Synthesis and flame-retardant properties of the epoxy resin based on phenanthroline and magnolol
-
摘要: 商用环氧树脂主要由不可再生的石油基原料制得,且存在易燃、离火不自熄的问题,限制了它在电子电气和轨道交通等领域的广泛应用。因此,以生物质化合物厚朴酚、9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物 (DOPO)和环氧氯丙烷为原料,合成了一种磷杂菲-厚朴酚基环氧低聚物(ED-0.5),并以4,4'-二氨基二苯基甲烷(DDM)为环氧固化剂,制备高阻燃效率的环氧固化树脂(ED-0.5/DDM)。通过FTIR、NMR表征了其化学结构,利用DSC和TGA研究了环氧固化树脂的固化动力学和热稳定性,采用极限氧指数、垂直燃烧、锥形量热仪探究了环氧固化树脂的阻燃性能,通过TG-FTIR 和SEM分别对固化物热解气相组成和燃烧后残炭形貌结构进行了分析,探究其阻燃机制。结果表明,ED-0.5/DDM树脂热稳定性和热机械性能均优于传统双酚A环氧树脂,固化反应活化能略高。ED-0.5/DDM环氧固化树脂极限氧指数(LOI)可达到52.5%,UL-94测试达到V-0等级,热释放速率峰值和总热释放量分别降低 70.9%和58.2%,残炭增加1565.2%。ED-0.5/DDM环氧固化树脂可通过捕获猝灭自由基,产生大量不燃气体,形成致密炭层,发挥气相和凝聚相协同阻燃作用。Abstract: Commercial epoxy resin is mainly made from non renewable petroleum-based raw materials, and it has the problem of flammability and non self extinguishing, which limits its widespread application in fields such as electronics, electrical engineering, and rail transit. Therefore, a novel epoxy oligomer with magnolol phosphaphenanthrene (ED-0.5) was successfully synthesized with biomass compound magnolol, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), and epichlorohydrin, and then a high flame retardant epoxy resin (ED-0.5/DDM) was prepared by using 4,4'- diaminodiphenylmethane (DDM) as the epoxy curing agent. The chemical structure was characterized by FTIR and NMR, and the curing kinetics and thermal stability of epoxy resin were studied by DSC and TGA. The flame retardancy of epoxy resin was investigated by limiting oxygen index, vertical combustion, and cone calorimeter. The thermal decomposition gas phase composition of the cured resin and the morphology of the carbon layer after combustion of the epoxy resin were analyzed by TG-FTIR and SEM, respectively, to study its flame retardancy mechanism. The results showed that the thermal stability and thermal mechanical properties of ED-0.5/DDM epoxy resin were better than traditional bisphenol A epoxy resin, but the activating energy of the curing reaction was higher. The limiting oxygen index (LOI) of ED-0.5/DDM epoxy cured resin can reach 52.5%, passing the V-0 level of UL-94, reducing the peak heat release rate and total heat release by 70.9% and 58.2% respectively, and increasing the residual carbon by 1565.2%. ED-0.5/DDM epoxy resin can capture and quenching active radicals, generate a large amount of non-burning gases, form a dense carbon layer, and exert the synergistic flame retardant effect of gas phase and condensed phase.
-
Key words:
- epoxy oligomer /
- magnolol /
- phosphaphenanthrene /
- flame retardancy /
- mechanism
-
表 1 环氧固化树脂的组成
Table 1. Formulations of flame-retardant epoxy thermoset
Sample Components /wt% Phosphorus/
wt%Gel
content/%Resin DDM DGEBA/DDM 79.8 20.2 - 99.4 ED-0.5/DDM 90.2 9.8 3.1 97.6 Notes:DGEBA-Bisphenol A epoxy resin; DDM-4,4 '-diaminodiphenylmethane; Phosphorus-Theoretical content calculated according to the phosphorus content of the resin; Gel content-insoluble gel fraction as a result of inter-molecule cross-linking formation. 表 2 关于ED-0.5的1H-NMR和环氧值滴定的数据
Table 2. The date of H-NMR spectrum and epoxy value titration about ED-0.5.
