A new engineering method for predicting the axial compression buckling load of composite stiffened panels
-
摘要: 加筋壁板是飞机机翼、尾翼和机身结构上普遍采用的典型结构形式,当机翼、尾翼结构受气动载荷作用时,机翼上翼面加筋壁板处于受压状态,受压壁板易发生屈曲甚至破坏。本文基于前期复合材料加筋壁板轴压稳定性工程算法研究,并借鉴已在工程上成熟应用的金属加筋壁板轴压稳定性工程方法,提出了一种能够合理预测复合材料加筋壁板轴压屈曲载荷的工程算法。通过选取2类加强筋形式,其中3种Y型及2种J型,共5种复合材料加筋壁板为算例,对5种复合材料加筋壁板的轴压屈曲载荷进行了计算,并开展了有限元数值模拟与试验验证。此工程算法的计算结果与试验值对比,相对误差均在10%以内。与有限元计算结果对比,除一种Y型长桁加筋壁板计算结果在10%,其余构型相对误差均在5%,满足工程要求,证明此种方法的有效性,此种工程算法已经在型号飞机研制中得以应用。此外,发现对加筋壁板长桁缘条的削弱会降低复合材料加筋壁板的屈曲载荷,而Y型加筋壁板削弱中间两长桁,可以使长桁与蒙皮刚度更加匹配,提升Y型长桁加筋壁板的破坏应变水平。Abstract: Composite stiffened panel is typical structural form, which is widely used in aircraft wing, tail, and fuselage structures. When suffering aerodynamic loading, such composite stiffened panel on the wing surface of the wing is under compressive pressure, and this pressure could cause such panel to buckle or even failure. In this paper, an engineering method of reasonably predicting the buckling load of composite stiffened panels under axial compression is proposed, according to previous research on the stability engineering method composite stiffened panels under axial compression and stability engineering method of metal stiffened panels under axial compression which has been maturely applied in engineering. Therefore, two kinds of reinforcement composite stiffened panels (i.e., three types of Y type and two types of J type) are considered. The axial buckling load of the example is calculated by using the engineering method proposed in this paper, and the finite element numerical simulation and test verification are carried out. Compared with the experimental results, the relative error of the engineering method is less than 10%. Compared with the finite element calculation results, the relative errors of the other configurations are 5% except for one Y-shaped truss stiffened panel which is 10%, which meets the engineering requirements and proves the effectiveness of this method. This engineering method has been applied in the development of model aircraft. In addition, it is found that the weakening of the stringer edge of the stiffened panel will reduce the buckling load of the composite stiffened panel, and the weakening of the middle two stringers of the Y-stiffened panel can make the stringers more match the stiffness of the skin, and improve the failure strain level of the Y-stiffened panel.
-
Key words:
- composite material /
- stiffened panel /
- axial compression /
- stability /
- engineering method
-
表 1 复合材料加筋壁板的结构形式及尺寸
Table 1. Structural form and size of stiffened panels
Configuration Rib spacing,
L/mmTotal panel
length, l/mmStringer
spacing, bs/mmY-1 460 600 105 Y-2 460 600 105 Y-3 460 600 105 J-1 460 600 105 J-2 460 600 105 表 2 Y型壁板铺层参数
Table 2. Lay-ups of Y stringer panels
Part Lay-up Total number of layers Skin [+45/−45/+45/−45/0/+45/−45/0/$\overline {90} $]S 17 Y stringer vertical web [+45/03/−45/03/90/03]S 24 Other parts of Y stringer [+45/03/−45/03/$\overline {90} $]S 17 表 3 J型壁板铺层参数
Table 3. Lay-ups of J stringer panels
Part Lay-up Total number of layers Skin [+45/−45/+45/−45/0/+45/−45/0/$\overline {90} $]S 17 J stringer [45/03/+45/−45/02/+45/03/−45/90/+45/03/−45/02/+45/03/−45] 26 表 4 J-1型复合材料加筋壁板的几何参数
