl)有着仅次于氟(F)的电负性,这使它作为阴离子时有着良好稳定性,且氯盐来源充足、获取简单,含氯盐的电解液通常具有较宽的电化学稳定窗口,但同时它的腐蚀性也较强,造成的电极材料溶解等问题对电池比容量和循环性能会带来不利影响[26]。Liu等[27]以MgCl2为电解质,以δ-MnO2为正极材料组装成水系电池并对其电化学过程进行研究。电池在0.05 A/g、1 A/g电流密度下分别表现出252.1 mA·h/g、109.7 mA·h/g的初始放电比容量,但是在充放电过程中发现不可逆的质子共嵌入现象,导致电池容量衰减严重,在1 A/g电流密度下循环800次后容量保持率只有54.4%。Zhang等[28]从正极材料入手,水热法制备钠锰氧化物纳米材料(Na0.55Mn2O4·1.5H2O),并以MgCl2水溶液为电解液组装电池进行测试。发现水热时间会影响材料比表面积和微孔数量。组装成的电池在50 mA/g电流密度下可达到229.1 mA·h/g的最高放电比容量,在1000 mA/g电流密度下具有81 mA·h/g的放电比容量,并当再次回到50 mA/g时有着75.8%容量保持率,弥补了MgCl2电解液的不足。Zhang等[29]以一种新型聚合物材料聚(1, 4, 5, 8-萘四羧酸蒽醌)亚胺(PNTAQ)作为电池负极,它能够与以MgCl2为主体的电解液良好兼容,组装的电池在50 mA/g电流密度下具有245 mA·h/g放电比容量,且在0.5 A/g电流密度下循环1000次后具有87.2%的容量保持率(图2)。虽然研究者们在积极探索和改进氯离子作为阴离子时给电解液附加的高腐蚀性、毒性、易燃性和对水分高敏感性等问题,但尚无突破性的成果,这也迫使研究人员转向其他更适合的阴离子体系。
在水系电解液中,某些阴离子会影响水分子间形成的氢键网络,继而影响电解液的凝固点。硫酸根(SO42−)为一种Kosmotropic离子,它更容易与水分子的氢键相结合,强化氢键网络,使水溶液凝固点升高[30-31]。相反,以硝酸根离子(NO3−)为代表的Chaotropic离子会破坏水溶液中的氢键网络,降低氢键数量、减弱其强度,使水溶液凝固点降低,从而使其有更好的低温表现。图3为水系电解液中阴离子类型对电解液凝固点及氢键强度的关系图,图3(b)中横坐标所示5种电解质ZnSO4、 Zn(NO3)2、 ZnCl2、 ZnI2、 Zn(CF3SO3)2从左至右对应的阴离子具有的Chaotropic性质越强,而阴离子越偏向Chaotropic离子,其水溶液中形成的氢键强度越弱,则电解质溶液的凝固点越低[31]。Zhang等[31]对电解质中阴离子类型对水系锌离子电池低温性能的影响进行了研究,对比Kosmotropic离子SO42−与Chaotropic离子CF3SO3−的电解液的凝固点及电池体系在低温下的性能差异,结果表明Zn(CF3SO3)2电解液凝固点降至−34.1℃,所对应电池体系在−30℃、0.5 A/g电流密度下表现出208.7 mA·h/g的放电比容量,循环1000圈后仍具有81.7%的库伦效率,均优于ZnSO4电解液的电池体系。
电极材料与电解液对电池体系的电化学性能影响并不是彼此独立的,二者存在复杂的适配关系,对电解液的研究仅从理论上分析并不能完全判断其对电化学性能产生的影响,在实际测试中,进行不同电解液与电极材料组合的电化学性能比较研究是不可或缺的。Zhang等[20]制备了球壳结构δ-MnO2@碳分子筛(CMS),并将其作为正极材料分别与MgSO4、MgCl2和Mg(NO3)2电解液组成水系镁离子电池体系并对其性能进行了评估比较。从初始放电比容量、倍率性能和循环稳定性来看,该正极材料在Mg(NO3)2电解液中表现出比其他两者更好的电化学性能。但负极材料VO2纳米线在MgSO4电解液中性能更好,在初次充放电后VO2转变为性能更好的MgVOx,且在充放电过程中几乎观察不到电压滞后现象,没有MgO膜的生成。Zhang等[25]自制Todorokite型氧化镁锰分子筛(Mg-OMS-1)作为水系镁离子电池的正极材料,并在不同阴离子类型的Mg2+电解液中进行性能表征。从电池体系的初始放电容量、倍率性能、循环性能、镁离子的扩散系数和阻抗大小都说明使用MgCl2作为电解质是最优解。最终该正极材料在以石墨棒为负极、0.2 mol/dm3 MgCl2水溶液为电解液的电池体系中表现出300 mA·h/g的优异放电比容量(电流密度10 mA/g),当电解液为0.5 mol/dm3 MgCl2水溶液时,电池体系在100 mA/g电流密度下循环300次后仍具有83.7%的容量保持率,且循环过程中电池的库伦效率稳定在100%。然而,张宏宇[45]将用水热法合成的镁锰氧化物Mg-K-OMS-2与石墨烯进行原位生长制得的复合材料作为正极并分别在Mg(NO3)2、MgCl2和MgSO4电解液对其性能进行了比较研究,结果Mg(NO3)2电解液均优于其他两种电解液。选用活性炭作为负极,在0.5 mol/L的Mg(NO3)2电解液中,100 mA/g的电流密度下有着95.8%的容量保持率和46.9 W·h/kg的能量密度。
Wang等[46]用4 mol/L Mg(TFSI)2作为电解液,其优点在于腐蚀性更小(pH≈7),电化学稳定窗口更大(~2.0 V)。基于此电化学稳定窗口及Mg2+插层机制选择Li3V2(PO4)3(LVP)作为正极材料,聚均苯四甲酸二酐(PMDA)作为负极材料并组装电池进行了一系列测试。该电池在1 C(100 mA/g)电流密度下表现出52 mA·h/g的放电比容量和62.4 W·h/kg的能量密度,在60 C(6000 mA/g)电流密度下表现出6400 W/kg的功率密度和6000次循环后92%的容量保持率,且当电池回到1 C时仍能恢复74.9%的容量。该水系镁离子电池体系表现出的倍率性能和能量密度甚至可以同一些非水系镁离子电池相媲美,并且也有和其他多价离子(比如Zn2+)电池体系相竞争的潜力。
1.2 高浓度电解液
除了电解质盐的不同类型,浓度对电解液性质及电池体系的电化学性能也有很大影响。电解液浓度越高,游离水含量越少,水的活性越能得到有效抑制,其电化学稳定窗口越宽,使金属离子的嵌入脱出更加稳定。但是高浓度电解质所带来的对温度的敏感性不可忽视。对大部分电解质盐来说,温度越高,溶解度越高,而在较低温度下电解质盐易析出,破坏电解液的稳定性,恶化电池体系的电化学性能。此外,高浓度电解质盐对电池成本的提高也会限制该体系的商业化应用。
