留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料加筋壁板轴压屈曲载荷工程估算新方法

张驰 郑锡涛 张东健 刘建平

张驰, 郑锡涛, 张东健, 等. 复合材料加筋壁板轴压屈曲载荷工程估算新方法[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 张驰, 郑锡涛, 张东健, 等. 复合材料加筋壁板轴压屈曲载荷工程估算新方法[J]. 复合材料学报, 2024, 42(0): 1-13.
ZHANG Chi, ZHENG Xitao, ZHANG Dongjian, et al. A New Engineering Method for Predicting the Axial Compression Buckling Load of Composite Stiffened Panels[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Chi, ZHENG Xitao, ZHANG Dongjian, et al. A New Engineering Method for Predicting the Axial Compression Buckling Load of Composite Stiffened Panels[J]. Acta Materiae Compositae Sinica.

复合材料加筋壁板轴压屈曲载荷工程估算新方法

详细信息
    通讯作者:

    郑锡涛,博士后,教授,博士生导师,研究方向为复合材料力学行为的宏细观分析、损伤演化与失效分析,三维编织复合材料力学行为的数值仿真与试验验证技术,飞机复合材料结构损伤容限设计与分析。 E-mail: zhengxt@nwpu.edu.cn

  • 中图分类号: TB332

A New Engineering Method for Predicting the Axial Compression Buckling Load of Composite Stiffened Panels

  • 摘要: 加筋壁板是飞机机翼、尾翼和机身结构上普遍采用的典型结构形式,当机翼、尾翼结构受气动载荷作用时,机翼上翼面加筋壁板处于受压状态,受压壁板易发生屈曲甚至破坏。本文基于前期复合材料加筋壁板轴压稳定性工程算法研究,并借鉴已在工程上成熟应用的金属加筋壁板轴压稳定性工程方法,提出了一种能够合理预测复合材料加筋壁板轴压屈曲载荷的工程算法。通过选取2类加强筋形式,其中3种Y型及2种J型,共5种复合材料加筋壁板为算例,对5种复合材料加筋壁板的轴压屈曲载荷进行了计算,并开展了有限元数值模拟与试验验证。此工程算法的计算结果与试验值对比,相对误差均在10%以内。与有限元计算结果对比,除一种Y型长桁加筋壁板计算结果在10%,其余构型相对误差均在5%,满足工程要求,证明此种方法的有效性,此种工程算法已经在型号飞机研制中得以应用。此外,发现对加筋壁板长桁缘条的削弱会降低复合材料加筋壁板的屈曲载荷,而Y型加筋壁板削弱中间两长桁,可以使长桁与蒙皮刚度更加匹配,提升Y型长桁加筋壁板的破坏应变水平。

     

  • 图  1  J型长桁的典型横截面

    Figure  1.  A typical cross section of a J-Stringer

    tc, Thickness of upper protrusion; tw, Web thickness; tf, Lower flange thickness; ts, Skin thickness; wC, Upper protrusion width; Ww, Web width; Wf, The width of the lower protrusion

    图  2  两类壁板原准结构截面形状尺寸示意图(单位:mm)

    Figure  2.  Schematic diagram of section shapes and dimensions of two baseline panels (Unit:mm)

    图  3  复合材料加筋壁板有限元模型

    Figure  3.  Finite element model of stiffened composite panel

    图  4  复合材料加筋壁板有限元模型边界条件示意图

    Figure  4.  Boundary conditions for FEM model of stiffened composite panel

    图  5  5种构型壁板载荷-位移曲线

    Figure  5.  Load-displacement curves of five panel configurations

    图  6  5种构型在屈曲载荷时的位移云图

    Figure  6.  Displacement nephogram of five configurations under buckling load

    图  7  试验件加载及支持状态

    Figure  7.  Test item loading and support status

    图  8  Y型长桁试验件贴片图

    Figure  8.  Strain gauge arrangement plan of Y-stringer panel

    Note: Gauge 1 to 53 pasted back-to-back (101 to 153), gauge 54 to 73 pasted at the center of the two slopes of the Y stringer

