Effect of atmospheric pressure plasma modification on surface temperature and Mode-I fracture toughness of carbon fiber reinforced polymer
-
摘要: 常压等离子改性被广泛应用于改善碳纤维复合材料(CFRP)的胶接性能,然而,等离子改性过程会造成CFRP表面温度升高,导致热变形、热内应力甚至破坏基材,因此,需要进一步优化工艺参数,获得满足工程使用要求的等离子改性效果。本文采用空气作为常压等离子的气源,测试了不同等离子改性参数下CFRP表面的温度,建立了表面温度与喷嘴高度、扫描速度之间的函数关系,实现了准确的表面温度预测(均方根误差2.7℃,最大偏差5.4℃)。并进一步优化了等离子改性的扫描路径,以减少改性过程中热量的累积效应。结合等离子改性对CFRP胶接性能的测试结果,最终确定了满足表面处理温度小于150℃条件下等离子改性的最佳工艺参数:喷嘴高度16 mm,扫描速度45 mm/s,扫描间距16 mm。此时,CFRP表面温度为143.9℃,I型断裂韧性提升至425 J/m2 (相比原始状态提升约534.3%),失效模式由界面改善为混合失效。该研究结果旨在找到表面温度与性能提升的最佳等离子改性工艺参数,对于等离子改性工艺在CFRP中的工程应用具有重要参考价值。Abstract: Atmospheric pressure plasma modification has been commonly applied to improving the adhesive bonding performance of carbon fiber reinforced polymer (CFRP). However, plasma modification generally induces a high temperature on material surface, and causes thermal deformation, internal stress, and even damage to the CFRP. Therefore, it is necessary to further optimize the process parameters of plasma modification effects to meet the requirements of engineering application. This article uses air as the source of atmospheric pressure plasma to study surface temperature of CFRP under different process parameters. The functional relationship was established between surface temperature, nozzle height, and scanning speed, achieving accurate prediction for plasma-induced surface temperature (root mean square error of 2.7℃, maximum deviation of 5.4℃). Then, the scanning path of plasma modification was further optimized to reduce the cumulative effect of heat during the modification process. Based on the test results of plasma modification on the bonding performance of CFRP, the optimal process parameters were determined for plasma modification to control the surface treatment temperature less than 150℃, i.e. a nozzle height of 16 mm, a scanning speed of 45 mm/s, and a scanning spacing of 16mm, where the surface temperature of CFRP is measured as 143.9℃. Consequently, the Mode-I fracture toughness is increased to 425 J/m2 (approximately 534.3% higher than the original state), and the failure mode is improved from interface to mixed failure. The research results aim to find the optimal process of parameters plasma modification with consideration of surface temperature and adhesive bonding performance, which provides valuable and practical information to the engineering application of plasma modification processes for CFRP materials.
-
Key words:
- plasma /
- surface modification /
- CFRP /
- temperature /
- bonding performance
-
表 1 等离子改性正交实验因素水平表
Table 1. Horizontal table of orthogonal experimental factors for plasma treatment
Level Factor H/mm L/mm V/(mm·s−1) 1 12 4 15 2 14 8 25 3 16 12 35 4 18 16 45 5 20 20 55 Notes:H is the nozzle height; L is the scanning line spacing; V is the scanning speed. 表 2 等离子改性温度测试结果表
Table 2. Table of plasma treatment temperature test results