近年来在水系电池的研究中,“盐包水”('Water-in-salt')、水合共晶电解液(Hydrated eutectic electrolyte)等高浓度电解液体系成为一种新的研究热点并取得了不错的成果[17, 33-34]。此外,水合物熔体[36-37]、水包离聚体[38]、分子拥挤[39-40]等也都是以减少游离水或抑制水活性为目的而提出的有效体系,但是这几种体系鲜见于水系镁离子电池,在此不做展开。“盐包水”体系中几乎没有游离水,能有效抑制水的活性,并且在负极表面可形成稳定的固体-电解液界面(SEI)膜,避免水的分解,拓宽水系电解液电化学稳定窗口至2~5 V,显著优于一般低浓度水系电解液(~1.23 V)。目前在电解液优化方面针对水系镁离子电池的研究尚不充分,但其他电池体系中水系电解液的研究成果也完全具有借鉴意义,为解决水系镁离子电池因电解液存在的问题提供思路。
在水系锂离子电池中,Suo等[33]以“盐包水”体系—21 mol/L双三氟甲基磺酰亚胺锂(LiTFSI)为电解液,以LiMn2O4为正极、Mo6S8为负极组装成水系锂离子全电池,其电化学稳定窗口扩大至3.0 V,在低、高倍率下循环1000圈库伦效率都稳定接近100%,图4展示了这种“盐包水”体系电解质的溶剂化分子与传统电解质溶剂化分子的差别及该体系对电化学稳定窗口的提升。
Zhu等[19]提出了一种由Mg(NO3)2·6H2O和乙酰胺直接混合形成的水合共晶电解液,该电解液体系不额外添加水溶剂,避免了直接使用有机物作为溶剂所带来的动力学速度缓慢和离子电导率低,以及直接使用水溶液的较窄电化学稳定窗口的缺点,在确保高离子电导率的同时抑制电解液在充放电过程中对负极的腐蚀,该电解液体系与3, 4, 9, 10-苝四甲酸二酐(PTCDA)正极和开放骨架铁氰化铜(CuHCF)负极组成的电池具有2.2 V的宽电化学稳定窗口,并表现出52.2 W·h/kg 的能量密度及1000次循环后65.3%的容量保持率。在锌离子电池体系中,由Zn(ClO4)2·6H2O与丁二腈混合构成的水合共晶电解液也被成功应用。该电解液体系中丁二腈可进入锌离子溶剂化壳层中调节其结构,使锌离子能均匀在负极表面沉积,抑制枝晶生成,此外也稳定了ClO4−离子,避免分解[47]。
1.3 电解液添加剂
在水系电池的发展中,电解液添加剂的加入也证明了其在降低水分子活性、拓宽电解液电化学稳定窗口、改善电池电化学性能的有益效果。传统的电解液添加剂包括金属缓蚀剂、表面活性剂等,主要以亚硝酸盐、铬酸盐、十二烷基苯磺酸钠、磷酸盐等化合物组成。大部分电解液添加剂的原理是在电极材料表面形成一层保护层来缓解电化学过程中给材料带来的不可逆的负面影响,但是这些保护层在水溶液中往往也会被逐渐侵蚀,最终完全失去作用,因此对于水系电解液添加剂的研究仍有很大的发展空间。在镁离子电池中,对于非水体系及镁空气电池电解液添加剂的研究较多[48-53]。在此介绍两种针对水系镁离子电池的添加剂研究。
Fu等[43]将聚乙二醇(PEG)作为添加剂引入低浓度水系电解液(0.8 mol/L Mg(TFSI)2)中,PEG可与水分子形成氢键,降低水分子之间氢键数量及强度,同时改变了Mg2+溶剂化壳层结构,PEG分子可部分替代水分子进入Mg2+溶剂化壳层中,增强Mg2+和TFSI−离子间的配位键强度,使低浓度电解液中形成“盐包水”效果,抑制电化学过程中水分子的分解,并将电解液电化学稳定窗口拓宽至3.7 V。该电解液与V2O5正极材料组装成的电池表现出了359 mA·h/g 的初始放电比容量(50 mA/g电流密度下)及80%的容量保持率(100次循环)。并且发现在电化学过程中主要由MgF2构成的正极-电解液界面(CEI)膜在正极表面的形成,且会伴随充放电过程进行可逆的形成-分解。
Wang等[44]报道了NaHCO3作为电解液添加剂对改善镁电极电压滞后现象的作用,当将0.02 mol/L的NaHCO3引入MgSO4-Mg(NO3)2电解液时,镁电极腐蚀电流到达最小,电压滞后时间缩短0.7 s。
1.4 混合阳离子
近年来,研究人员开发了一系列混合阳离子电解液,如Li/Na、Na/Zn、Zn/Al等多元阳离子电解液来弥补单一阳离子电解液的缺陷,从而提升电池体系的电化学性能。Tang等[41]将NaClO4与Mg(ClO4)2·6H2O溶解于水和乙腈混合溶剂,Na+嵌入电位显著高于Mg2+,当组成混合阳离子电解液时,可弥补单一Mg2+电解液造成的电池体系工作电压较低的问题。这种Mg2+/Na+混合电解液配以Mg1.5VCr(PO4)3 (MVCP)正极、FeVO4 (FVO)负极组成的全电池放电平台可提升至1.5 V,在0.5 A/g电流密度下表现出233.4 mA·h/g的放电比容量。类似的,Liu等[32]将MgSO4、Na2SO4混合制成Na/Mg二元阳离子水系电解液,并研究了MnO2正极、NaTi2(PO4)3负极在该电解液中的电化学过程,发现虽然Mg2+和Na+能够在MnO2正极材料中嵌入脱出,但仅Na+能够在NaTi2(PO4)3负极材料中可逆嵌入脱出。组成全电池时,体系工作电压为1.4 V,在1 C倍率下具有97 mA·h/g的放电比容量,且全电池经过1000次循环后容量保持率为72%。Zhang等[29]以1 mol/L MgCl2与0.5 mol/L NaCl水溶液混合组成Mg/Na二元阳离子电解液,以自合成的聚合物材料PNTAQ为负极,在该二元阳离子电解液中,表现出了245 mA·h/g的放电比容量(50 mA/g电流密度),并且在1 A/g的电流密度下进行1000圈循环后有着87.2%的容量保持率。Soundharrajan等[42]提出MgSO4+ZnSO4+MnSO4的Mg/Zn/Mn三元阳离子水系电解液体系,以MgMn2O4为正极材料、金属锌为负极组成电池体系,通过原位XRD、非原位XRD和非原位XPS研究表明充放电过程中Mg2+、Zn2+可在正极材料中进行可逆嵌入/脱出,电池体系工作电压为1.5 V,在0.5 A/g下循环500圈后仍有约96 mA·h/g的放电比容量(接近80%的容量保持率),电池表现出370 W·h/kg的能量密度以及70 W/kg功率密度。
电解液同时影响着正、负极电化学过程,造成正负极侧电极材料溶解、腐蚀、析气等副反应,且镁离子自身较低的迁移速率及在水溶液体系中的沉积难度都限制了水系镁离子电池的发展。“盐包水”等策略虽然能够拓宽水系电池的电化学稳定窗口,但其成本相对较高且镁离子迁移速率也并未得到提升。相较而言,在常规浓度电解液中构建混合阳离子补强和添加改变离子溶剂化结构的电解液添加剂等策略相对来说更加有发展前景。
2. 电极材料
之前提过,水系电池电极材料主要受限于电解液体系的电化学稳定窗口,且电极材料存在质子共嵌入、被电解液腐蚀或因溶解而脱落等问题,影响电池的比容量、循环性能和安全性能。水系镁离子电池的电极材料应至少满足两个要求:(1) 该材料能与所选的电解液体系相匹配,即该材料的工作电位在电解液电化学稳定窗口内;(2) 电极材料在电解液体系中的理化性质稳定,尽量避免溶解脱落。
2.1 正极材料
目前合适的正极材料有过渡金属氧化物,其中锰氧化物的应用较为广泛,它们种类结构多、成本低、制备相对容易。制备的方法主要有溶胶凝胶法、水热法等。近年来,在它们的基础上也发展出了一些新材料,如MgMn2O4、MgFexMn2-xO4和Li0.21MnO2·H2O等,这些材料可单独作为正极材料,也可与碳纳米管、石墨等材料制成复合材料或通过电化学方法转化后进行实际应用。