    图  9  J型长桁试验件贴片图

    Figure  9.  Strain gauge arrangement plan of J-stringer panel

    Note: Gauge 1 to 51 pasted back-to-back (101 to 151), gauge 52 to 75 pasted at the center of the J stringer web

    图  10  Y-1型壁板轴压破坏模式

    Figure  10.  Failure mode of panel Y-1

    图  11  Y-1型壁板典型载荷-应变曲线

    Figure  11.  Typical load-strain curves for panel Y-1

    图  12  Y-2型壁板轴压破坏模式

    Figure  12.  Failure mode of panel Y-2

    图  13  Y-2型壁板典型载荷-应变曲线

    Figure  13.  Typical load-strain curves for panel Y-2

    图  14  Y-3型壁板轴压破坏模式

    Figure  14.  Failure mode of panel Y-3

    图  15  Y-3型壁板典型载荷-应变曲线

    Figure  15.  Typical load-strain curves for panel Y-3

    图  16  J-1型壁板轴压破坏模式

    Figure  16.  Failure mode of panel J -1

    图  17  J-1型壁板典型载荷-应变曲线

    Figure  17.  Typical load-strain curves for panel J-1

    图  18  J-2型壁板轴压破坏模式

    Figure  18.  Failure mode of panel J-2

    图  19  J-2型壁板典型载荷-应变曲线

    Figure  19.  Typical load-strain curves for panel J-2

    表  1  复合材料加筋壁板的结构形式及尺寸

    Table  1.   Structural form and size of stiffened panels

    Configuration Rib spacing
    L/mm
    Total panel
    length l/mm
    Stringer
    spacing bs/mm
    Y-1 460 600 105
    Y-2 460 600 105
    Y-3 460 600 105
    J-1 460 600 105
    J-2 460 600 105
    下载: 导出CSV

    表  2  Y型壁板铺层参数

    Table  2.   Lay-ups of Y-stringer panels

    Part Lay-up Total number of layers
    Skin [+45/−45/+45/−45/0/+45/−45/0/$\overline {90} $]S 17
    Y stringer vertical web [+45/03/−45/03/90/03]S 24
    Other parts of Y stringer [+45/03/−45/03/$\overline {90} $]S 17
    下载: 导出CSV

    表  3  J型壁板铺层参数

    Table  3.   Lay-ups of J-stringer panels

    Part Lay-up Total number of layers
    Skin [+45/−45/+45/−45/0/+45/−45/0/$\overline {90} $]S 17
    J stringer [45/03/+45/−45/02/+45/03/−45/90/+45/03/−45/02/+45/03/−45] 26
    下载: 导出CSV

    表  4  J-1型复合材料加筋壁板的几何参数

    Table  4.   Geometric parameters of panel J-1

    tc/mm tw/mm tf/mm wc/mm ww/mm
    3.25 3.25 5.45 12 26.89
    wf/mm ts/mm ws/mm l/mm n
    30 2.2 105 600 4
    Notes: tc, Thickness of upper protrusion, tw, Web thickness; tf, Lower flange thickness; ts, Skin thickness; wC, Upper protrusion width; ww, Web width; wf, The width of the lower protrusion; ws, Bar spacing; l, The length of reinforcing ribs; n, Number of stringer.
    下载: 导出CSV

    表  5  Y-1型复合材料加筋壁板的几何参数

    Table  5.   Geometric parameters of panel Y-1

    tc/mm tw/mm tf/mm tx/mm wc/mm ww/mm
    2.21 3.21 4.42 2.21 10 13.45
    wf/mm ts/mm ws/mm l/mm wx/mm n
    22 2.21 105 600 19.35 4
    Notes: tc, Thickness of upper protrusion, tw, Web thickness; tf, Lower flange thickness; ts, Skin thickness; tx, Inclined web thickness; wC, Upper protrusion width; ww, Web width; wf, The width of the lower protrusion; ws, Bar spacing; wx, Inclined web width; l, The length of reinforcing ribs; n, Number of stringer)
    下载: 导出CSV