Table 4. Geometric parameters of panel J-1
tc/mm tw/mm tf/mm wc/mm ww/mm 3.25 3.25 5.45 12 26.89 wf/mm ts/mm ws/mm l/mm n 30 2.2 105 600 4 Notes: tc—Thickness of upper protrusion; tw—Web thickness; tf—Lower flange thickness; ts—Skin thickness; wc—Upper protrusion width; ww—Web width; wf—Width of the lower protrusion; ws—Bar spacing; l—Length of reinforcing ribs; n—Number of stringer. 表 5 Y-1型复合材料加筋壁板的几何参数
Table 5. Geometric parameters of panel Y-1
tc/mm tw/mm tf/mm tx/mm wc/mm ww/mm 2.21 3.21 4.42 2.21 10 13.45 wf/mm ts/mm ws/mm l/mm wx/mm n 22 2.21 105 600 19.35 4 Notes: tx—Inclined web thickness; wx—Inclined web width. 表 6 本文工程算法计算得到的加筋壁板屈曲载荷
Table 6. Buckling load of stiffened panel calculated by engineering method in this paper
Configuration Buckling load/kN Y-1 600 Y-2 500 Y-3 519 J-1 303 J-2 296 表 7 5种构型壁板临界屈曲载荷、整体应变水平模拟值
Table 7. Simulation values of critical buckling load and global strain level of five panel configurations
Group Critical buckling load/kN Global strain level/10−6 Y-1 535 5594 Y-2 502 5308 Y-3 533 5477 J-1 318 4242 J-2 281 3983 表 8 5种复合材料加筋壁板数值模拟屈曲破坏形式
Table 8. Numerical simulation of buckling failure of five panel configurations
Configuration Buckling failure mode Y-1 Skin buckles Y-2 Skin buckles Y-3 Skin buckles J-1 Skin between two middle stringer buckles J-2 Skin between two middle stringer buckles 表 9 试验加载级差
Table 9. Test load sequence
Testing stage Loading sequence Stage 1: Preload 10%-20%-30% Stage 2: Desig limit load test 10%-20%-30%-40%-50%-55%-60%-65%-67% (Holding load 30 s) Stage 3: Design ultimate load test 10%-20%-30%-40%-50%-55%-60%-65%-67%-70%-75%-80%-82%-84%-100% (Holding load 3 s)-102%-104%……Specimen failure 表 10 轴压试验结果汇总
Table 10. Summary of axial compression test results
Configuration Critical buckling load/kN Global strain level/10−6 Destroy load/kN Y-1 (Protoquasi structure) 550 4800 674 Y-2 (No free flanges) 470 5400 626 Y-3 (Unilateral free flange) 500 5900 708 J-1 (Protoquasi structure) 310 4500 476 J-2 (Free flange weakening) 270 4500 442 表 11 轴压试验失效形式汇总
Table 11. Summary of failure forms in axial compression tests
Group Failure mode Y-1 (Protoquasi structure) Crippling after skin buckled Y-2 (No free flanges) Crippling after skin buckled Y-3 (Unilateral free flange) Crippling after skin buckled J-1 (Protoquasi structure) Global buckling after skin and two middle stringer buckled simultaneously J-2 (Free flange weakening) Global buckling after skin between two middle stringer buckled first 表 12 本文工程算法与传统理论方法计算屈曲载荷值与试验值对比
Table 12. Buckling load value calculated by the engineering method of this paper and the traditional theoretical method compared with the test value
Configuration Experimental
value/kNEngineering method of
this paper/kNRelative error/% Traditional engineering
method/kNRelative error/% Y-1 550 600 9.09 483 −12.18 Y-2 470 500 6.38 407 −13.40 Y-3 500 519 3.80 449 −10.20 J-1 310 303 −2.26 324 4.51 J-2 270 296 9.63 274 1.48 表 13 本文工程算法与传统理论方法计算屈曲载荷值与数值模拟值对比
Table 13. Buckling load value calculated by the engineering method of this paper and the traditional theoretical method compared with the numerical simulation value
Group Value of
simulation/kNEngineering method of