Wen等[54]自制了三维花簇形貌的MgMn2O4(s-MMO),该材料具有丰富的介孔结构及较大的比表面积,形成“纳米流体通道”,研究发现在电池活化过程中水分子能够进入材料晶体结构中,增大晶体层间距,有利于Mg2+的可逆嵌入。该正极材料与苝酰亚胺负极材料组成全电池具有481.4 W·h/kg能量密度以及超过16000次的循环寿命。Zhang等[55]以LiMn2O4为前驱体,通过电化学转化法得到MgMn2O4,即将前驱体LiMn2O4作为电极材料,在MnSO4水溶液中进行循环伏安(CV)扫描,在电化学氧化过程中锂离子从LiMn2O4中脱出,由于电解液中锂离子浓度远低于镁离子,在后续电化学还原过程中镁离子将取代锂离子嵌入活性材料主体中,形成MgMn2O4。此外,活性材料与多壁碳纳米管(MWCNTs)复合,大大提高了材料的导电率,并提供了丰富的活性材料/电解液反应界面,缩短离子迁移路径,提高离子传导速率及电极材料电化学活性,得益于此,MgMn2O4电极表现出在50 mA/g电流密度下412.9 mA·h/g的放电比容量及在1 A/g电流密度下进行1000次循环73.3%的容量保持率(图5)。
图 5 电化学转化法制备的MgMn2O4及其电化学性能[55]:(a) MgMn2O4材料的恒流充放电测试(GCD);(b) MgMn2O4材料的循环性能;(c) 循环伏安(CV)曲线;(d) MgMn2O4材料的SEM图像;(e) MgMn2O4材料的TEM图像Figure 5. MgMn2O4 prepared by electrochemical conversion method and its electrochemical performance[55]: (a) Galvanostatic charge-discharge (GCD) test of MgMn2O4 material; (b) Cyclic performance of MgMn2O4 material; (c) Cyclic voltammetry (CV) curves; (d) SEM image of MgMn2O4 material; (e) TEM image of MgMn2O4 materialZhang等[56]报道了一种低成本溶胶凝胶法制备的MgFexMn2-xO4材料。发现材料中的铁锰比影响着材料的结构稳定性和电化学性能,当铁锰原子比为2∶1 (化学式为MgFe1.33Mn0.67O4)时,通过CV测试拟合计算发现其镁离子扩散系数高于其他铁锰比材料,而通过电化学阻抗谱(EIS)测试发现其阻抗也均低于其他材料,表明该铁锰比有着更好的电化学活性,该材料在0.5 mol/L MgCl2电解液中电化学性能优于其他材料,在1 A/g的电流密度充放电1000次后仍有83.3 mA·h/g的放电比容量,且通过对电解液pH测试表明该铁锰比材料几乎未出现质子共嵌入现象。
Bai等[24]通过溶胶凝胶法制备了水合锂锰氧化物Li0.21MnO2·H2O并证明了其作为水系镁离子电池正极材料的可能性,将其与纳米花形貌的VO2负极组装成电池进行测试,在电流密度为20、50、100、200和300 mA/g时的放电容量分别为74.8、54.7、46.4、34.0和32.1 mA·h/g。
2.2 负极材料
水系镁离子电池目前应用较多的负极材料主要有镁金属及其合金、层状结构的钒氧化物等,其负极侧存在的主要问题为腐蚀、自腐蚀(图6)、枝晶及块效应(图7)。腐蚀是指镁负极在开路条件下的析氢反应和氧还原反应。自腐蚀是指电池在放电过程中电子与镁负极侧与电解液中的水分子不正常的还原析氢反应。块效应是指电化学过程中负极表面形成的枝晶或颗粒脱落至电解液主体中,失去活性而无法继续参与后续充放电过程。镁合金的引入对自腐蚀和块效应有着很大的影响,合金内不同金属的电化学性能差异会导致腐蚀优先级差异,会更容易使金属颗粒从负极基体上脱落。研究者指出金属负极材料的微合金化可以在提升电化学性能的同时大大降低腐蚀、自腐蚀与块效应的影响。此外,Mandai等[57]制备了超薄、边缘无裂纹的镁箔,与α-MnO2正极材料组装电池具有72 W·h/kg的能量密度。对于镁枝晶的研究,其形成机制类似锂枝晶,主要为镁在电极表面各向异性沉积,在较低的操作温度、负极局部过电位和高倍率快充下会加剧镁枝晶形成。目前抑制镁枝晶形成的策略主要有调节电极界面状态,如在电极表面人为引入固体电解质界面(SEI)膜,以及控制温度。Xu等[58]向含有MgCl2、MnCl2水系电解液中添加PEG,在镁负极表面形成含MgO的聚醚Mg有机-无机杂化界面层,有效避免了Mg(OH)2、MgCO3等惰性物质的生成,从而对镁电极起到保护作用。研究者发现,枝晶的生长对温度有很强的敏感性,在较高温度下枝晶生长缓慢,金属的沉积会倾向于扩散到平坦部分而非突出部分,即热弛豫现象(Thermal relaxation effect)。此外,Wang等[59]报道了一种集流体的改进策略,通过在铜网主体上修饰亲镁Ag位点来诱导Mg沉积在其内部间隙,使成核过电位降低,抑制枝晶形成、提升循环性能。在8.0 mA/cm2的电流密度下,通过原位光学几乎观察不到 Mg 枝晶的形成。
钒氧化物也被用作水系镁离子电池负极材料,如VO2、V2O5和FeVO4等。Zhang等[60]报道了以FeVO4为负极材料,配以Mg-OMS-1正极、1 mol/L MgSO4电解液组装成水系镁离子全电池,在100 mA/g电流密度下表现出58.9 mA·h/g的放电比容量,循环100圈后容量保持率为97.7%,库伦效率接近100%。
近年来,研究者们采用制备条件温和、操作简单的方法合成一些新型聚合物作为负极材料。这些材料大多对环境友好、具有稳定的结构及高导电率,作为电极材料表现出较高放电比容量及优良的倍率性能,在锂离子电池[61]、水系锌离子电池[62]、水系铝离子电池[63]、水系镁离子电池[64-65]等体系中均有应用。聚酰亚胺类材料已被证实可作为水系镁离子电池负极,镁离子在该负极材料中的可逆嵌入脱出类似于赝电容过程,即镁离子可被聚合物基体中的含氧官能团吸附在材料表面,并进行快速电化学氧化还原过程,该过程不受离子扩散速率限制,有利于提升电池体系大倍率循环性能,并且此类聚合物也被证实可抑制负极析氢及自放电现象。Chen等[65]以1, 4, 5, 8-萘四甲酸酐为单体合成聚酰亚胺类材料作为负极,配以普鲁士蓝正极,MgSO4水溶液为电解液组成镁离子电池,表现出类似超级电容器的性能,1 A/g电流密度循环能量密度约为40 W·h/kg(以正负极全部活性物质为基准),且具有5000圈循环寿命。