No. Code T/℃ SD/℃ No. Code T/℃ SD/℃ 1 P12-4-15 275.0 0.0 14 P16-16-15 195.0 0.7 2 P12-8-25 251.3 2.2 15 P16-20-25 168.6 0.5 3 P12-12-35 219.5 0.5 16 P18-4-45 128.6 2.1 4 P12-16-45 197.5 2.9 17 P18-8-55 123.0 0.4 5 P12-20-55 178.7 2.3 18 P18-12-15 170.3 0.7 6 P14-4-25 195.8 1.6 19 P18-16-25 151.5 1.4 7 P14-8-35 177.7 2.9 20 P18-20-35 138.3 1.9 8 P14-12-45 155.9 0.9 21 P20-4-55 112.9 0.7 9 P14-16-55 152.4 1.5 22 P20-8-15 159.1 1.5 10 P14-20-15 219.4 3.4 23 P20-12-25 134.6 0.8 11 P16-4-35 154.2 1.0 24 P20-16-35 128.2 1.1 12 P16-8-45 143.9 0.7 25 P20-20-45 118.2 0.8 13 P16-12-55 130.3 1.3 Notes:The code in the table represents: P(nozzle height H)-(scan line spacing L)-(nozzle movement speed V). The surface temperature of sample P12-4-15 has exceeded the maximum measurement value of the infrared thermal imager (275℃) during processing. T is the average temperature of the three tested points, and SD is the standard deviation of the three tested temperatures. 表 3 等离子处理前后 CFRP 试样表面主要化学元素组成及其所占比例
Table 3. Main chemical element composition and proportion on the surface of CFRP specimens before and after plasma treatment
C1s/
Atomic %N1s/
Atomic %O1s/
Atomic %F1s/
Atomic %As-received 63.31 2.00 13.96 18.66 D16-16-35 53.12 8.46 27.67 6.91 -
[1] 王军照. 碳纤维复合材料在航空领域中的应用现状及改进[J]. 今日制造与升级, 2020, (8): 48-49.WANG J Z. Application Status and Improvement of Carbon Fiber Composite Materials in the Aviation Field[J]. Today's Manufacturing and Upgrading, 2020, (8): 48-49(in Chinese). [2] S. S, D. S P. A review on polymer matrix composite materials and their applications[J]. Materials Today: Proceedings, 2021, 47(P15): 5493-5498. [3] A. McIlhagger, E. Archer, R. McIlhagger. 3- Manufacturing processes for composite materials and components for aerospace applications[J]. Woodhead Publishing Series in Composites Science and Engineering, 2020: 59-81. [4] 宁蕙, 谭志勇, 张宏宇. 复合材料螺栓连接结构疲劳问题研究进展[J]. 强度与环境, 2023, 50(3): 1-9.NING H, TAN Z Y, ZHANG H Y. Research Progress on Fatigue Problems of Composite Material Bolted Connection Structures[J]. Strength and Environment, 2023, 50(3): 1-9(in Chinese). [5] ARIEF Y, MARCO A, GILLES L. Surface preparation strategies in secondary bonded thermoset-based composite materials: A review[J]. Composites Part A, 2021, 147. [6] 邓立伟, 陈璐圆, 陈新文, 等. 可剥布剥离工艺性评价方法研究[J]. 失效分析与预防, 2019, 14(3): 157-160. doi: 10.3969/j.issn.1673-6214.2019.03.004DENG L W, CHEN L Y, CHEN X W, et al. Research on the Evaluation Method of Peelable Cloth Peeling Process[J]. Failure Analysis and Prevention, 2019, 14(3): 157-160(in Chinese). doi: 10.3969/j.issn.1673-6214.2019.03.004 [7] TAO R, ALFANO M, LUBINEAU G. Laser-based surface patterning of composite plates for improved secondary adhesive bonding[J]. Composites A, 2018, 109: 84-94. doi: 10.1016/j.compositesa.2018.02.041 [8] 刘宇婷, 潘利剑, 胡秀凤, 等. 可剥布对T300/Cycom 970环氧树脂复合材料胶接性能的影响[J]. 复合材料学报, 2017, 34(5): 996-1002.LIU Y T, PAN L J, HU X F, et al. Influence of Peel Ply on the Adhesive Properties of T300/Cycom 970 Epoxy Resin Composite[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 996-1002(in Chinese). [9] 王旭, 陈璐圆, 陈萍, 等. 民用航空复合材料成型用可剥布评价与选用[J]. 航空制造技术, 2015, (19): 88-91+94.WANG X, CHEN L Y, CHEN P, et al. Evaluation and Selection of Peel Ply for Forming Civil Aviation Composite Materials[J]. Aviation Manufacturing Technology, 2015, (19): 88-91+94(in Chinese). [10] 杜婷婷, 叶云霞, 刘远方, 等. 纳秒激光调控CFRP复合材料表面润湿性及其对胶接性能的影响[J]. 复合材料学报, 2021, 38(5): 1435-1445.DU T T, YE Y X, LIU Y Y, et al. Surface wettability of CFRP composite materials controlled by nanosecond laser and its effect on bonding performance[J]. Journal of Composite Materials, 2021, 38(5): 1435-1445 (in Chinese) [11] 刘静, 曹意林, 李刚, 等. 