this paper/kNRelative
error/%Traditional engineering
method/kNRelative
error/%Y-1 535 600 10.83 483 −9.72 Y-2 502 500 −0.40 407 −18.92 Y-3 533 519 −2.70 449 −15.76 J-1 318 303 −4.95 324 1.89 J-2 281 296 5.07 274 −2.49 -
[1] DUO Z, CHIARA B. Skin-stiffener separation in T-stiffened composite specimens in postbuckling condition[J]. Journal of Aerospace Engineering, 2018, 31(4): 18-27. [2] 林国伟, 袁菲, 李新祥. 改进的复合材料T型长桁压损失效的数值分析方法研究[J]. 应用力学学报, 2021, 38(3): 965-971.LIN Guowei, YUAN Fei, LI Xinxiang. Improved numerical analysis method research on crippling failure of T-shaped composite stringers[J]. Chinese Journal of Applied Mechanics, 2021, 38(3): 965-971(in Chinese). [3] GLISZCZYNSKI A, KUBIAK T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression[J]. Composite Structures, 2016, 169: 52-61. [4] KOLANU N R, RAJU G, RAMJI M. Experimental and numerical studies on the buckling and post-buckling behavior of single blade-stiffened CFRP panels[J]. Composite Structures, 2018, 196: 135-154. doi: 10.1016/j.compstruct.2018.05.015 [5] LIANG K, SUN Q. Buckling and post-buckling analysis of the delaminated composite plates using the Koiter-Newton method[J]. Composite Structures, 2017, 168(3): 266-276. [6] ROZYLO P, DEBSKI H, WYSMULSKI P, et al. Numerical and experimental failure analysis of thin-walled composite columns with a top-hat cross section under axial compression[J]. Composite Structures, 2018, 204: 207-216. doi: 10.1016/j.compstruct.2018.07.068 [7] MICHELE B, ANGELO M T. Analytical solutions for vibrations and buckling analysis of laminated composite nanoplates based on third-order theory and strain gradient approach[J]. Composite Structures, 2021, 272: 114083. doi: 10.1016/j.compstruct.2021.114083 [8] ZHAO L B, WANG K K, DING F, et al. A post-buckling compressive failure analysis framework for composite stiffened panels considering intra-, inter-laminar damage and stiffener debonding[J]. Results in Physics, 2019, 13: 102205. doi: 10.1016/j.rinp.2019.102205 [9] 黄晓笛. 复合材料帽形加筋壁板轴压承载能力工程分析[D]. 大连: 大连理工大学, 2022.HUANG Xiaodi. Engineering analysis of axial compression load bearing capacity of composite omega stiffened panels[D]. Dalian: Dalian University of Technology, 2022(in Chinese). [10] 王彬文, 陈向明, 邓凡臣, 等. 飞机壁板复杂载荷试验技术[J]. 航空学报, 2022, 43(3): 024987.WANG Binwen, CHEN Xiangming, DENG Fanchen, et al. Complex load test technology for aircraft panelels[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 024987(in Chinese). [11] 李真, 王俊, 邓凡臣, 等. 复合材料机身壁板的强度分析与试验验证[J]. 航空学报, 2020, 41(9): 223688.LI Zhen, WANG Jun, DENG Fanchen, et al. Strength analysis and test verification of composite fuselage panels[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 223688(in Chinese). [12] ROZYLO P, WYSMULSKI P. Failure analysis of thin-walled composite profiles subjected to axial compression using progressive failure analysis (PFA) and cohesive zone model (CZM)[J]. Composite Structures, 2021, 262: 113597. doi: 10.1016/j.compstruct.2021.113597 [13] 王春寿, 张笑宇, 詹志新, 等. 复合材料厚板结构压缩稳定性和承载能力分析[J/OL]. 