Wang等[46]通过原位聚合方法制备聚均苯四甲酸二酐@多壁碳纳米管复合材料作为负极,因聚均苯四甲酸二酐具有较低工作电势,将其与Li3V2(PO4)3正极、Mg(TFSI)2电解液组装成水系镁离子电池可将电化学稳定窗口拓宽至2.0 V,表现出6400 W/kg功率密度、20 C循环6000圈后比容量保持率92%的优异倍率性能。Sun等[66]同样以1, 4, 5, 8-萘四甲酸酐为单体合成聚酰亚胺材料作为负极,以自制Mg2MnO4为正极,1 mol/L MgSO4+0.1 mol/L MnSO4为电解液,电池表现出赝电容特性及优异倍率性能,100 C放电比容量70.7 mA·h/g,循环10000圈容量保持率89%。
图8展示了上述聚酰亚胺类材料的电化学性能和离子嵌入脱出过程。以有机聚合物作为负极可避免金属镁直接作为电极所产生的析氢、腐蚀等复杂副反应,且可提升电池倍率性能,但其在制备工艺成本、低电流密度下的电化学性能表现等方面仍需进一步优化提升。
3. 高效分析表征方法
在对电池体系多种多样的研究方法中,基于密度泛函理论(DFT)计算得到了越来越广泛的应用。DFT计算可从原子尺度分析电化学反应动力学、揭示电化学过程机制,也可用于预测电极材料的电化学性能,在众多材料中筛选目标材料,节约实验时间和成本。DFT计算可从理论上指导实验,结合物理、电化学等表征技术能够帮助研究者们高效阐释材料结构和性能之间的构效关系。在针对水系镁离子电池的研究中,Yuwono等[67]通过DFT计算全面阐述了金属镁在水溶液中的电化学过程,研究表明,溶解的镁元素在水溶液中更倾向以[Mg-6H2O]2+形态存在。金属镁在水溶液体系中的电化学反应过程主要与镁表面吸附的•OH、•H、•O有关。镁表面•OH脱附及镁的溶解可为水裂解过程在电极表面提供更多反应活性位点,从而促进电极表面析氢过程。金属表面析氢过程分为Tafel过程和Heyrovsky过程,研究发现,镁金属表面Heyrovsky析氢过程占主导,其速率与电极电位、溶液pH值、金属表面H覆盖率有关。在酸性电解液中,•OH脱附及镁溶解、水裂解过程都会加剧。而在中性或碱性条件下,镁金属表面形成稳定的Mg—OH,开路电压下水裂解及析氢速率大大降低。而在负极极化时,析氢现象更可能通过Tafel过程反应进行,此时析氢反应会加速镁金属表面惰性杂质的聚集从而形成微原电池更进一步提升析氢速率。此外,该工作从理论计算角度证明了在水溶液中,镁表面会自发形成致密且薄的MgO内层膜-厚且多孔的Mg(OH)2外层膜的双膜层结构,这种膜起到钝化金属表面作用,能够降低镁溶解及腐蚀速率。此项研究为水系镁离子电池金属镁作为负极时避免其腐蚀析氢提供理论可行性策略,即可从镁金属表面吸附更多•OH基团或从调控表面膜层物相结构抑制镁溶解等角度改变固-液相界面性质,提高镁直接作为水系电池负极的应用性。
近期,有报道运用机器学习将电池行为与电池性能联系起来并构建标准预测模型来解决在长时空尺度下的问题。这样的数据驱动模型被证实在预测潜在电池材料、预测充放电过程中电池行为等方面有着不可替代的优势。后期将向多数据、数据驱动与物理驱动相结合、深度学习等方面发展[68-70],在水系镁离子电池体系电极材料筛选、预测电化学过程等方面也有重要应用价值。
近年来原位表征技术得到不断发展应用,原位技术可以对电化学系统过程进行实时观察,将信息与同步获取的数据结果相关联,尽可能避免了受时间延迟和潜在影响的干扰。尤其是基于光学显微镜的电化学系统原位研究技术使研究者们更直观研究并理解电化学过程中电极表面枝晶生成等问题[71-73]。目前原位表征技术已在聚合物电解质膜燃料电池[74]、锂硫电池[75]、锂电池[71-72]、氧化还原液流电池[76]、锌离子电池[77]等体系的研究中初显成果,比如利用光学显微镜实时跟踪锌枝晶随时间的演变、利用荧光成像观察锂离子电池中正极材料的离子溶解情况等。在镁离子电池的研究中,Zhao等[78]在镁金属表面包覆Bi基保护层,在非水电解液体系下使用了原位光学显微技术对比有无保护层的镁电极表面枝晶的生成情况(图9)。结合现今水系镁离子电池的枝晶问题,在未来,原位光学观察技术将会得到更加广泛的应用。
现阶段,对于电极表面微结构的表征和研究电化学反应过程的一种先进手段是拉曼光谱检测。D'Amario等[79]报道了一种在亚毫秒尺度上使用拉曼光谱进行电化学分析的改进手段,被称为EIR。通过将传统拉曼光谱中控制时间的光脉冲手段替换为电脉冲手段来提高时间分辨率,从而让一些电化学反应中的不稳定物质能够被检测出。
电极材料在电池充放电过程中,会有材料内部结构被分解失效的现象存在,近年来发展了电化学原子力显微镜技术(EC-AFM)来表征这一过程[80]。Zhang等[81]在研究21 mol/L双(三氟甲烷磺酰基)酰亚胺锂(LiTFSI)水系电解液中负极表面SEI的形态演变时利用EC-AFM及原位XPS技术探究SEI的形成机制并表征其成分。结果揭示了SEI层的具体成分及其分布状态。图10为EC-AFM原位观察该SEI层的图像。
图 10 利用电化学原子力显微镜技术(EC-AFM)原位观测双三氟甲基磺酰亚胺锂(LiTFSI)水电解质存在下的固体电解质界面(SEI)层[81]Figure 10. In-situ observation of solid electrolyte interphase (SEI) layer in the presence of lithium bis(trifluoromethane sulfonyl) imide (LiTFSI)-water electrolyte by electrochemical-controlled atomic force microscopy (EC-AFM)[81]OCP—Open circuit potential4. 总结和展望
目前水系镁离子电池尚未得到充分发展,其受限因素主要来自于水系电解液存在的电化学窗口窄、水分解产气等固有问题,正极材料匹配性问题及负极侧的枝晶、析氢等问题。如前所述,电解液中电解质的种类及浓度对其性质有重要影响,可通过适当引入Chaotropic阴离子、构建多元阳离子体系、引入电解质添加剂等策略拓宽电解液电化学窗口、提高其工作电压、增强电池高低温极端条件下电化学性能。同时,也应着重考虑电极材料与电解液的适配性,筛选合适的正极材料及其对应的电解液体系。此外,由于金属镁在水溶液中的不稳定性,可通过表面包覆改性、微合金化等方法提高镁金属及其合金直接作为水系电池负极的应用性。而其他负极材料,如聚合物材料,如有合适的电解液及正极材料与之相匹配,也将有助于发挥水系镁离子电池的潜力。目前基于第一性原理密度泛函理论(DFT)等计算手段在电化学体系中已得到广泛应用,在对水系镁离子电池体系的研究中也具有筛选材料、预测电池性能、揭示电化学机制等重要作用,结合机器学习等先进信息技术、原位光学观察、亚毫秒尺度(EIR)改进的拉曼光谱技术、电化学原子力显微镜技术(EC-AFM)原位观察技术等高精度实验测试方法,相信在未来水系镁离子电池体系将得到更深入的理解及更广泛的贴合实际场景的应用。