Sample D(——)P(——)
(1H-NMR)Epoxy value titration Average
quality/gAverage
volume/mLAverage epoxy
value /(mol·100g−1Average molecular
weight /(g·mol−1)D (——)P(——)
(Calculate)DGEBA - 0.41 21.97±0.1 0.536±0.002 373.1±2.6 0.10±0.1 ED-0.5 0.52±0.1 0.60 12.90±0.1 0.215±0.001 930.2±4.3 0.51±0.1 Notes:D(——)P(——)(1H-NMR)-average degree of polymerization measured by 1H-NMR; D(——)P(——) (Calculate)-average degree of polymerization calculated by epoxy titration. 表 3 环氧固化树脂的非等温固化动力学参数
Table 3. Non-isothermal curing kinetics parameters of the cured resins
Sample Peak Temperature (TP)/(K·min−1) Ec(K)/
(kJ·mol−1)Ec (O)/
(kJ·mol−1)Gel Content/% 5 10 15 20 25 DGEBA/DDM 420.7 438.9 450.1 458.2 466.5 50.7 55.2 99.4 ED-0.5/DDM 397.2 412.2 422.2 427.8 436.9 52.8 56.8 97.6 Notes: Ec(K)-activation energy of reaction calculated by Kissinger equation; Ec (O)-activation energy of reaction calculated by Ozawa equation. 表 4 DGEBA/DDM和ED-0.5/DDM体系固化树脂的热分析数据
Table 4. Thermal analysis data of DGEBA/DDM and ED-0.5/DDM system cured resins
Sample DGEBA/DDM ED-0.5/DDM Tg /℃ DSC 150.6 167.5 DMA 167.1 185.6 Storage modulus at 30℃/MPa Value 850.4 2072.5 Increase - +143.7% Storage modulus at Tg-DMA +30 K/MPa 11.44 153.47 Content of Biphenyl structure/% - 44.8 Content of benzene ring/% 52.4 52.3 ve × 103/(mol·m−3) 0.98 12.59 Thermal decomposition temperature /℃ Td5% 367.3 396.2 The temperature of the maximum thermal decomposition rate /℃ Tmax1 385.1 415.8 Tmax2 - 483.6 Char yield at 700℃/% Value 20.2 41.2 Note: Tg-glass-transition temperature; ve -Crosslinking density. 表 5 DGEBA/DDM和ED-0.5/DDM固化树脂阻燃性能参数
Table 5. Flame-retardant property of DGEBA/DDM and ED-0.5/DDM cured resins.
Sample UL-94 LOI/% t1/s t2/s Dripping Rating DGEBA/DDM 124+ - YES NO Rating 26.0 ED-0.5/DDM 0.8 0.8 NO V-0 52.5 Notes: t1- Average combustion times after the first applications of the flame; t2 - Average combustion times after the second applications of the flame: LOI-Limiting Oxygen Index. 表 6 DGEBA/DDM 和 ED-0.5/DDM固化树脂的锥形量热测试的数据
Table 6. Cone calorimetric data of the DGEBA/DDM and the ED-0.5/DDM cured resins.