    表  6  本文工程算法计算得到的加筋壁板屈曲载荷

    Table  6.   Buckling load of stiffened panel calculated by engineering method in this paper

    ConfigurationBuckling load
    Y-1600
    Y-2500
    Y-3519
    J-1303
    J-2296
    下载: 导出CSV

    表  7  5种构型壁板临界屈曲载荷、整体应变水平模拟值

    Table  7.   The simulation values of critical buckling load and global strain level of five panel configurations

    Group Y-1 Y-2 Y-3 J-1 J-2
    Critical buckling load/kN 535 502 533 318 281
    Global strain level/με 5594 5308 5477 4242 3983
    下载: 导出CSV

    表  8  5种复合材料加筋壁板数值模拟屈曲破坏形式

    Table  8.   Numerical simulation of buckling failure of five panel configurations

    ConfigurationBuckling failure mode
    Y-1skin buckles
    Y-2skin buckles
    Y-3skin buckles
    J-1skin between two middle stringer buckles
    J-2skin between two middle stringer buckles
    下载: 导出CSV

    表  9  试验加载级差

    Table  9.   Test load sequence

    Testing stage Loading sequence
    Stage 1: Preload 10%--20%--30%
    Stage 2: Desig limit load test 10%--20%--30%--40%--50%--55%--60%--65%--67%(Holding load 30 s)
    Stage 3: Design ultimate load test 10%--20%--30%--40%--50%--55%--60%--65%--67%--70%--75%--80%--82%
    --84%、、、100%(Holding load 3 s)--102%--104%……Specimen failure
    下载: 导出CSV

    表  10  轴压试验结果汇总

    Table  10.   Summary of axial compression test results

    ConfigurationCritical buckling load/kNGlobal strain level /μεDestroy laod/kN
    Y-1(Protoquasi structure)5504800674
    Y-2(No free flanges)4705400626
    Y-3(Unilateral free flange)5005900708
    J-1(Protoquasi structure)3104500476
    J-2(Free flange weakening)2704500442
    下载: 导出CSV

    表  11  轴压试验失效形式汇总

    Table  11.   Summary of failure forms in axial compression tests

    GroupFailure mode
    Y-1(Protoquasi structure)Crippling after skin buckled
    Y-2(No free flanges)Crippling after skin buckled
    Y-3(Unilateral free flange)Crippling after skin buckled
    J-1(Protoquasi structure)Global buckling after skin and two middle stringer buckled simultaneously
    J-2(Free flange weakening)Global buckling after skin between two middle stringer buckled first
    下载: 导出CSV

    表  12  本文工程算法与传统理论方法计算屈曲载荷值与试验值对比

    Table  12.   The buckling load value calculated by the engineering method of this paper and the traditional theoretical method is compared with the test value

    Configuration Experimental
    value /kN
    Engineering method of
    this paper /kN
    Relative error/% Traditional engineering
    method /kN
    Relative error/%
    Y-1 550 600 9.09 483 −12.18
    Y-2 470 500 6.38 407 −13.40
    Y-3 500 519 3.80 449 −10.20
    J-1 310 303 −2.26 324 4.51
    J-2 270 296 9.63 274 1.48
    下载: 导出CSV

    表  13  本文工程算法与传统理论方法计算屈曲载荷值与数值模拟值对比

    Table  13.   The buckling load value calculated by the engineering method of this paper and the traditional theoretical method is compared with the numerical simulation value

    Group Value of simulation /kN Engineering method of this paper /kN Relative error/% Traditional engineering method /kN Relative error/%
    Y-1 535 600 10.83 483 −9.72
    Y-2 502 500 −0.40 407 −18.92
    Y-3 533 519 −2.70 449 −15.76
    J-1 318 303 −4.95 324 1.89
    J-2 281 296 5.07 274 −2.49
    下载: 导出CSV
  • [1] DUO Z, CHIARA B. Skin–Stiffener Separation in T-Stiffened Composite Specimens in Postbuckling Condition[J]. Journal of Aerospace Engineering, 2018, 31(4): 18-27.
    [2] 林国伟, 袁菲, 李新祥. 改进的复合材料T型长桁压损失效的数值分析方法研究[J]. 应用力学学报, 2021, 38(3): 965-971.