-
图 5 电化学转化法制备的MgMn2O4及其电化学性能[55]:(a) MgMn2O4材料的恒流充放电测试(GCD);(b) MgMn2O4材料的循环性能;(c) 循环伏安(CV)曲线;(d) MgMn2O4材料的SEM图像;(e) MgMn2O4材料的TEM图像
Figure 5. MgMn2O4 prepared by electrochemical conversion method and its electrochemical performance[55]: (a) Galvanostatic charge-discharge (GCD) test of MgMn2O4 material; (b) Cyclic performance of MgMn2O4 material; (c) Cyclic voltammetry (CV) curves; (d) SEM image of MgMn2O4 material; (e) TEM image of MgMn2O4 material
图 10 利用电化学原子力显微镜技术(EC-AFM)原位观测双三氟甲基磺酰亚胺锂(LiTFSI)水电解质存在下的固体电解质界面(SEI)层[81]
Figure 10. In-situ observation of solid electrolyte interphase (SEI) layer in the presence of lithium bis(trifluoromethane sulfonyl) imide (LiTFSI)-water electrolyte by electrochemical-controlled atomic force microscopy (EC-AFM)[81]
OCP—Open circuit potential
表 1 水系电解液主要研究方向
Table 1 Main research directions of aqueous electrolyte
Research direction Specific research Ref. Anion type Cl− as the main anion [26-29] Kosmotropic anion as the main anion, e.g., SO42− [30-32] Chaotropic anion as the main anion, e.g., NO3− [19] Electrolyte concentration “Water-in-salt” electrolyte [33-35] Hydrated eutectic electrolyte system [19] Hydrate melts, water in water ionomers, molecular crowding, etc. [36-40] Mixed cation Mg/Na, Mg/Zn, etc. [29, 41-42] Electrolyte additive Improve battery performance or alleviate various problems caused by electrolyte [43-44] -
[1] LI W, DAHN J R, WAINWRIGHT D S. Rechargeable lithium batteries with aqueous electrolytes[J]. Science,1994,264(5162):1115-1118. DOI: 10.1126/science.264.5162.1115
[2] ZHU K, LI Z, SUN Z, et al. Inorganic electrolyte for low-temperature aqueous sodium ion batteries[J]. Small,2022,18(14):2107662. DOI: 10.1002/smll.202107662
[3] ZHANG Y, XU J, LI Z, et al. All-climate aqueous Na-ion batteries using "water-in-salt" electrolyte[J]. Science Bulletin,2022,67(2):161-170. DOI: 10.1016/j.scib.2021.08.010
[4] HOU Z, ZHANG X, CHEN J, et al. Towards high-performance aqueous sodium ion batteries: Constructing hollow NaTi2(PO4)3@C nanocube anode with Zn metal-induced pre-sodiation and deep eutectic electrolyte[J]. Advanced Energy Materials,2022,12(14):2104053. DOI: 10.1002/aenm.202104053
[5] LI C, DENG W, LI Y, et al. Iron phosphate hydroxide hydrate as a novel anode material for advanced aqueous full potassium-ion batteries[J]. Chemical Communications,2022,58(55):7702-7705. DOI: 10.1039/D2CC01798A
[6] LIU T, LIU K T, WANG J, et al. Achievement of a polymer-free KAc gel electrolyte for advanced aqueous K-ion battery[J]. Energy Storage Materials,2021,41:133-140. DOI: 10.1016/j.ensm.2021.06.001
[7] JI B, ZHANG F, SONG X, et al. A novel potassium-ion-based dual-ion battery[J]. Advanced Materials,2017,29(19):1700519. DOI: 10.1002/adma.201700519
[8] EJIGU A, LE FEVRE L W, ELGENDY A, et al. Optimization of electrolytes for high-performance aqueous aluminum-ion batteries[J]. ACS Applied Materials & Interfaces,2022,14(22):25232-25245.