北京航空航天大学学报, 1-11[2024-09-13].https://doi.org/10.13700/j.bh.1001-5965.2022.0991.WANG Chunshou, ZHANG Xiaoyu, ZHAN Zhixin, et al. The analysis of compression stability and load capacity of the thick composite plate structures[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 1-11[2024-09-13]. https://doi.org/10.13700/j.bh.1001-5965.2022.0991(in Chinese). [14] OLIVERI V, MILAZZO A. A Rayleigh-Ritz approach for postbuckling analysis of variable angle tow composite stiffened panels[J]. Computers and Structures, 2018, 196: 263-276. [15] CHEN X M, SUN X S, WANG B W, et al. An improved longitudinal failure criterion for UD composites based on kinking model[J]. Mechanics of Advanced Materials and Structures, 2020, 29(6): 905-915. [16] 陈向明, 陈普会, 孙侠生, 等. 复合材料板拉/压-剪复合载荷屈曲相关方程[J]. 航空学报, 2021, 42(12): 225417. doi: 10.7527/S1000-6893.2021.25417CHEN Xiangming, CHEN Puhui, SUN Xiasheng, et al. Buckling interaction for formulae of composite plates under combined axial compression/tension and shear loads[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 225417(in Chinese). doi: 10.7527/S1000-6893.2021.25417 [17] CHEN X M, SUN X S, CHEN P H, et al. Rationalized improvement of Tsai-Wu failure criterion considering different failure modes of composite materials[J]. Composite Structures, 2021, 256: 113120. doi: 10.1016/j.compstruct.2020.113120 [18] 汪厚冰, 陈昊, 雷安民, 等. 复合材料帽形加筋壁板轴压屈曲与后屈曲性能[J]. 复合材料学报, 2018, 33(8): 2014-2022.WANG Houbing, CHEN Hao, LEI Anmin, et al. Buckling and post-buckling performance of hat-stiffened composite panels under axial compression load[J]. Acta Materiae Compositae Sinica, 2018, 33(8): 2014-2022(in Chinese). [19] 石经纬, 赵娟, 刘传军, 等. 复合材料翼面壁板轴压稳定性[J]. 复合材料学报, 2020, 37(6): 1321-1333.SHI Jingwei, ZHAO Juan, LIU Chuanjun, et al. Stability of composite stiffened panels under compression[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1321-1333(in Chinese). [20] 王泽溪, 万志强, 王晓喆, 等. 曲线纤维壁板屈曲/后屈曲建模与快速分析方法[J]. 北京航空航天大学学报, 2023, 49(2): 353-366.WANG Zexi, WAN Zhiqiang, WANG Xiaozhe, et al. Fast stability analysis method for composite panel with variable angle tow fiber[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(2): 353-366(in Chinese). [21] 王崇哲. 筋条参数对加筋板屈曲和后屈曲性能影响[D]. 西安: 西北工业大学, 2020.WANG Chongzhe. Effect of stiffener parameters on buckling and post-buckling of stiffened panel[D]. Xi’an: Northwestern Polytechnical University, 2020(in Chinese). [22] 金迪, 寇艳荣. 复合材料加筋壁板结构选型设计[J]. 复合材料学报, 2016, 33(5): 1142-1146.JIN Di, KOU Yanrong. Structural style-selection design of composite stiffened panel[J]. Acta Materiae Compositae Sinica, 2016, 33(5): 1142-1146(in Chinese). [23] ZHOU R, GAO W C. Influence of adhesive interface properties on the post-buckling response of composite I-stiffened panels with lateral support under axial compression[J]. Journal of Adhesion Science and Technology, 2020, 35(12): 1337-1355. [24] 张永杰, 吴莹莹, 朱胜利, 等. 翼身融合民机典型PRSEUS受压壁板屈曲及渐进损伤分析[J]. 航空学报, 2019, 40(9): 623185.ZHANG Yongjie, WU Yingying, ZHU Shengli, et al. Buckling and progressive damage analysis of representative compressed PRSEUS panel in blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623185(in Chinese). [25] 中国航空研究院. 复合材料结构稳定性分析指南[M]. 北京: 航空工业出版社, 2002: 18-28.Chinese Aeronautical Establishment. Guidelines for stability analysis of composite structures[M]. Beijing: Aviation Industry Press, 2002: 18-28(in Chinese).