留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔纳米碳纤维与炭黑复合载体负载Pt对氧还原反应活性和耐久性的影响

黄歆榕 李光

黄歆榕, 李光. 多孔纳米碳纤维与炭黑复合载体负载Pt对氧还原反应活性和耐久性的影响[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 黄歆榕, 李光. 多孔纳米碳纤维与炭黑复合载体负载Pt对氧还原反应活性和耐久性的影响[J]. 复合材料学报, 2024, 42(0): 1-9.
HUANG Xinrong, LI Guang. Effect of Pt supported on the hybrid of porous carbon nanofibers and carbon black on oxygen reduction reaction activity and durability[J]. Acta Materiae Compositae Sinica.
Citation: HUANG Xinrong, LI Guang. Effect of Pt supported on the hybrid of porous carbon nanofibers and carbon black on oxygen reduction reaction activity and durability[J]. Acta Materiae Compositae Sinica.

多孔纳米碳纤维与炭黑复合载体负载Pt对氧还原反应活性和耐久性的影响

详细信息
    通讯作者:

    李光,博士,教授,博士生导师,研究方向为纳米碳纤维复合/杂化材料 E-mail: lig@dhu.edu.cn

  • 中图分类号: TM911.4;TB333

Effect of Pt supported on the hybrid of porous carbon nanofibers and carbon black on oxygen reduction reaction activity and durability

  • 摘要: 进一步提高Pt催化剂对氧还原反应(ORR)的催化活性和稳定性是促进质子交换膜燃料电池(PEMFC)商业化的关键。采用静电纺丝结合高温碳化的方法制备了直径约200 nm的多孔纳米碳纤维(PCNF),将其与炭黑(CB)混合作为Pt催化剂的复合载体,并使用乙二醇还原法制备了催化剂Pt/PCNF-CB,通过与商业Pt/C催化剂的对比,研究了Pt/PCNF-CB对ORR的催化活性与稳定性。当载体中CB含量为40%时,PCNF与CB能相互分散均匀,构建独特的三维贯通结构,以此混合载体制备的催化剂Pt/PCNF-CB-40在酸性电解液中表现出优良的ORR电催化活性,与Pt/C相比具有更高的起始电位(0.975 V)与半波电位(0.781 V)。同时,基于Pt/PCNF-CB-40的膜电极(MEA)表现出优良的输出性能,在铂载量较低的条件下其峰值功率密度高达599 mW·cm−2,较商业Pt/C催化剂提升19%,并且在加速应力测试(AST) (0.6 V和0.95 V)30 k次循环后最大功率密度仅损失21%,而商业Pt/C催化剂损失了41%,证明了PCNF与CB形成的复合载体对提高催化剂活性和稳定性具有积极作用。

     

  • 图  1  多孔纳米碳纤维(PCNF)制备工艺示意图(a)与PCNF的SEM图像:断面(b),表面(c)

    Figure  1.  Process schematic of porous carbon nanofibers (PCNF) (a) and SEM images of PCNF: cross section (b), surface (c)

    图  2  催化剂的SEM图像:Pt/PCNF(a),Pt/PCNF-CB-30(b),Pt/PCNF-CB-40(c),Pt/PCNF-CB-50(d)与催化剂的TEM图像:Pt/PCNF(e),Pt/PCNF-CB-30(f),Pt/PCNF-CB-40(g),Pt/PCNF-CB-50(h)

    Figure  2.  SEM images of electrocatalysts: Pt/PCNF (a), Pt/PCNF-CB-30 (b), Pt/PCNF-CB-40 (c), Pt/PCNF-CB-50 (d) and TEM images of electrocatalysts: Pt/PCNF (e), Pt/PCNF-CB-30 (f), Pt/PCNF-CB-40 (g),Pt/PCNF-CB-50 (h)

    图  3  各催化剂的XRD图像

    Figure  3.  XRD patterns of electrocatalysts

    图  4  Pt/PCNF-CB的TEM图像

    Figure  4.  TEM images of Pt/PCNF-CB electrocatalysts

    图  5  商业Pt/C与Pt/PCNF-CB在0.5 mol·L−1 H2SO4中的CV曲线,扫描速率为50 mV·s−1(a)以及LSV曲线,扫速为1600 rpm(b)与Tafel斜率(c)

    Figure  5.  CV curves of commercial Pt/C and Pt/PCNF-CB series electrocatalysts in 0.5 mol·L−1 H2SO4 under the scanning rate of 50 mV·s−1 (a) and LSV curves of commercial Pt/C and Pt/PCNF-CB series electrocatalysts under the 1600 rpm electrode rotation speed (b) and Tafel plots (c)

    图  6  商业Pt/C和Pt/PCNF-CB-40催化剂2000圈循环老化前后的CV与LSV曲线

    Figure  6.  CV and LSV curves of commercial Pt/C and Pt/PCNF-CB-40 electrocatalysts before and after 2000 potential sweeps