[9] DAS S K, MAHAPATRA S, LAHAN H. Aluminium-ion batteries: Developments and challenges[J]. Journal of Materials Chemistry A,2017,5(14):6347-6367. DOI: 10.1039/C7TA00228A
[10] DAI Q, LI L, HU B, et al. One-step preparation of MnO2 electrode for secondary aqueous zinc ion batteries by electrodeposition[J]. Materials Today Communications,2022,31:103578. DOI: 10.1016/j.mtcomm.2022.103578
[11] YAN H, ZHANG X, YANG Z, et al. Insight into the electrolyte strategies for aqueous zinc ion batteries[J]. Coordination Chemistry Reviews,2022,452:214297. DOI: 10.1016/j.ccr.2021.214297
[12] ZHENG J, HUANG Z, MING F, et al. Surface and interface engineering of Zn anodes in aqueous rechargeable Zn-ion batteries[J]. Small,2022,18(21):2200006. DOI: 10.1002/smll.202200006
[13] TANG W, ZHU Y, HOU Y, et al. Aqueous rechargeable lithium batteries as an energy storage system of superfast charging[J]. Energy & Environmental Science,2013,6(7):2093-2104.
[14] GAO P, ZHAO X, ZHAO-KARGER Z, et al. Vanadium oxychloride/magnesium electrode systems for chloride ion batteries[J]. ACS Applied Materials & Interfaces,2014,6(24):22430-22435.
[15] CHEN L, DONG X, WANG Y, et al. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide[J]. Nature Communications,2016,7:11741. DOI: 10.1038/ncomms11741
[16] DENG M, WANG L, VAGHEFINAZARI B, et al. High-energy and durable aqueous magnesium batteries: Recent advances and perspectives[J]. Energy Storage Materials,2021,43:238-247. DOI: 10.1016/j.ensm.2021.09.008
[17] YOO H D, SHTERENBERG I, GOFER Y, et al. Mg rechargeable batteries: An on-going challenge[J]. Energy & Environmental Science,2013,6(8):2265-2279.
[18] LEE B, JO E, CHOI J, et al. Cr-doped lithium titanate nanocrystals as Mg ion insertion materials for Mg batteries[J]. Journal of Materials Chemistry A,2019,7(44):25619-25627. DOI: 10.1039/C9TA08362F
[19] ZHU Y, GUO X, LEI Y, et al. Hydrated eutectic electrolytes for high-performance Mg-ion batteries[J]. Energy & Environmental Science,2022,15(3):1282-1292.
[20] ZHANG H, CAO D, BAI X. High rate performance of aqueous magnesium-ion batteries based on the δ-MnO2@carbon molecular sieves composite as the cathode and nanowire VO2 as the anode[J]. Journal of Power Sources,2019,444:227299. DOI: 10.1016/j.jpowsour.2019.227299
[21] MACLAUGHLIN C M. Status and outlook for magnesium battery technologies: A conversation with stan whittingham and sarbajit banerjee[J]. ACS Energy Letters,2019,4(2):572-575. DOI: 10.1021/acsenergylett.9b00214
[22] DAVIDSON R, VERMA A, SANTOS D, et al. Formation of magnesium dendrites during electrodeposition[J]. ACS Energy Letters,2019,4(2):375-376. DOI: 10.1021/acsenergylett.8b02470
[23] KONG L, XING Y, PECHT M G. In-situ observations of lithium dendrite growth[J]. IEEE Access,2018,6:8387-8393. DOI: 10.1109/ACCESS.2018.2805281
[24] BAI X, CAO D, JIANG Z, et al. Exploration of hydrated lithium manganese oxide with a nanoribbon structure as cathodes in aqueous lithium ion and magnesium ion batteries[J]. Inorganic Chemistry Frontiers,2022,9(3):485-493. DOI: 10.1039/D1QI01222C
[25] ZHANG H, YE K, SHAO S, et al. Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery[J]. Electrochimica Acta,2017,229:371-379. DOI: 10.1016/j.electacta.2017.01.110
[26] LIU T, PENG N, ZHANG X, et al. Insight into anion storage batteries: Materials, properties and challenges[J]. Energy Storage Materials,2021,42:42-67. DOI: 10.1016/j.ensm.2021.07.011
[27] LIU Z, LI X, HE J, et al. Is proton a charge carrier for δ-MnO2 cathode in aqueous rechargeable magnesium-ion batteries?[J]. Journal of Energy Chemistry,2022,68:572-579. DOI: 10.1016/j.jechem.2021.12.016
[28] ZHANG Y Q, YAO A Q, YANG L, et al. Preparation and electrochemical performance of sodium manganese oxides as cathode materials for aqueous Mg-ion batteries[J]. Acta Physica Sinica,2021,70(16):168201. DOI: 10.7498/aps.70.20202130
[29] ZHANG S, ZHAO C, ZHU K, et al. An environment-friendly high-performance aqueous Mg-Na hybrid-ion battery using an organic polymer anode[J]. Energy Environmental Materials,2022,5:1-8. DOI: 10.1002/eem2.12388
[30] REBER D, GRISSA R, BECKER M, et al. Anion selection criteria for water-in-salt electrolytes[J]. Advanced Energy Materials,2021,11(5):2002913. DOI: 10.1002/aenm.202002913
[31] ZHANG Q, XIA K, MA Y, et al. Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries[J]. ACS Energy Letters,2021,6(8):2704-2712. DOI: 10.1021/acsenergylett.1c01054
[32] LIU Z, PANG G, DONG S, et al. An aqueous rechargeable sodium-magnesium mixed ion battery based on NaTi2(PO4)3-MnO2 system[J]. Electrochimica Acta,2019,311:1-7. DOI: 10.1016/j.electacta.2019.04.130
[33] SUO L, BORODIN O, GAO T, et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science,2015,350(6263):938-943. DOI: 10.1126/science.aab1595
[34] GONZÁLEZ M A, AKIBA H, BORODIN O, et al. Structure of water-in-salt and water-in-bisalt electrolytes[J]. Physical Chemistry Chemical Physics,2022,24(18):10727-10736. DOI: 10.1039/D2CP00537A
[35] KULKARNI P, GHOSH D, BALAKRISHNA R G. Recent progress in 'water-in-salt' and 'water-in-salt'-hybrid-electrolyte-based high voltage rechargeable batteries[J]. Sustainable Energy & Fuels,2021,5(6):1619-1654.
