留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水系镁离子电池研究进展

涂天成 李龙燕 代启航

涂天成, 李龙燕, 代启航. 水系镁离子电池研究进展[J]. 复合材料学报, 2023, 40(7): 3756-3770. doi: 10.13801/j.cnki.fhclxb.20221206.001
引用本文: 涂天成, 李龙燕, 代启航. 水系镁离子电池研究进展[J]. 复合材料学报, 2023, 40(7): 3756-3770. doi: 10.13801/j.cnki.fhclxb.20221206.001
TU Tiancheng, LI Longyan, DAI Qihang. Research progress of aqueous magnesium ion battery[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3756-3770. doi: 10.13801/j.cnki.fhclxb.20221206.001
Citation: TU Tiancheng, LI Longyan, DAI Qihang. Research progress of aqueous magnesium ion battery[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3756-3770. doi: 10.13801/j.cnki.fhclxb.20221206.001

水系镁离子电池研究进展

doi: 10.13801/j.cnki.fhclxb.20221206.001
基金项目: 国家自然科学基金(21905139)
详细信息
    通讯作者:

    李龙燕,博士,副教授,硕士生导师,研究方向为储能、动力电池体系材料研究、电化学、功能性纳米材料、废旧动力电池资源化利用 E-mail: lilongyan@nuist.edu.cn

  • 中图分类号: TQ152;TB331

Research progress of aqueous magnesium ion battery

Funds: National Natural Science Foundation of China (21905139)
  • 摘要: 水系镁离子电池作为一种新兴的储能体系具有低成本、原料来源充足、高理论储能能力等优势。但水系电解液和镁自身带来的问题都极大地限制了水系镁离子电池的进一步发展。本文主要从水系电解液的阴离子类型、浓度和电解液添加剂三方面阐述对电池性能的影响,并介绍了一些电极材料的研究,包括新材料和新理论,最后总结了一些高效表征分析方法。

     

  • 图  1  水系镁离子电池发展中遇到的问题

    Figure  1.  Problems encountered in the development of the aqueous magnesium ion battery

    图  2  PNTAQ在MgCl2电解液中的循环性能 (a) 和离子迁移示意图 (b)[29]

    Figure  2.  Schematic diagram of cycling performance (a) and ion migration (b) of PNTAQ in MgCl2 electrolyte [29]

    图  3  阴离子类型与电解液凝固点(a)、氢键强度(b)的关系[31]

    Figure  3.  Relationship between the anion type and the freezing point (a), the hydrogen bond strength (b) of electrolyte[31]

    T—Temperature; t—Time

    图  4  水包盐和盐包水溶剂化分子的区别(a)和盐包水电解液对电化学稳定窗口的扩大(b)[33]

    Figure  4.  Solvation molecule difference between salt-in-water and water-in-salt (a) and the expansion of electrochemical stability window by water-in-salt electrolyte (b)[33]

    TFSI—Bis(trifluoromethane sulfonimide); i—Current difference

    图  5  电化学转化法制备的MgMn2O4及其电化学性能[55]:(a) MgMn2O4材料的恒流充放电测试(GCD);(b) MgMn2O4材料的循环性能;(c) 循环伏安(CV)曲线;(d) MgMn2O4材料的SEM图像;(e) MgMn2O4材料的TEM图像

    Figure  5.  MgMn2O4 prepared by electrochemical conversion method and its electrochemical performance[55]: (a) Galvanostatic charge-discharge (GCD) test of MgMn2O4 material; (b) Cyclic performance of MgMn2O4 material; (c) Cyclic voltammetry (CV) curves; (d) SEM image of MgMn2O4 material; (e) TEM image of MgMn2O4 material

    图  6  腐蚀与自腐蚀过程[16]

    Figure  6.  Corrosion and self-corrosion process[16]

    I—Electric current

    图  7  不同镁合金块效应对比[16]

    Figure  7.  Comparison of chunk effect of different magnesium alloys[16]

    3.4-DHB—3, 4-dihydroxybenzoic acid; ZE41, WE43, AM50—Different types of magnesium alloys

    图  8  聚酰亚胺基材料负极的电化学性能 (a) 和电化学反应过程 (b)[65]