    图  7  Pt/PCNF-CB-40(a)和商用Pt/C(b)催化剂2000圈循环老化后的TEM图

    Figure  7.  TEM images of Pt/PCNF-CB-40 (a) and commercial Pt/C (b) electrocatalysts after 2000 potential sweep

    图  8  Pt/PCNF-CB-40与Pt/C分别作为阴极的膜电极(MEA)在H2/Air中的极化曲线与功率密度曲线(a)以及Pt/PCNF-CB-40与Pt/C在0.4 A·cm−2下的电化学阻抗谱(EIS)曲线(b)

    Figure  8.  Polarization and power density curves (a) and electrochemical impedance spectroscopy (EIS) curves (b) of membrane electrode assembly (MEA) of Pt/PCNF-CB-40 and Pt/C as cathodes respectively in H2/Air at 0.4 A·cm−2

    图  9  自制催化剂Pt/PCNF-CB-40与商业Pt/C制备的MEA在AST前后的极化曲线和功率密度曲线

    Figure  9.  Polarization and power density curves of MEA prepared by homemade electrocatalyst Pt/PCNF-CB-40 and commercial Pt/C before and after AST

    表  1  以Pt/PCNF-CB-40与Pt/C制备的MEA电化学性能

    Table  1.   Comparison of electrochemical properties of MEA prepared with Pt/PCNF-CB-40 and Pt/C

