留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷杂菲-厚朴酚基环氧低聚物的合成及其固化树脂阻燃性能

谢煜彬 胡国梁 张笑晴 雷彩红

谢煜彬, 胡国梁, 张笑晴, 等. 磷杂菲-厚朴酚基环氧低聚物的合成及其固化树脂阻燃性能[J]. 复合材料学报, 2024, 42(0): 1-14.
引用本文: 谢煜彬, 胡国梁, 张笑晴, 等. 磷杂菲-厚朴酚基环氧低聚物的合成及其固化树脂阻燃性能[J]. 复合材料学报, 2024, 42(0): 1-14.
XIE Yubin, HU Guoliang, ZHANG Xiaoqing, et al. Synthesis and flame-retardant properties of the epoxy resin based on phenanthroline and magnolol[J]. Acta Materiae Compositae Sinica.
Citation: XIE Yubin, HU Guoliang, ZHANG Xiaoqing, et al. Synthesis and flame-retardant properties of the epoxy resin based on phenanthroline and magnolol[J]. Acta Materiae Compositae Sinica.

磷杂菲-厚朴酚基环氧低聚物的合成及其固化树脂阻燃性能

基金项目: 国家自然科学基金面上项目(No.52073065)
详细信息
    通讯作者:

    张笑晴,博士,副教授,硕士生导师,研究方向为阻燃添加剂、阻燃高分子材料;新型生物基材料;复合材料界面设计及性能调控 E-mail: zhangxq@gdut.edu.cn

  • 中图分类号: TQ322; TB332

Synthesis and flame-retardant properties of the epoxy resin based on phenanthroline and magnolol

Funds: National Natural Science Foundation of China (No.52073065)
  • 摘要: 商用环氧树脂主要由不可再生的石油基原料制得,且存在易燃、离火不自熄的问题,限制了它在电子电气和轨道交通等领域的广泛应用。因此,以生物质化合物厚朴酚、9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物 (DOPO)和环氧氯丙烷为原料,合成了一种磷杂菲-厚朴酚基环氧低聚物(ED-0.5),并以4,4'-二氨基二苯基甲烷(DDM)为环氧固化剂,制备高阻燃效率的环氧固化树脂(ED-0.5/DDM)。通过FTIR、NMR表征了其化学结构,利用DSC和TGA研究了环氧固化树脂的固化动力学和热稳定性,采用极限氧指数、垂直燃烧、锥形量热仪探究了环氧固化树脂的阻燃性能,通过TG-FTIR 和SEM分别对固化物热解气相组成和燃烧后残炭形貌结构进行了分析,探究其阻燃机制。结果表明,ED-0.5/DDM树脂热稳定性和热机械性能均优于传统双酚A环氧树脂,固化反应活化能略高。ED-0.5/DDM环氧固化树脂极限氧指数(LOI)可达到52.5%,UL-94测试达到V-0等级,热释放速率峰值和总热释放量分别降低 70.9%和58.2%,残炭增加1565.2%。ED-0.5/DDM环氧固化树脂可通过捕获猝灭自由基,产生大量不燃气体,形成致密炭层,发挥气相和凝聚相协同阻燃作用。

     

  • 图  1  磷杂菲-厚朴酚基环氧低聚物(ED-0.5)合成路线

    Figure  1.  Synthesis route of epoxy oligomer with Magnolol and phosphaphenanthrene (ED-0.5)

    图  2  DOPO-M,E-DBP 和 ED-0.5 在不同波数范围内的红外谱图;(a) 4000-500 cm−1,(b) 1700- 1400 cm−1 和(c) 1400-600 cm−1

    Figure  2.  FTIR spectra of DOPO-M, E-DBP and ED-0.5 at various wavenumber ranges: (a) 4000-500 cm−1 , (b) 1700-1400 cm−1 , and (c) 1400-600 cm−1,(b) 1700-1400 cm−1 , and (c) 1400-600 cm−1