    Figure  8.  Electrochemical performance (a) and electrochemical reaction process (b) of polyimide based material cathode[65]

    ip—Measured current; a, b—Variable parameters; v—Voltage sweep rate; P—Polyimide

    图  9  原位表征下有无保护层的对比[77]:(a) 无保护层;(b) 有保护层

    Figure  9.  Comparison between the presence and absence of protective layer under in-situ characterization[77]: (a) No protective layer; (b) With protective layer

    图  10  利用电化学原子力显微镜技术(EC-AFM)原位观测双三氟甲基磺酰亚胺锂(LiTFSI)水电解质存在下的固体电解质界面(SEI)层[81]

    Figure  10.  In-situ observation of solid electrolyte interphase (SEI) layer in the presence of lithium bis(trifluoromethane sulfonyl) imide (LiTFSI)-water electrolyte by electrochemical-controlled atomic force microscopy (EC-AFM)[81]

    OCP—Open circuit potential

    表  1  水系电解液主要研究方向

    Table  1.   Main research directions of aqueous electrolyte

    Research directionSpecific researchRef.
    Anion typeCl as the main anion[26-29]
    Kosmotropic anion as the main anion, e.g., SO42−[30-32]
    Chaotropic anion as the main anion, e.g., NO3[19]
    Electrolyte concentration“Water-in-salt” electrolyte[33-35]
    Hydrated eutectic electrolyte system[19]
    Hydrate melts, water in water ionomers, molecular crowding, etc.[36-40]
    Mixed cationMg/Na, Mg/Zn, etc.[29, 41-42]
    Electrolyte additiveImprove battery performance or alleviate various problems caused by electrolyte[43-44]
    下载: 导出CSV
  • [1] LI W, DAHN J R, WAINWRIGHT D S. Rechargeable lithium batteries with aqueous electrolytes[J]. Science,1994,264(5162):1115-1118. doi: 10.1126/science.264.5162.1115
    [2] ZHU K, LI Z, SUN Z, et al. Inorganic electrolyte for low-temperature aqueous sodium ion batteries[J]. Small,2022,18(14):2107662. doi: 10.1002/smll.202107662
    [3] ZHANG Y, XU J, LI Z, et al. All-climate aqueous Na-ion batteries using "water-in-salt" electrolyte[J]. Science Bulletin,2022,67(2):161-170. doi: 10.1016/j.scib.2021.08.010
    [4] HOU Z, ZHANG X, CHEN J, et al. Towards high-performance aqueous sodium ion batteries: Constructing hollow NaTi2(PO4)3@C nanocube anode with Zn metal-induced pre-sodiation and deep eutectic electrolyte[J]. Advanced Energy Materials,2022,12(14):2104053. doi: 10.1002/aenm.202104053
    [5] LI C, DENG W, LI Y, et al. Iron phosphate hydroxide hydrate as a novel anode material for advanced aqueous full potassium-ion batteries[J]. Chemical Communications,2022,58(55):7702-7705. doi: 10.1039/D2CC01798A
    [6] LIU T, LIU K T, WANG J, et al. Achievement of a polymer-free KAc gel electrolyte for advanced aqueous K-ion battery[J]. Energy Storage Materials,2021,41:133-140. doi: 10.1016/j.ensm.2021.06.001
    [7] JI B, ZHANG F, SONG X, et al. A novel potassium-ion-based dual-ion battery[J]. Advanced Materials,2017,29(19):1700519. doi: 10.1002/adma.201700519
    [8] EJIGU A, LE FEVRE L W, ELGENDY A, et al. Optimization of electrolytes for high-performance aqueous aluminum-ion batteries[J]. ACS Applied Materials & Interfaces,2022,14(22):25232-25245.
    [9] DAS S K, MAHAPATRA S, LAHAN H. Aluminium-ion batteries: Developments and challenges[J]. Journal of Materials Chemistry A,2017,5(14):6347-6367. doi: 10.1039/C7TA00228A
    [10] DAI Q, LI L, HU B, et al. One-step preparation of MnO2 electrode for secondary aqueous zinc ion batteries by electrodeposition[J]. Materials Today Communications,2022,31:103578. doi: 10.1016/j.mtcomm.2022.103578
    [11] YAN H, ZHANG X, YANG Z, et al. Insight into the electrolyte strategies for aqueous zinc ion batteries[J]. Coordination Chemistry Reviews,2022,452:214297. doi: 10.1016/j.ccr.2021.214297
    [12] ZHENG J, HUANG Z, MING F, et al. Surface and interface engineering of Zn anodes in aqueous rechargeable Zn-ion batteries[J]. Small,2022,18(21):2200006. doi: 10.1002/smll.202200006