[36] YAMADA Y, USUI K, SODEYAMA K, et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries[J]. Nature Energy,2016,1(10):16129. DOI: 10.1038/nenergy.2016.129
[37] ZHENG Q, MIURA S, MIYAZAKI K, et al. Sodium- and potassium-hydrate melts containing asymmetric imide anions for high-voltage aqueous batteries[J]. Angewandte Chemie International Edition,2019,58(40):14202-14207. DOI: 10.1002/anie.201908830
[38] HE X, YAN B, ZHANG X, et al. Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries[J]. Nature Communications,2018,9(1):5320. DOI: 10.1038/s41467-018-07331-6
[39] WANG W, YANG C, CHI X, et al. Small-molecular crowding electrolyte enables high-voltage and high-rate supercapacitors[J]. Energy Technology,2021,9(12):2100684. DOI: 10.1002/ente.202100684
[40] XIE J, GUAN Y, HUANG Y, et al. Solid-electrolyte interphase of molecular crowding electrolytes[J]. Chemistry of Materials,2022,34(11):5176-5183. DOI: 10.1021/acs.chemmater.2c00722
[41] TANG Y, LI X, LV H, et al. High-energy aqueous magnesium hybrid full batteries enabled by carrier-hosting potential compensation[J]. Angewandte Chemie International Edition,2021,60(10):5443-5452. DOI: 10.1002/anie.202013315
[42] SOUNDHARRAJAN V, SAMBANDAM B, KIM S, et al. Aqueous magnesium zinc hybrid battery: An advanced high-voltage and high-energy MgMn2O4 cathode[J]. ACS Energy Letters,2018,3(8):1998-2004. DOI: 10.1021/acsenergylett.8b01105
[43] FU Q, WU X, LUO X, et al. High-voltage aqueous Mg-ion batteries enabled by solvation structure reorganization[J]. Advanced Functional Materials,2022,32(16):2110674. DOI: 10.1002/adfm.202110674
[44] WANG P, XU J, GONG Y, et al. Study on electrolyte additives of water-based magnesium batteries[J]. IOP Conference Series: Earth and Environmental Science,2021,781(4):042015. DOI: 10.1088/1755-1315/781/4/042015
[45] 张宏宇. 水系镁离子电池Mg-Mn氧化物正极材料和Fe-V氧化物负极材料的研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. ZHANG Hongyu. Study on Mg-Mn oxide cathode materials and Fe-V oxide anode materials for aqueous magnesium ion batteries[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
[46] WANG F, FAN X, GAO T, et al. High-voltage aqueous magnesium ion batteries[J]. ACS Central Science,2017,3(10):1121-1128. DOI: 10.1021/acscentsci.7b00361
[47] YANG W, DU X, ZHAO J, et al. Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries[J]. Joule,2020,4(7):1557-1574. DOI: 10.1016/j.joule.2020.05.018
[48] VAGHEFINAZARI B, HÖCHE D, LAMAKA S V, et al. Tailoring the Mg-air primary battery performance using strong complexing agents as electrolyte additives[J]. Journal of Power Sources,2020,453:227880. DOI: 10.1016/j.jpowsour.2020.227880
[49] SNIHIROVA D, WANG L, LAMAKA S V, et al. Synergistic mixture of electrolyte additives: A route to a high-efficiency Mg-air battery[J]. The Journal of Physical Chemistry Letters,2020,11(20):8790-8798. DOI: 10.1021/acs.jpclett.0c02174
[50] VAGHEFINAZARI B, SNIHIROVA D, WANG C, et al. Exploring the effect of sodium salt of ethylenediaminetetraacetic acid as an electrolyte additive on electrochemical behavior of a commercially pure Mg in primary Mg-air batteries[J]. Journal of Power Sources,2022,527:231176. DOI: 10.1016/j.jpowsour.2022.231176
[51] FAN H, ZHANG X, XIAO J, et al. Simultaneous optimization of solvation structure and water-resistant capability of MgCl2-based electrolyte using an additive combination of organic and inorganic lithium salts[J]. Energy Storage Materials,2022,51:873-881. DOI: 10.1016/j.ensm.2022.07.023
[52] MENG Z, LI Z, WANG L, et al. Surface engineering of a Mg electrode via a new additive to reduce overpotential[J]. ACS Applied Materials & Interfaces,2021,13(31):37044-37051.
[53] ZHANG J, GUAN X, LV R, et al. Rechargeable Mg metal batteries enabled by a protection layer formed in vivo[J]. Energy Storage Materials,2020,26:408-413. DOI: 10.1016/j.ensm.2019.11.012
[54] WEN B, YANG C, WU J, et al. Water-induced 3D MgMn2O4 assisted by unique nanofluidic effect for energy-dense and durable aqueous magnesium-ion batteries[J]. Chemical Engineering Journal,2022,435:134997. DOI: 10.1016/j.cej.2022.134997
[55] ZHANG D, CHEN Q, ZHANG J, et al. MgMn2O4/multiwalled carbon nanotubes composite fabricated by electrochemical conversion as a high-performance cathode material for aqueous rechargeable magnesium ion battery[J]. Journal of Alloys and Compounds,2021,873:159872. DOI: 10.1016/j.jallcom.2021.159872
[56] ZHANG Y, LIU G, ZHANG C, et al. Low-cost MgFexMn2-xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries[J]. Chemical Engineering Journal,2020,392:123652. DOI: 10.1016/j.cej.2019.123652
[57] MANDAI T, SOMEKAWA H. Ultrathin magnesium metal anode—An essential component for high-energy-density magnesium battery materialization[J]. Batteries & Supercaps,2022,5(9):e202200153.
[58] XU Y, LIU Z, ZHENG X, et al. Solid electrolyte interface regulated by solvent-in-water electrolyte enables high-voltage and stable aqueous Mg-MnO2 batteries[J]. Advanced Energy Materials,2022,12(22):2103352. DOI: 10.1002/aenm.202103352
[59] WANG F, WU D, ZHUANG Y, et al. Modification of a Cu mesh with nanowires and magnesiophilic Ag sites to induce uniform magnesium deposition[J]. ACS Applied Materials & Interfaces,2022,14(27):31148-31159.