    图  3  ED-0.5(a)核磁共振氢谱(b)核磁共振磷谱

    Figure  3.  ED-0.5(a)1H-NMR spectrum (b)31P-NMR spectrum

    图  4  (a) DGEBA/DDM 和 ED-0.5/DDM在10 K·min−1 的 DSC 曲线;(b) DGEBA/DDM 和(c) ED-0.5/DDM 在不同升温速率下的 DSC 曲线

    Figure  4.  DSC curves of DGEBA/DDM and ED-0.5/DDM at 10 K·min−1 (a); DSC curves of (b) DGEBA/DDM and (c) ED-0.5/DDM at different heating rates

    图  5  (a) DGEBA/DDM 和 ED-0.5/DDM体系固化树脂的DSC曲线;(b) DMA 测试中 DGEBA/DDM和ED-0.5 DDM体系固化树脂的储能模量和Tanδ随着温度的变化图

    Figure  5.  (a) DSC curves of DGEBA/DDM and ED-0.5/DDM system cured resins; (b) DMA spectra for the storage modulus and Tan δ against temperature of DGEBA/DDM and ED-0.5/DDM system cured resins.

    图  6  氮气氛围中 DGEBA/DDM 和 ED-0.5/DDM体系固化树脂的TGA(a)和DTG 曲线(b)

    Figure  6.  TGA (a) and DTG (b) curves of DGEBA/DDM and ED-0.5/DDM system cured resins (N2 atmosphere)

    图  7  UL-94 测试的数码照片;(a)DGEBA/DDM,(b)ED-0.5/DDM

    Figure  7.  Digital photographs of UL-94: (a) DGEBA/DDM, (b) ED-0.5/DDM

    图  8  在45%氧气浓度的条件下(a) DGEBA/DDM,(g) ED-0.5/DDM的LOI测试数码照片

    Figure  8.  Digital photographs of LOI test at 45% oxygen atmosphere: (a) DGEBA/DDM, (b) ED-0.5/DDM

    图  9  锥形量热测试的 DGEBA/DDM 和 ED-0.5/DDM固化树脂的HRR(a),THR(b),和RCY(c) 随时间的变化曲线

    Figure  9.  HRR (a), THR (b), and RCY (c) versus time curves form CC tests for cured DGEBA/DDM and ED-0.5/DDM

    图  10  DGEBA/DDM(a)和 ED-0.5/DDM(b)的碎片产物的实时红外谱图

    Figure  10.  Real-time FTIR spectra of volatile products for DGEBA/DDM (a) and ED-0.5/DDM (b)

    图  11  残炭的数码照片;(a)DGEBA/DDM,(b)ED-0.5/DDM,

    Figure  11.  Digital photographs of the residual char: (a) DGEBA/DDM and (b) ED-0.5/DDM

    图  12  (a) E51-DDM 残炭的 SEM 图像;(b) ED-0.5/DDM残炭外层的 SEM 图像(c) ED-0.5/DDM残炭内层的 SEM 图像

    Figure  12.  SEM images of char for DGEBA/DDM (a), SEM image of residual carbon in the outer layer of ED- 0.5/DDM and residual carbon in the inner layer of ED-0.5/DDM(c)

    图  13  DGEBA/DDM和ED-0.5/DDM固化树脂残炭的红外谱图

    Figure  13.  FTIR spectra of char for DGEBA/DDM and ED-0.5/DDM cured resins

    表  1  环氧固化树脂的组成

    Table  1.   Formulations of flame-retardant epoxy thermoset

    Sample Components /wt% Phosphorus/
    wt%
    Gel
    content/%
    Resin DDM
    DGEBA/DDM 79.8 20.2 - 99.4
    ED-0.5/DDM 90.2 9.8 3.1 97.6
    Notes:DGEBA-Bisphenol A epoxy resin; DDM-4,4 '-diaminodiphenylmethane; Phosphorus-Theoretical content calculated according to the phosphorus content of the resin; Gel content-insoluble gel fraction as a result of inter-molecule cross-linking formation.
    下载: 导出CSV

    表  2  关于ED-0.5的1H-NMR和环氧值滴定的数据

    Table  2.   The date of H-NMR spectrum and epoxy value titration about ED-0.5.