    [13] TANG W, ZHU Y, HOU Y, et al. Aqueous rechargeable lithium batteries as an energy storage system of superfast charging[J]. Energy & Environmental Science,2013,6(7):2093-2104.
    [14] GAO P, ZHAO X, ZHAO-KARGER Z, et al. Vanadium oxychloride/magnesium electrode systems for chloride ion batteries[J]. ACS Applied Materials & Interfaces,2014,6(24):22430-22435.
    [15] CHEN L, DONG X, WANG Y, et al. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide[J]. Nature Communications,2016,7:11741. doi: 10.1038/ncomms11741
    [16] DENG M, WANG L, VAGHEFINAZARI B, et al. High-energy and durable aqueous magnesium batteries: Recent advances and perspectives[J]. Energy Storage Materials,2021,43:238-247. doi: 10.1016/j.ensm.2021.09.008
    [17] YOO H D, SHTERENBERG I, GOFER Y, et al. Mg rechargeable batteries: An on-going challenge[J]. Energy & Environmental Science,2013,6(8):2265-2279.
    [18] LEE B, JO E, CHOI J, et al. Cr-doped lithium titanate nanocrystals as Mg ion insertion materials for Mg batteries[J]. Journal of Materials Chemistry A,2019,7(44):25619-25627. doi: 10.1039/C9TA08362F
    [19] ZHU Y, GUO X, LEI Y, et al. Hydrated eutectic electrolytes for high-performance Mg-ion batteries[J]. Energy & Environmental Science,2022,15(3):1282-1292.
    [20] ZHANG H, CAO D, BAI X. High rate performance of aqueous magnesium-ion batteries based on the δ-MnO2@carbon molecular sieves composite as the cathode and nanowire VO2 as the anode[J]. Journal of Power Sources,2019,444:227299. doi: 10.1016/j.jpowsour.2019.227299
    [21] MACLAUGHLIN C M. Status and outlook for magnesium battery technologies: A conversation with stan whittingham and sarbajit banerjee[J]. ACS Energy Letters,2019,4(2):572-575. doi: 10.1021/acsenergylett.9b00214
    [22] DAVIDSON R, VERMA A, SANTOS D, et al. Formation of magnesium dendrites during electrodeposition[J]. ACS Energy Letters,2019,4(2):375-376. doi: 10.1021/acsenergylett.8b02470
    [23] KONG L, XING Y, PECHT M G. In-situ observations of lithium dendrite growth[J]. IEEE Access,2018,6:8387-8393. doi: 10.1109/ACCESS.2018.2805281
    [24] BAI X, CAO D, JIANG Z, et al. Exploration of hydrated lithium manganese oxide with a nanoribbon structure as cathodes in aqueous lithium ion and magnesium ion batteries[J]. Inorganic Chemistry Frontiers,2022,9(3):485-493. doi: 10.1039/D1QI01222C
    [25] ZHANG H, YE K, SHAO S, et al. Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery[J]. Electrochimica Acta,2017,229:371-379. doi: 10.1016/j.electacta.2017.01.110
    [26] LIU T, PENG N, ZHANG X, et al. Insight into anion storage batteries: Materials, properties and challenges[J]. Energy Storage Materials,2021,42:42-67. doi: 10.1016/j.ensm.2021.07.011
    [27] LIU Z, LI X, HE J, et al. Is proton a charge carrier for δ-MnO2 cathode in aqueous rechargeable magnesium-ion batteries?[J]. Journal of Energy Chemistry,2022,68:572-579. doi: 10.1016/j.jechem.2021.12.016
    [28] ZHANG Y Q, YAO A Q, YANG L, et al. Preparation and electrochemical performance of sodium manganese oxides as cathode materials for aqueous Mg-ion batteries[J]. Acta Physica Sinica,2021,70(16):168201. doi: 10.7498/aps.70.20202130
    [29] ZHANG S, ZHAO C, ZHU K, et al. An environment-friendly high-performance aqueous Mg-Na hybrid-ion battery using an organic polymer anode[J]. Energy Environmental Materials,2022,5:1-8. doi: 10.1002/eem2.12388
    [30] REBER D, GRISSA R, BECKER M, et al. Anion selection criteria for water-in-salt electrolytes[J]. Advanced Energy Materials,2021,11(5):2002913. doi: 10.1002/aenm.202002913
    [31] ZHANG Q, XIA K, MA Y, et al. Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries[J]. ACS Energy Letters,2021,6(8):2704-2712. doi: 10.1021/acsenergylett.1c01054