Sample DGEBA/DDM ED-0.5/DDM Max-relative value TTI/s 46 29 − pHRR/(kW·m−2) 1629.4 474.4 −70.9% THR/(MJ·m−2) 141.3 59.0 −58.2% Av-EHC/(MJ·kg) 32.7 25.9 −20.8% RCY/% 2.3 38.3 +1565.2% Notes: TTI-Time to ignition; pHRR-Peak heat release rate; THR-Total heat release; av-EHC-Average effective heat combustion; RCY-Residue char yield. -
[1] ZHI M Y, YANG X, FAN R, et al. A comprehensive review of reactive flame-retardant epoxy resin: fundamentals, recent developments, and perspectives[J]. Polymer Degradation and Stability, 2022, 201: 109976. doi: 10.1016/j.polymdegradstab.2022.109976 [2] 赵明月, 裴晓园, 王维, 等. 二维纳米材料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(5): 2049-2059.ZHAO M Y, PEI X Y, WANG W, et al. Application of two-dimensional nanomaterials / epoxy resin composite coating in corrosion protection[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2049-2059(in Chinese). [3] RAQUEL GIMÉNEZ, BERNA SERRANO, VERÓNICA SAN-MIGUEL, et al. Recent Advances in MXene/Epoxy Composites: Trends and Prospects[J]. Polymers (Basel), 2022, 14(6): 1170. doi: 10.3390/polym14061170 [4] MENG J J, ZENG Y S, CHEN P F, et al. Flame Retardancy and Mechanical Properties of Bio-Based Furan Epoxy Resins with High Crosslink Density[J]. Macromolecular Materials and Engineering, 2019, 305(1): 1900587. [5] BALJINDER K. KANDOLA, FEDERICO MAGNONI, JOHN R. EBDON. Flame retardants for epoxy resins: Application-related challenges and solutions[J]. Journal of Vinyl and Additive Technology, 2022, 28(1): 17-49. doi: 10.1002/vnl.21890 [6] 曹兆林, 姚玉成, 谈继淮, 等. 原儿茶酸环氧树脂的制备与应用性能测试[J]. 复合材料学报, 2022, 39(7): 3224-3231.CAO Z L, YAO Y C, TAN J H, et al. Preparation and application performance test of raw catechin acid epoxy resin[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3224-3231(in Chinese). [7] BIJENDER KUMAR, SAMIA ADIL and JAEHWAN KIM. Adhesion Improvement of Bio-Based Epoxy in Environmentally Friendly and High-Performance Natural Fiber-Reinforced Composites[J]. Macromolecular Materials and Engineering, 2023, 308(8): 2300003. doi: 10.1002/mame.202300003 [8] ZHANG Y H, ZHAI M J, MA F, et al. Fully Eugenol-Based Epoxy Thermosets: Synthesis, Curing, and Properties[J]. Macromolecular Materials and Engineering, 2021, 307(6): 2100833. [9] TANG J J, ZHANG J S, LU J Y, et al. , Preparation and Properties of Plant-Oil-Based Epoxy Acrylate-Like Resins for UV-Curable Coatings[J]. Polymers (Basel), 2020, 12(9): 2165. doi: 10.3390/polym12092165 [10] MIAO Z X, PENG C H, XIA L, et al. Fire-Safe Fully Bio-Based Schiff Base Epoxy Thermosets with Excellent Mechanical Properties and Adjustable Degradability[J]. ACS Applied Polymer Materials, 2023, 5(8): 6325-6337. doi: 10.1021/acsapm.3c00953 [11] . Cao Q , ZHAO H Y, LI J H, et al. The synergistic effect of biphenyl structure and N element in flame retardant and high value-added recycling of bio-based epoxy resin[J]. Polymer Degradation and Stability, 2023, 215: 110424. [12] IBRAHIMA FAYE, MÉLANIE DECOSTANZI, YVAN ECOCHARD and SYLVAIN CAILLO. Eugenol bio-based epoxy thermosets: from cloves to applied materials[J]. Green Chem., 2017, 19(21): 5236-5242. doi: 10.1039/C7GC02322G [13] . YVAN ECOCHARD , MÉLANIE DECOSTANZI , CLAIRE NEGRE. Cardanol and Eugenol Based Flame Retardant Epoxy Monomers for Thermostable Networks[J]. Molecules, 2019, 24(9): 1818. [14] LIU J K, DAI J Y, WANG S P, et al. Facile synthesis of bio-based reactive flame retardant from vanillin and guaiacol for epoxy resin[J]. Composites Part B: Engineering, 2020, 190: 107926. doi: 10.1016/j.compositesb.2020.107926 [15] LI M L, HAO X H, HU M L, et al. Synthesis of bio-based flame-retardant epoxy co-curing