    LIN Guowei, YUAN Fei, LI Xinxiang. Improved numerical analysis method research on crippling failure of T-shaped composite stringers[J]. Chinese Journal of Applied Mechanics, 2021, 38(3): 965-971(in Chinese).
    [3] GLISZCZYNSKI A, KUBIAK T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression[J]. Composite Structures, 2016, 169: 52-61.
    [4] KOLANU N R, RAJU G, RAMJI M. Experimental and numerical studies on the buckling and post-buckling behavior of single blade-stiffened CFRP panels[J]. Composite Structures, 2018, 196: 135-154. doi: 10.1016/j.compstruct.2018.05.015
    [5] LIANG K, SUN Q. Buckling and post-buckling analysis of the delaminated composite plates using the Koiter-Newton method[J]. Composite Structures, 2017, 168(3): 266-276.
    [6] ROZYLO P, DEBSKI H, WYSMULSKI P, et al. Numerical and experimental failure analysis of thin-walled composite columns with a top-hat cross section under axial compression[J]. Composite Structures, 2018, 204: 207-216. doi: 10.1016/j.compstruct.2018.07.068
    [7] MICHELE B, ANGELO M T. Analytical solutions for vibrations and buckling analysis of laminated composite nanoplates based on third-order theory and strain gradient approach[J]. Composite Structures, 2021, 272: 114083. doi: 10.1016/j.compstruct.2021.114083
    [8] ZHAO Libin, WANG Kangkang, DING Fan, et al. A post-buckling compressive failure analysis framework for composite stiffened panels considering intra-, inter-laminar damage and stiffener debonding[J]. Results in Physics, 2019, 13: 102205. doi: 10.1016/j.rinp.2019.102205
    [9] 黄晓笛. 复合材料帽形加筋壁板轴压承载能力工程分析[D]. 大连: 大连理工大学, 2022.

    HUANG Xiaodi. Engineering analysis of axial compression load bearing capacity of composite omega stiffened panels[D]. Dalian: Dalian University of Technology, 2022. (in Chinese).
    [10] 王彬文, 陈向明, 邓凡臣, 等. 飞机壁板复杂载荷试验技术[J]. 航空学报, 2022, 43(3): 024987-1-024987-12.

    WANG Binwin, CHEN Xiangming, DENG Fanchen, et al. Complex load test technology for aircraft panelels[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 024987-1-024987-12(in Chinese).
    [11] 李真, 王俊, 邓凡臣, 等. 复合材料机身壁板的强度分析与试验验证[J]. 航空学报, 2020, 41(9): 223688.

    LI Zhen, WANG Jun, DENG Fanchen, et al. Strength analysis and test verification of composite fuselage panels[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 223688 (in Chinese).
    [12] P Rozylo, P Wysmulski. Failure analysis of thin-walled composite profiles subjected to axial compression using progressive failure analysis (PFA) and cohesive zone model (CZM)[J]. Composite Structures, 2021, 262: 113597. doi: 10.1016/j.compstruct.2021.113597
    [13] 王春寿, 张笑宇, 詹志新, 等. 复合材料厚板结构压缩稳定性和承载能力分析[J/OL]. 北京航空航天大学学报. https://doi.org/10.13700/j.bh.1001-5965.2022.0991.