    [32] LIU Z, PANG G, DONG S, et al. An aqueous rechargeable sodium-magnesium mixed ion battery based on NaTi2(PO4)3-MnO2 system[J]. Electrochimica Acta,2019,311:1-7. doi: 10.1016/j.electacta.2019.04.130
    [33] SUO L, BORODIN O, GAO T, et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science,2015,350(6263):938-943. doi: 10.1126/science.aab1595
    [34] GONZÁLEZ M A, AKIBA H, BORODIN O, et al. Structure of water-in-salt and water-in-bisalt electrolytes[J]. Physical Chemistry Chemical Physics,2022,24(18):10727-10736. doi: 10.1039/D2CP00537A
    [35] KULKARNI P, GHOSH D, BALAKRISHNA R G. Recent progress in 'water-in-salt' and 'water-in-salt'-hybrid-electrolyte-based high voltage rechargeable batteries[J]. Sustainable Energy & Fuels,2021,5(6):1619-1654.
    [36] YAMADA Y, USUI K, SODEYAMA K, et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries[J]. Nature Energy,2016,1(10):16129. doi: 10.1038/nenergy.2016.129
    [37] ZHENG Q, MIURA S, MIYAZAKI K, et al. Sodium- and potassium-hydrate melts containing asymmetric imide anions for high-voltage aqueous batteries[J]. Angewandte Chemie International Edition,2019,58(40):14202-14207. doi: 10.1002/anie.201908830
    [38] HE X, YAN B, ZHANG X, et al. Fluorine-free water-in-ionomer electrolytes for sustainable lithium-ion batteries[J]. Nature Communications,2018,9(1):5320. doi: 10.1038/s41467-018-07331-6
    [39] WANG W, YANG C, CHI X, et al. Small-molecular crowding electrolyte enables high-voltage and high-rate supercapacitors[J]. Energy Technology,2021,9(12):2100684. doi: 10.1002/ente.202100684
    [40] XIE J, GUAN Y, HUANG Y, et al. Solid-electrolyte interphase of molecular crowding electrolytes[J]. Chemistry of Materials,2022,34(11):5176-5183. doi: 10.1021/acs.chemmater.2c00722
    [41] TANG Y, LI X, LV H, et al. High-energy aqueous magnesium hybrid full batteries enabled by carrier-hosting potential compensation[J]. Angewandte Chemie International Edition,2021,60(10):5443-5452. doi: 10.1002/anie.202013315
    [42] SOUNDHARRAJAN V, SAMBANDAM B, KIM S, et al. Aqueous magnesium zinc hybrid battery: An advanced high-voltage and high-energy MgMn2O4 cathode[J]. ACS Energy Letters,2018,3(8):1998-2004. doi: 10.1021/acsenergylett.8b01105
    [43] FU Q, WU X, LUO X, et al. High-voltage aqueous Mg-ion batteries enabled by solvation structure reorganization[J]. Advanced Functional Materials,2022,32(16):2110674. doi: 10.1002/adfm.202110674
    [44] WANG P, XU J, GONG Y, et al. Study on electrolyte additives of water-based magnesium batteries[J]. IOP Conference Series: Earth and Environmental Science,2021,781(4):042015. doi: 10.1088/1755-1315/781/4/042015
    [45] 张宏宇. 水系镁离子电池Mg-Mn氧化物正极材料和Fe-V氧化物负极材料的研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    ZHANG Hongyu. Study on Mg-Mn oxide cathode materials and Fe-V oxide anode materials for aqueous magnesium ion batteries[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [46] WANG F, FAN X, GAO T, et al. High-voltage aqueous magnesium ion batteries[J]. ACS Central Science,2017,3(10):1121-1128. doi: 10.1021/acscentsci.7b00361
    [47] YANG W, DU X, ZHAO J, et al. Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries[J]. Joule,2020,4(7):1557-1574. doi: 10.1016/j.joule.2020.05.018
    [48] VAGHEFINAZARI B, HÖCHE D, LAMAKA S V, et al. Tailoring the Mg-air primary battery performance using strong complexing agents as electrolyte additives[J]. Journal of Power Sources,2020,453:227880. doi: 10.1016/j.jpowsour.2020.227880
    [49] SNIHIROVA D, WANG L, LAMAKA S V, et al. Synergistic mixture of electrolyte additives: A route to a high-efficiency Mg-air battery[J]. The Journal of Physical Chemistry Letters,2020,11(20):8790-8798. doi: 10.1021/acs.jpclett.0c02174