    SampleThe maximum power density/(mW·cm−2)R0/(mΩ·cm−2)Rct/(mΩ·cm−2)Rmt/(mΩ·cm−2)
    Pt/PCNF-CB-405990.9344.0786.565
    Pt/C5021.81510.6328.005
    Notes:R0 is the internal resistance of cell including the resistance of each component in cells and their interfaces; Rct is the charge transfer resistance; Rmt is the mass transport resistance.
    下载: 导出CSV
  • [1] LIU Y, YUE X, LI K, et al. PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds[J]. Coordination Chemistry Reviews, 2016, 315: 153-177. doi: 10.1016/j.ccr.2016.02.002
    [2] CANO Z P, BANHAM D, YE S, et al. Batteries and fuel cells for emerging electric vehicle markets[J]. Nature Energy, 2018, 3(4): 279-289. doi: 10.1038/s41560-018-0108-1
    [3] ZHANG L, ZHANG J, WILKINSON D P, et al. Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions[J]. Journal of Power Sources, 2006, 156(2): 171-182. doi: 10.1016/j.jpowsour.2005.05.069
    [4] ANDÚJAR J M, SEGURA F. Fuel cells: History and updating. a walk along two centuries[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2309-2322. doi: 10.1016/j.rser.2009.03.015
    [5] YUSOFF Y N, SHAARI N. An overview on the development of nanofiber-based as polymer electrolyte membrane and electrocatalyst in fuel cell application[J]. International Journal of Energy Research, 2021, 45(13): 18441-18472. doi: 10.1002/er.7020
    [6] LIU M, ZHAO Z, DUAN X, et al. Nanoscale structure design for high-performance pt-based ORR catalysts[J]. Advanced Materials, 2019, 31(6): 1802234. doi: 10.1002/adma.201802234
    [7] LAMIBRAC A, MARANZANA G, LOTTIN O, et al. Experimental characterization of internal currents during the start-up of a proton exchange membrane fuel cell[J]. Journal of Power Sources, 2011, 196(22): 9451-9458. doi: 10.1016/j.jpowsour.2011.07.013
    [8] PARRONDO J, HAN T, NIANGAR E, et al. Platinum supported on titanium–ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles[J]. Proceedings of the National Academy of Sciences, 2014, 111(1): 45-50. doi: 10.1073/pnas.1319663111
    [9] MENG Q H, HAO C, YAN B, et al. High-performance proton exchange membrane fuel cell with ultra-low loading Pt on vertically aligned carbon nanotubes as integrated catalyst layer[J]. Journal of Energy Chemistry, 2022, 71: 497-506. doi: 10.1016/j.jechem.2022.03.018
    [10] WANG X, LI Q, PAN H, et al. Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction[J]. Nanoscale, 2015, 7(47): 20290-20298. doi: 10.1039/C5NR05864C
    [11] LIU J, LIU S, YAN F, et al. Ultrathin nanotube structure for mass-efficient and durable oxygen reduction reaction catalysts in PEM fuel cells[J]. Journal of the American Chemical Society, 2022, 144(41): 19106-19114. doi: 10.1021/jacs.2c08361
    [12] HIGGINS D, ZAMANI P, YU A, et al. The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress[J]. Energy & Environmental Science, 2016, 9(2): 357-390.
    [13] PUMERA M. Graphene-based nanomaterials and their electrochemistry[J]. Chemical Society Reviews, 2010, 39(11): 4146. doi: 10.1039/c002690p
    [14] YARAR KAPLAN B, HAGHMORADI N, JAMIL E, et al. Platinum nanoparticles decorated carbon nanofiber hybrids as highly active electrocatalysts for polymer electrolyte membrane fuel cells[J]. International Journal of Energy Research, 2020, 44(13): 10251-10261. doi: 10.1002/er.5646
    [15] PARK J H, JU Y W, PARK S H, et al. Effects of electrospun polyacrylonitrile-based carbon nanofibers as catalyst support in PEMFC[J]. Journal of Applied Electrochemistry, 2009, 39(8): 1229-1236. doi: 10.1007/s10800-009-9787-4
    [16] Wang M, Xu F, Sun H, et al. Nanoscale graphite-supported Pt catalysts for oxygen reduction reactions in fuel cells[J]. Electrochimica Acta, 2011, 56(5): 2566-2573. doi: 10.1016/j.electacta.2010.11.019
    [17] LU L, DENG H, ZHAO Z, et al. N-doped carbon nanotubes supported Pt nanowire catalysts for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2022, 529: 231229. doi: 10.1016/j.jpowsour.2022.231229
    [18] KONG J, QIN Y H, WANG T L, et al. Photodeposition of Pt nanoparticles onto TiO2@CNT as high-performance electrocatalyst for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2020, 45(3): 1991-1997. doi: 10.1016/j.ijhydene.2019.11.016
    [19] HAO C, MENG Q, YAN B, et al. Efficient catalyst layer with ultra-low Pt loading for proton exchange membrane fuel cell[J]. Chemical Engineering Journal, 2023, 472: 144945. doi: 10.1016/j.cej.2023.144945
    [20] PARK S, SHAO Y, WAN H, et al. Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells[J]. Electrochemistry Communications, 2011, 13(3): 258-261. doi: 10.1016/j.elecom.2010.12.028
    [21] JI Z, CHEN J, PÉREZ-PAGE M, et al. Doped graphene/carbon black hybrid catalyst giving enhanced oxygen reduction reaction activity with high resistance to corrosion in proton exchange membrane fuel cells[J]. Journal of Energy Chemistry, 2022, 68: 143-153. doi: 10.1016/j.jechem.2021.09.031
    [22] FU K, WANG Y, MAO L, et al. Facile one-pot synthesis of graphene-porous carbon nanofibers hybrid support for Pt nanoparticles with high activity towards oxygen reduction[J]. Electrochimica Acta, 2016, 215: 427-434. doi: 10.1016/j.electacta.2016.08.111
    [23] MAO L, SHAN C, FU K, et al. Porous Carbon Nanofiber/Carbon Black Composite as Promising Support for Platinum Catalyst to Enhance Oxygen Reduction Reaction in PEMFC[J]. ChemistrySelect, 2019, 4(35): 10555-10560. doi: 10.1002/slct.201902857
    [24] MAO L, FU K, JIN J, et al. PtFe alloy catalyst supported on porous carbon nanofiber with high activity and durability for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18083-18092. doi: 10.1016/j.ijhydene.2019.05.058
    [25] ZHOU T, ZHANG J, YANG S, et al. The oxygen reduction performance of pt supported on the hybrid of porous carbon nanofibers and carbon black[J]. Materials, 2022, 15(13): 4560. doi: 10.3390/ma15134560
    [26] LI Y, LI Y, ZHU E, et al. Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite[J]. Journal of American Chemical Society, 2012, 134(30): 12326-12329. doi: 10.1021/ja3031449
    [27] TIAN X L, WANG L, CHI B, et al. Formation of a tubular assembly by ultrathin Ti0.8Co0.2N nanosheets as efficient oxygen reduction electrocatalysts for hydrogen-/metal-air fuel cells[J]. ACS Catalysis, 2018, 08(10): 8970-8915. doi: 10.1021/acscatal.8b02710
    [28] ZHAO C, LIU J, LI B, et al. Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc-air batteries[J]. Advanced Functional Materials, 2020, 30(36): 2003619. doi: 10.1002/adfm.202003619
    [29] XIN L, YANG F, RASOULI S, et al. Understanding Pt nanoparticle anchoring on graphene supports through surface functionalization[J]. ACS Catalysis, 2016, 6(4): 2642-2653. doi: 10.1021/acscatal.5b02722
    [30] MEIER J C, GALEANO C, KATSOUNAROS I, et al. Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions[J]. ACS Catalysis, 2012, 2(5): 832-843. doi: 10.1021/cs300024h
    [31] TAO L, QIAO M, JIN R, et al. Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst[J]. Angewandte Chemie International Edition, 2019, 58(4): 1019-1024. doi: 10.1002/anie.201810207
    [32] CHENG Q, HU C, WANG G, et al. Carbon-defect-driven electroless deposition of pt atomic clusters for highly efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2020, 142(12): 5594-5601. doi: 10.1021/jacs.9b11524
  • 加载中
计量
  • 文章访问数:  38
  • HTML全文浏览量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 修回日期:  2024-05-21
  • 录用日期:  2024-05-28
  • 网络出版日期:  2024-06-15

目录

    /

    返回文章
    返回