    WANG Chunshou, ZHANG Xiaoyu, ZHAN zhixin, et al. The analysis of compression stability and load capacity of the thick composite plate structures[J]. Journal of Beijing University of Aeronautics and Astronautics. https://doi.org/10.13700/j.bh.1001-5965.2022.0991. (in Chinese)
    [14] V. Oliveri, A. Milazzo. A Rayleigh-Ritz approach for postbuckling analysis of variable angle tow composite stiffened panels[J]. Computers and Structures, 2018, 196 263-276.
    [15] CHEN Xiangming, SUN Xiasheng, WANG Binwen, et al. An improved longitudinal failure criterion for UD composites based on kinking model[J]. Mechanics of Advanced Materials and Structures, 2020, 29(6): 905-915.
    [16] 陈向明, 陈普会, 孙侠生, 等. 复合材料板拉/压-剪复合载荷屈曲相关方程[J]. 航空学报, 2021, 42(12): 225417. doi: 10.7527/S1000-6893.2021.25417

    CHEN Xiangming, CHEN Puhui, SUN Xiasheng, et al. Buckling interaction for formulae of composite plates under combined axial compression / tension and shear loads[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 225417(in Chinese). doi: 10.7527/S1000-6893.2021.25417
    [17] CHEN Xiangming, SUN Xiasheng, CHEN Puhui, et al. Rationalized improvement of Tsai–Wu failure criterion considering different failure modes of composite materials[J]. Composite Structures, 2021, 256: 113120. doi: 10.1016/j.compstruct.2020.113120
    [18] 汪厚冰, 陈昊, 雷安民, 等. 复合材料帽形加筋壁板轴压屈曲与后屈曲性能[J]. 复合材料学报, 2018, 33(8): 2014-2022.

    WANG Houbing, CHEN Hao, LEI Anmin, et al. Buckling and post-buckling performance of hat-stiffened composite panels under axial compressionload[J]. Acta Materiae Compositae Sinica, 2018, 33(8): 2014-2022(in Chinese).
    [19] 石经纬, 赵娟, 刘传军, 等. 复合材料翼面壁板轴压稳定性[J]. 复合材料学报, 2020, 37(6): 1321-1333.

    SHI Jingwei, ZHAO Juan, LIU Chuanjun, et al. Stability of composite stiffened panels under compression[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1321-1333(in Chinese).
    [20] 王泽溪, 万志强, 王晓喆, 等. 曲线纤维壁板屈曲/后屈曲建模与快速分析方法[J]. 北京航空航天大学学报, 2023, 49(2): 353-366.

    WANG Zexi, WAN Zhiqiang, WANG Xiaozhe, et al. Fast stability analysis method for composite panel with variable angle tow fiber[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(2): 353-366 (in Chinese).
    [21] 王崇哲. 筋条参数对加筋板屈曲和后屈曲性能影响[D]. 西安: 西北工业大学, 2020.

    WANG Chongzhe. Effect of stiffener parameters on buckling and post-buckling of stiffened panel[D]. Xi’an: Northwestern Polytechnical University. (in Chinese).
    [22] 金迪, 寇艳荣. 复合材料加筋壁板结构选型设计[J]. 复合材料学报, 2016, 33(5): 1142-1146.

    JIN Di, KOU Yanrong. Structural style-selection design of composite stiffened panel[J]. Acta Materiae Compositae Sinica, 2016, 33(5): 1142-1146 (in Chinese).
    [23] ZHOU Rui, GAO Weicheng. Influence of adhe-sive interface properties on the post-buckling response of composite Istiffened panels with lateral support under axial compression[J]. Journal of Adhesion Science and Technology, 2020, 35(12): 1337-1355.
    [24] 张永杰, 吴莹莹, 朱胜利, 等. 翼身融合民机典型PRSEUS受压壁板屈曲及渐进损伤分析[J]. 航空学报, 2019, 40(9): 623185.

    ZHANG Yongjie, WU Yingying, ZHU Shengli, et al. Buckling and progressive damage analysis of representative compressed PRSEUS panel in blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623185 (in Chinese).
    [25] 中国航空研究院编. 复合材料结构稳定性分析指南[M]. 北京: 航空工业出版社, 2002: 18-28.

    Chinese Aeronautical Establishment. Guidelines for stability analysis of composite structures[M]. Beijing: Aviation Industry Press, 2002: 18-28 (in Chinese).
  • 加载中
计量
  • 文章访问数:  50
  • HTML全文浏览量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-05
  • 修回日期:  2024-02-21
  • 录用日期:  2024-03-03
  • 网络出版日期:  2024-04-19

目录

    /

    返回文章
    返回