    [50] VAGHEFINAZARI B, SNIHIROVA D, WANG C, et al. Exploring the effect of sodium salt of ethylenediaminetetraacetic acid as an electrolyte additive on electrochemical behavior of a commercially pure Mg in primary Mg-air batteries[J]. Journal of Power Sources,2022,527:231176. doi: 10.1016/j.jpowsour.2022.231176
    [51] FAN H, ZHANG X, XIAO J, et al. Simultaneous optimization of solvation structure and water-resistant capability of MgCl2-based electrolyte using an additive combination of organic and inorganic lithium salts[J]. Energy Storage Materials,2022,51:873-881. doi: 10.1016/j.ensm.2022.07.023
    [52] MENG Z, LI Z, WANG L, et al. Surface engineering of a Mg electrode via a new additive to reduce overpotential[J]. ACS Applied Materials & Interfaces,2021,13(31):37044-37051.
    [53] ZHANG J, GUAN X, LV R, et al. Rechargeable Mg metal batteries enabled by a protection layer formed in vivo[J]. Energy Storage Materials,2020,26:408-413. doi: 10.1016/j.ensm.2019.11.012
    [54] WEN B, YANG C, WU J, et al. Water-induced 3D MgMn2O4 assisted by unique nanofluidic effect for energy-dense and durable aqueous magnesium-ion batteries[J]. Chemical Engineering Journal,2022,435:134997. doi: 10.1016/j.cej.2022.134997
    [55] ZHANG D, CHEN Q, ZHANG J, et al. MgMn2O4/multiwalled carbon nanotubes composite fabricated by electrochemical conversion as a high-performance cathode material for aqueous rechargeable magnesium ion battery[J]. Journal of Alloys and Compounds,2021,873:159872. doi: 10.1016/j.jallcom.2021.159872
    [56] ZHANG Y, LIU G, ZHANG C, et al. Low-cost MgFexMn2-xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries[J]. Chemical Engineering Journal,2020,392:123652. doi: 10.1016/j.cej.2019.123652
    [57] MANDAI T, SOMEKAWA H. Ultrathin magnesium metal anode—An essential component for high-energy-density magnesium battery materialization[J]. Batteries & Supercaps,2022,5(9):e202200153.
    [58] XU Y, LIU Z, ZHENG X, et al. Solid electrolyte interface regulated by solvent-in-water electrolyte enables high-voltage and stable aqueous Mg-MnO2 batteries[J]. Advanced Energy Materials,2022,12(22):2103352. doi: 10.1002/aenm.202103352
    [59] WANG F, WU D, ZHUANG Y, et al. Modification of a Cu mesh with nanowires and magnesiophilic Ag sites to induce uniform magnesium deposition[J]. ACS Applied Materials & Interfaces,2022,14(27):31148-31159.
    [60] ZHANG H, YE K, ZHU K, et al. High-energy-density aqueous magnesium-ion battery based on a carbon-coated FeVO4 anode and a Mg-OMS-1 cathode[J]. Chemistry,2017,23(67):17118-17126. doi: 10.1002/chem.201703806
    [61] LIANG Y, JING Y, GHEYTANI S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nature Materials,2017,16(8):841-848. doi: 10.1038/nmat4919
    [62] BIN D, HUO W, YUAN Y, et al. Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery[J]. Chemistry,2020,6(4):968-984. doi: 10.1016/j.chempr.2020.02.001
    [63] CANG R, SONG Y, YE K, et al. Preparation of organic poly material as anode in aqueous aluminum-ion battery[J]. Journal of Electroanalytical Chemistry,2020,861:113967. doi: 10.1016/j.jelechem.2020.113967
    [64] CANG R, YE K, SHAO S, et al. A new perylene-based tetracarboxylate as anode and LiMn2O4 as cathode in aqueous Mg-Li batteries with excellent capacity[J]. Chemical Engineering Journal,2021,405:126783. doi: 10.1016/j.cej.2020.126783
    [65] CHEN L, BAO J L, DONG X, et al. Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode[J]. ACS Energy Letters,2017,2(5):1115-1121. doi: 10.1021/acsenergylett.7b00040