[60] ZHANG H, YE K, ZHU K, et al. High-energy-density aqueous magnesium-ion battery based on a carbon-coated FeVO4 anode and a Mg-OMS-1 cathode[J]. Chemistry,2017,23(67):17118-17126. DOI: 10.1002/chem.201703806
[61] LIANG Y, JING Y, GHEYTANI S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nature Materials,2017,16(8):841-848. DOI: 10.1038/nmat4919
[62] BIN D, HUO W, YUAN Y, et al. Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery[J]. Chemistry,2020,6(4):968-984. DOI: 10.1016/j.chempr.2020.02.001
[63] CANG R, SONG Y, YE K, et al. Preparation of organic poly material as anode in aqueous aluminum-ion battery[J]. Journal of Electroanalytical Chemistry,2020,861:113967. DOI: 10.1016/j.jelechem.2020.113967
[64] CANG R, YE K, SHAO S, et al. A new perylene-based tetracarboxylate as anode and LiMn2O4 as cathode in aqueous Mg-Li batteries with excellent capacity[J]. Chemical Engineering Journal,2021,405:126783. DOI: 10.1016/j.cej.2020.126783
[65] CHEN L, BAO J L, DONG X, et al. Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode[J]. ACS Energy Letters,2017,2(5):1115-1121. DOI: 10.1021/acsenergylett.7b00040
[66] SUN T, DU H, ZHENG S, et al. Inverse-spinel Mg2MnO4 material as cathode for high-performance aqueous magnesium-ion battery[J]. Journal of Power Sources,2021,515:230643. DOI: 10.1016/j.jpowsour.2021.230643
[67] YUWONO J A, BIRBILIS N, TAYLOR C D, et al. Aqueous electrochemistry of the magnesium surface: Thermodynamic and kinetic profiles[J]. Corrosion Science,2019,147:53-68. DOI: 10.1016/j.corsci.2018.10.014
[68] MOSES I A, JOSHI R P, OZDEMIR B, et al. Machine learning screening of metal-ion battery electrode materials[J]. ACS Applied Materials & Interfaces,2021,13(45):53355-53362. DOI: 10.1021/acsami.1c04627
[69] LIU Y, GUO B, ZOU X, et al. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Materials,2020,31:434-450. DOI: 10.1016/j.ensm.2020.06.033
[70] AYKOL M, HERRING P, ANAPOLSKY A. Machine learning for continuous innovation in battery technologies[J]. Nature Reviews Materials,2020,5(10):725-727. DOI: 10.1038/s41578-020-0216-y
[71] SHU J, SHUI M, XU D, et al. Large-scale synthesis of Li1.15V3O8 nanobelts and their lithium storage behavior studied by in situ X-ray diffraction[J]. Journal of Materials Chemistry,2012,22(7):3035-3043. DOI: 10.1039/c1jm14894j
[72] LI Y, ZHENG R, YU H, et al. Observation of ZrNb14O37 nanowires as a lithium container via in situ and ex situ techniques for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(25):22429-22438. DOI: 10.1021/acsami.9b05841
[73] CHEN B, ZHANG H, XUAN J, et al. Seeing is believing: In situ/operando optical microscopy for probing electrochemical energy systems[J]. Advanced Materials Technologies,2020,5(10):2000555. DOI: 10.1002/admt.202000555
[74] DU F, DAO T A, BAUER A, et al. Understanding the performance losses and "invasiveness" of in situ characterization steps during carbon corrosion experiments in polymer electrolyte membrane fuel cells[J]. Electrochimica Acta,2022,402:139537. DOI: 10.1016/j.electacta.2021.139537
[75] ZHENG J, GUAN C, LI H, et al. Unraveling the morphological evolution mechanism of solid sulfur species in lithium-sulfur batteries with operando light microscopy[J]. Journal of Energy Chemistry,2022,73:460-468. DOI: 10.1016/j.jechem.2022.04.041
[76] GHIMIRE P C, BHATTARAI A, LIM T M, et al. In-situ tools used in vanadium redox flow battery research—Review[J]. Batteries,2021,7(3):53. DOI: 10.3390/batteries7030053
[77] CUI Y, HE Y, YU W, et al. In-situ observation of the Zn electrodeposition on the planar electrode in the alkaline electrolytes with different viscosities[J]. Electrochimica Acta,2022,418:140344. DOI: 10.1016/j.electacta.2022.140344
[78] ZHAO Y, DU A, DONG S, et al. A bismuth-based protective layer for magnesium metal anode in noncorrosive electrolytes[J]. ACS Energy Letters,2021,6:2594-2601. DOI: 10.1021/acsenergylett.1c01243
[79] D'AMARIO L, STELLA M B, EDVINSSON T, et al. Towards time resolved characterization of electrochemical reactions: Electrochemically-induced Raman spectroscopy[J]. Chemical Science,2022,13(36):10734-10742. DOI: 10.1039/D2SC01967A
[80] ZHANG Z, SAID S, SMITH K, et al. Characterizing batteries by in situ electrochemical atomic force microscopy: A critical review[J]. Advanced Energy Materials,2021,11(38):2101518. DOI: 10.1002/aenm.202101518
[81] ZHANG H, WANG D, SHEN C. In-situ EC-AFM and ex-situ XPS characterization to investigate the mechanism of SEI formation in highly concentrated aqueous electrolyte for Li-ion batteries[J]. Applied Surface Science,2020,507:145059. DOI: 10.1016/j.apsusc.2019.145059
-
期刊类型引用(1)
1. 程成,雷鑫,孙涛,范红玉,申薛靖,武湛君. 铝离子电池正极材料研究进展. 复合材料学报. 2024(08): 3839-3865 . 本站查看
其他类型引用(0)
-
目的
水系镁离子电池作为一种新兴的储能体系有着低成本、原料来源充足、高理论储能能力等优势。但水系电解液和镁自身带来的问题都极大地限制了水系镁离子电池的进一步发展。本文综述近年相关文献来对有关水系镁离子电池的最新研究进行总结并做出展望。
方法综述有关水系镁离子电池的相关研究,从电解液、电极材料、新兴表征分析方法等方面总结存在的问题及相应研究成果,并对未来水系镁离子电池研究方向进行展望。
结果目前水系镁离子电池尚未得到充分发展,其受限因素主要来自于水系电解液存在的电化学窗口窄、水分解产气等固有问题,正极材料匹配性问题,以及负极侧的枝晶、析氢等问题。电解液中电解质的种类及浓度对其性质有重要影响,在水系电池领域内有降低电解液游离水含量、引入chaotropic阴离子、构建多元阳离子体系、引入电解质添加剂等策略拓宽电解液电化学窗口、提高其工作电压、增强电池高低温极端条件下电化学性能。而“盐包水”等策略虽然能够拓宽水系电池的电化学稳定窗口,但其成本相对较高且镁离子迁移速率也并未得到提升。相较而言,在常规浓度电解液中构建混合阳离子补强和添加改变离子溶剂化结构的电解液添加剂等策略相对来说更加有发展前景。对于电极材料,如MgMnO、MgFeMnO和LiMnO•HO等正极材料来说,无论是单独作为正极材料还是与碳纳米管、石墨等材料制成复合材料,都已证明了他们在水系镁离子电池中的优越性。由于金属镁在水溶液中的不稳定性,可通过表面包覆改性、微合金化等方法提高镁金属及其合金直接作为水系电池负极的应用性。其它负极材料,如近年来新兴的聚合物负极材料,将传统的金属负极的溶解沉积的电化学过程替代为活性位点与离子反应过程,这将有效抑制枝晶等副反应的发生,也有助于提升水系镁离子电池的性能。除此之外也总结了一些计算手段、新兴的实验技术方法在水系镁离子电池体系中的应用。
结论本文总结了目前水系镁离子电池受限因素和相应的策略,电解液中电解质的种类及浓度对其性质有重要影响,可通过适当引入chaotropic阴离子、构建多元阳离子体系、引入电解质添加剂等策略提升电池电化学性能。目前锰酸镁、锰酸铁镁等的复合正极材料展现了他们的优越性。此外对于负极材料,可通过表面包覆改性、微合金化等方法。也可以选用其他负极材料,如聚合物材料,帮助发挥水系镁离子电池的潜力。第一性原理密度泛函理论(DFT)等计算手段对水系镁离子电池体系的研究也卓有成效,结合机器学习、原位光学观察、EIR改进的拉曼光谱技术、EC-AFM原位观察技术等高精度实验测试方法和技术,相信在未来水系镁离子电池体系将得到更深入的理解以及更广泛的贴合实际场景的应用。