agent and application in wood surface coating[J]. Progress in Organic Coatings, 2022, 167: 106848. doi: 10.1016/j.porgcoat.2022.106848 [16] XU X W, WANG S, MA S Q, et al. Vanillin-derived phosphorus-containing compounds and ammonium polyphosphate as green fire-resistant systems for epoxy resins with balanced properties[J]. Polym Adv Technol, 2019, 30: 264-278. doi: 10.1002/pat.4461 [17] QI Y, WENG Z H, ZHANG K W, et al. Magnolol-based bio-epoxy resin with acceptable glass transition temperature, processability and flame retardancy[J]. Chemical Engineering Journal, 2020, 387: 124115. doi: 10.1016/j.cej.2020.124115 [18] HU G L, ZHANG X Q, BU M L, et al. Toughening and strengthening epoxy resins with a new bi-DOPO biphenyl reactive flame retardant[J]. European Polymer Journal, 2022, 178: 111488. doi: 10.1016/j.eurpolymj.2022.111488 [19] DUAN H J, CHEN Y S, JI S, et al. A novel phosphorus/nitrogen-containing polycarboxylic acid endowing epoxy resin with excellent flame retardance and mechanical properties[J]. Chemical Engineering Journal, 2019, 375: 121916. doi: 10.1016/j.cej.2019.121916 [20] CAO J F, DUAN H J, ZOU J H, et al. Bio-based phosphorus-containing benzoxazine towards high fire safety, heat resistance and mechanical properties of anhydride-cured epoxy resin[J]. Polymer Degradation and Stability, 2022, 198: 109878. doi: 10.1016/j.polymdegradstab.2022.109878 [21] SELVARAJ V and T. R. RAGHAVARSHINI. Development of high-performance hybrid sustainable bio-composites from biobased carbon reinforcement and cardanol-benzoxazine matrix[J]. Polymer Bulletin, 2020, 78(8): 4129-4148. [22] CHEN K Y, LU X Q, ZHONG G, et al. DOPO-based curing flame retardant of epoxy composite material for char formation and intumescent flame retardance[J]. Journal of Applied Polymer Science, 2020, 138(9): 49918. [23] LIU S H, ZHANG X Q, BU M L, et al. Properties tailoring of biobased epoxy resins by regulating the degree of polymerization of oligomers[J]. European Polymer Journal, 2022, 173: 111253. doi: 10.1016/j.eurpolymj.2022.111253 [24] KUMAR K. S. SANTHOSH, NAIR C. P. REGHUNADHAN RADHAKRISHNAN T. S, et al. Bis allyl benzoxazine: Synthesis, polymerisation and polymer properties[J]. European Polymer Journal, 2007, 43(6): 2504-2514. doi: 10.1016/j.eurpolymj.2007.03.028 [25] LUP Y S, XU M Z, PAN H, et al. Effect of ortho-diallyl bisphenol A on the processability of phthalonitrile-based resin and their fiber-reinforced laminates[J]. Polymer Engineering & Science, 2016, 56(2): 150-157. [26] LIU S H, ZHANG X Q, LIU J H, et al. A novel bio-based epoxy resin from oligomer: Excellent processability, high heat resistance, and intrinsic flame retardancy[J]. Express Polymer Letters, 2021, 15(12): 1189-1205. doi: 10.3144/expresspolymlett.2021.95 [27] WANG P, CHEN L and XIAO H. Flame retardant effect and mechanism of a novel DOPO based tetrazole derivative on epoxy resin[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 104-113. doi: 10.1016/j.jaap.2019.01.015 [28] Cao J F, DUAN H J, ZOU J H, et al. A bio-based phosphorus-containing co-curing agent towards excellent flame retardance and mechanical properties of epoxy resin[J]. Polymer Degradation and Stability, 2021, 187: 109548. doi: 10.1016/j.polymdegradstab.2021.109548 [29] LEO-WANG CHEN, SHIH-CHI FU & CHING-SHENG CHO. Kinetics of aryl phosphinate anhydride curing of epoxy resins using differential scanning calorimetry[J]. Polymer International, 1998, 46(4): 325-330. doi: 10.1002/(SICI)1097-0126(199808)46:4<325::AID-PI33>3.0.CO;2-I [30] LIU J K, WANG S P, PENG Y Y, et al. Advances in sustainable thermosetting resins: From renewable feedstock to high performance and recyclability[J]. Progress in Polymer Science, 2021, 113: 101353. doi: 10.1016/j.progpolymsci.2020.101353 [31] WANG S, MA S Q, XU C X, et al. Vanillin-Derived High-Performance Flame Retardant Epoxy Resins: Facile Synthesis and Properties[J]. Macromolecules, 2017, 50(5): 1892-1901. doi: 10.1021/acs.macromol.7b00097 [32] QI Y, WENG Z H, KOU Y, et al. Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: Enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers[J]. Chemical Engineering Journal, 2021, 406: 126881. doi: 10.1016/j.cej.2020.126881 [33] . B. SCHARTEL, U. BRAUN, A. I. BALABANOVICH, et al. Pyrolysis and fire behaviour of epoxy systems containing a novel 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener[J]. European Polymer Journal, 2008, 44(3): 704-715. [34] CHI Z Y, GUO Z W, XU Z C, et al. A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: Synthesis, flame-retardant behavior and mechanism[J]. Polymer Degradation and Stability, 2020, 176: 109151. doi: 10.1016/j.polymdegradstab.2020.109151 [35] MA C, GUO Z H, FANG Z P, et al. Flame retardancy and chemical degradation of epoxy containing phenylphosphonate group under mild conditions[J]. Composites Part B: Engineering, 2022, 239: 109967. doi: 10.1016/j.compositesb.2022.109967 [36] LIU D Y, ZHAO W H, CUI Y H, et al. Influence of the Chemical Structure on the Flame Retardant Mechanism and Mechanical Properties of Flame-Retardant Epoxy Resin Thermosets[J]. Macromolecular Materials and Engineering, 2022, 307(9): 2200169. doi: 10.1002/mame.202200169 [37] QIAN L J, YE L J, QIU Y, et al. Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin[J]. Polymer, 2011, 52(24): 5486-5493. doi: 10.1016/j.polymer.2011.09.053 [38] JIN S L, QIAN L J, QIU Y, et al. High-efficiency flame retardant behavior of bi-DOPO compound with hydroxyl group on epoxy resin[J]. Polymer Degradation and Stability, 2019, 166: 344-352. doi: 10.1016/j.polymdegradstab.2019.06.024 [39] TENG N, DAI J Y, WANG S P, et al. Hyperbranched flame retardant for epoxy resin modification: Simultaneously improved flame retardancy, toughness and strength as well as glass transition temperature[J]. Chemical Engineering Journal, 2022, 428: 131226. doi: 10.1016/j.cej.2021.131226 [40] ZHANG W C, ALBERTO FINAET, GIUSEPPE FERRARO, et al. FTIR and GCMS analysis of epoxy resin decomposition products feeding the flame during UL 94 standard flammability test. Application to the understanding of the blowing-out effect in epoxy/polyhedral silsesquioxane formulations[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 271-280. doi: 10.1016/j.jaap.2018.08.026 [41] CHENG J W, WANG J, YANG S, et al. Aminobenzothiazole-substituted cyclotriphosphazene derivative as reactive flame retardant for epoxy resin[J]. Reactive and Functional Polymers, 2020, 146: 104412. doi: 10.1016/j.reactfunctpolym.2019.104412 [42] ZOU J H, DUAN H J, CHEN Y S, et al. A P/N/S-containing high-efficiency flame retardant endowing epoxy resin with excellent flame retardance, mechanical properties and heat resistance[J]. Composites Part B: Engineering, 2020, 199: 108228. doi: 10.1016/j.compositesb.2020.108228 [43] ZHANG W H, MI X Q, CHEN S Y, et al. A bio-based hyperbranched flame retardant for epoxy resins[J]. Chemical Engineering Journal, 2020, 381: 122719. doi: 10.1016/j.cej.2019.122719 [44] QIU Y, LIU Z, QIAN L J, et al. Pyrolysis and flame retardant behavior of a novel compound with multiple phosphaphenanthrene groups in epoxy thermosets[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 23-30. doi: 10.1016/j.jaap.2017.09.006
计量
- 文章访问数: 171
- HTML全文浏览量: 112
- 被引次数: 0