    [66] SUN T, DU H, ZHENG S, et al. Inverse-spinel Mg2MnO4 material as cathode for high-performance aqueous magnesium-ion battery[J]. Journal of Power Sources,2021,515:230643. doi: 10.1016/j.jpowsour.2021.230643
    [67] YUWONO J A, BIRBILIS N, TAYLOR C D, et al. Aqueous electrochemistry of the magnesium surface: Thermodynamic and kinetic profiles[J]. Corrosion Science,2019,147:53-68. doi: 10.1016/j.corsci.2018.10.014
    [68] MOSES I A, JOSHI R P, OZDEMIR B, et al. Machine learning screening of metal-ion battery electrode materials[J]. ACS Applied Materials & Interfaces,2021,13(45):53355-53362. doi: 10.1021/acsami.1c04627
    [69] LIU Y, GUO B, ZOU X, et al. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Materials,2020,31:434-450. doi: 10.1016/j.ensm.2020.06.033
    [70] AYKOL M, HERRING P, ANAPOLSKY A. Machine learning for continuous innovation in battery technologies[J]. Nature Reviews Materials,2020,5(10):725-727. doi: 10.1038/s41578-020-0216-y
    [71] SHU J, SHUI M, XU D, et al. Large-scale synthesis of Li1.15V3O8 nanobelts and their lithium storage behavior studied by in situ X-ray diffraction[J]. Journal of Materials Chemistry,2012,22(7):3035-3043. doi: 10.1039/c1jm14894j
    [72] LI Y, ZHENG R, YU H, et al. Observation of ZrNb14O37 nanowires as a lithium container via in situ and ex situ techniques for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(25):22429-22438. doi: 10.1021/acsami.9b05841
    [73] CHEN B, ZHANG H, XUAN J, et al. Seeing is believing: In situ/operando optical microscopy for probing electrochemical energy systems[J]. Advanced Materials Technologies,2020,5(10):2000555. doi: 10.1002/admt.202000555
    [74] DU F, DAO T A, BAUER A, et al. Understanding the performance losses and "invasiveness" of in situ characterization steps during carbon corrosion experiments in polymer electrolyte membrane fuel cells[J]. Electrochimica Acta,2022,402:139537. doi: 10.1016/j.electacta.2021.139537
    [75] ZHENG J, GUAN C, LI H, et al. Unraveling the morphological evolution mechanism of solid sulfur species in lithium-sulfur batteries with operando light microscopy[J]. Journal of Energy Chemistry,2022,73:460-468. doi: 10.1016/j.jechem.2022.04.041
    [76] GHIMIRE P C, BHATTARAI A, LIM T M, et al. In-situ tools used in vanadium redox flow battery research—Review[J]. Batteries,2021,7(3):53. doi: 10.3390/batteries7030053
    [77] CUI Y, HE Y, YU W, et al. In-situ observation of the Zn electrodeposition on the planar electrode in the alkaline electrolytes with different viscosities[J]. Electrochimica Acta,2022,418:140344. doi: 10.1016/j.electacta.2022.140344
    [78] ZHAO Y, DU A, DONG S, et al. A bismuth-based protective layer for magnesium metal anode in noncorrosive electrolytes[J]. ACS Energy Letters,2021,6:2594-2601. doi: 10.1021/acsenergylett.1c01243
    [79] D'AMARIO L, STELLA M B, EDVINSSON T, et al. Towards time resolved characterization of electrochemical reactions: Electrochemically-induced Raman spectroscopy[J]. Chemical Science,2022,13(36):10734-10742. doi: 10.1039/D2SC01967A
    [80] ZHANG Z, SAID S, SMITH K, et al. Characterizing batteries by in situ electrochemical atomic force microscopy: A critical review[J]. Advanced Energy Materials,2021,11(38):2101518. doi: 10.1002/aenm.202101518
    [81] ZHANG H, WANG D, SHEN C. In-situ EC-AFM and ex-situ XPS characterization to investigate the mechanism of SEI formation in highly concentrated aqueous electrolyte for Li-ion batteries[J]. Applied Surface Science,2020,507:145059. doi: 10.1016/j.apsusc.2019.145059
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1104
  • HTML全文浏览量:  824
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-12
  • 修回日期:  2022-11-14
  • 录用日期:  2022-11-30
  • 网络出版日期:  2022-12-06
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回