激光对碳纤维及碳纤维/环氧树脂复合材料性能影响[J]. 复合材料学报, 2018, 35(11): 2979-2986.LIU J, CAO Y L, LI G, et al. Effects of laser on the properties of carbon fiber and carbon fiber/epoxy resin composites[J]. Journal of Composite Materials, 2018, 35(11): 2979-2986 (in Chinese) [12] FENG Z W, ZHAO H Y, TAN C W, et al. Nanosecond laser ablation for improving the strength of CFRTP and aluminum alloy adhesively bonded joints[J]. Composite Structures, 2021, 274. [13] SUN C, MIN J, LIN J, et al. Effect of Atmospheric Pressure Plasma Treatment on Adhesive Bonding of Carbon Fiber Reinforced Polymer[J]. Polymers, 2019, 11(1): 139-157. doi: 10.3390/polym11010139 [14] 王大伟, 李晔, 刘志浩, 等. 低温等离子体表面改性对CFRP胶接性能的影响[J]. 复合材料学报, 2023, 40(4): 2026-2037.WANG D W, LI Y, LIU Z H, et al. Influence of Low Temperature Plasma Surface Modification on the Adhesive Properties of CFRP[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2026-2037(in Chinese). [15] ZALIDVAR R J, NOKES J, STECKEL G L, et al. The Effect of atmospheric plasma treatment on the chemistry, morphology and resultant bonding behavior of a pan-based carbon fiber-reinforced epoxy composite. J. Compos. Mater. 2010, 44, 137–156. [16] 翟全胜, 苗春卉, 崔海超, 等. 基于表面改性的国产T800碳纤维/高韧性环氧树脂复合材料胶接性能[J]. 复合材料学报, 2021, 38(7): 2162-2171.ZHAI Q S, MIAO C H, CUI H C, et al. Adhesive Properties of Domestic T800 Carbon Fiber/High Toughness Epoxy Resin Composite Based on Surface Modification[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2162-2171(in Chinese). [17] DIGHTON C, REZAI A, OGIN L S, et al. Atmospheric plasma treatment of CFRP composites to enhance structural bonding investigated using surface analytical techniques[J]. International Journal of Adhesion and Adhesives, 2019, 91. [18] 邹田春, 刘志浩, 李晔, 等. 等离子体表面处理对碳纤维增强树脂基复合材料(CFRP)胶接性能及表面特性的影响[J]. 中国表面工程, 2022, 35(1): 125-134. doi: 10.11933/j.issn.1007-9289.20210901001ZOU T C, LIU Z H, LI Y, et al. Influence of Plasma Surface Treatment on the Adhesive Properties and Surface Characteristics of Carbon Fiber Reinforced Resin Matrix Composite (CFRP)[J]. China Surface Engineering, 2022, 35(1): 125-134(in Chinese). doi: 10.11933/j.issn.1007-9289.20210901001 [19] PIZZORNI M, LERTORA E, MANDOLFINO C. Low pressure plasma treatment of CFRP substrates for adhesive bonding: An investigation of joint durability under severe temperature-moisture conditioning[J]. International Journal of Adhesion and Adhesives, 2020, 99: 102592. doi: 10.1016/j.ijadhadh.2020.102592 [20] LIN J, SUN C, MIN J, et al. Effect of atmospheric pressure plasma treatment on surface physicochemical properties of carbon fiber reinforced polymer and its interfacial bonding strength with adhesive[J]. Composites Part B: Engineering, 2020, 199: 108237. doi: 10.1016/j.compositesb.2020.108237 [21] 陈俊林, 董柳杉, 余永波, 等. 等离子体处理对航空复合材料胶接性能的影响研究[J]. 纤维复合材料, 2022, 39(3): 48-53. doi: 10.3969/j.issn.1003-6423.2022.03.008CHEN J L, DONG L S, YU Y B, et al. Study on the influence of plasma treatment on the bonding performance of aviation composite materials[J]. Fiber Composite Materials, 2022, 39(3): 48-53(in Chinese). doi: 10.3969/j.issn.1003-6423.2022.03.008 [22] ASTM D5528-13, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International, West Conshohocken, PA(2013).
计量
- 文章访问数: 112
- HTML全文浏览量: 81
- 被引次数: 0