    Sample D(——)P(——)
    (1H-NMR)
    Epoxy value titration
    Average
    quality/g
    Average
    volume/mL
    Average epoxy
    value /(mol·100g−1
    Average molecular
    weight /(g·mol−1)
    D (——)P(——)
    (Calculate)
    DGEBA - 0.41 21.97±0.1 0.536±0.002 373.1±2.6 0.10±0.1
    ED-0.5 0.52±0.1 0.60 12.90±0.1 0.215±0.001 930.2±4.3 0.51±0.1
    Notes:D(——)P(——)(1H-NMR)-average degree of polymerization measured by 1H-NMR; D(——)P(——) (Calculate)-average degree of polymerization calculated by epoxy titration.
    下载: 导出CSV

    表  3  环氧固化树脂的非等温固化动力学参数

    Table  3.   Non-isothermal curing kinetics parameters of the cured resins

    Sample Peak Temperature (TP)/(K·min−1) Ec(K)/
    (kJ·mol−1)
    Ec (O)/
    (kJ·mol−1)
    Gel Content/%
    5 10 15 20 25
    DGEBA/DDM 420.7 438.9 450.1 458.2 466.5 50.7 55.2 99.4
    ED-0.5/DDM 397.2 412.2 422.2 427.8 436.9 52.8 56.8 97.6
    Notes: Ec(K)-activation energy of reaction calculated by Kissinger equation; Ec (O)-activation energy of reaction calculated by Ozawa equation.
    下载: 导出CSV

    表  4  DGEBA/DDM和ED-0.5/DDM体系固化树脂的热分析数据

    Table  4.   Thermal analysis data of DGEBA/DDM and ED-0.5/DDM system cured resins

    Sample DGEBA/DDM ED-0.5/DDM
    Tg /℃ DSC 150.6 167.5
    DMA 167.1 185.6
    Storage modulus at 30℃/MPa Value 850.4 2072.5
    Increase - +143.7%
    Storage modulus at Tg-DMA +30 K/MPa 11.44 153.47
    Content of Biphenyl structure/% - 44.8
    Content of benzene ring/% 52.4 52.3
    ve × 103/(mol·m−3) 0.98 12.59
    Thermal decomposition temperature /℃ Td5% 367.3 396.2
    The temperature of the maximum thermal decomposition rate /℃ Tmax1 385.1 415.8
    Tmax2 - 483.6
    Char yield at 700℃/% Value 20.2 41.2
    Note: Tg-glass-transition temperature; ve -Crosslinking density.
    下载: 导出CSV

    表  5  DGEBA/DDM和ED-0.5/DDM固化树脂阻燃性能参数

    Table  5.   Flame-retardant property of DGEBA/DDM and ED-0.5/DDM cured resins.

    SampleUL-94LOI/%
    t1/st2/sDrippingRating
    DGEBA/DDM124+-YESNO Rating26.0
    ED-0.5/DDM0.80.8NOV-052.5
    Notes: t1- Average combustion times after the first applications of the flame; t2 - Average combustion times after the second applications of the flame: LOI-Limiting Oxygen Index.
    下载: 导出CSV

    表  6  DGEBA/DDM 和 ED-0.5/DDM固化树脂的锥形量热测试的数据

    Table  6.   Cone calorimetric data of the DGEBA/DDM and the ED-0.5/DDM cured resins.

    Sample DGEBA/DDM ED-0.5/DDM Max-relative value
    TTI/s 46 29
    pHRR/(kW·m−2) 1629.4 474.4 −70.9%
    THR/(MJ·m−2) 141.3 59.0 −58.2%
    Av-EHC/(MJ·kg) 32.7 25.9 −20.8%
    RCY/% 2.3 38.3 +1565.2%
    Notes: TTI-Time to ignition; pHRR-Peak heat release rate; THR-Total heat release; av-EHC-Average effective heat combustion; RCY-Residue char yield.
    下载: 导出CSV
  • [1] ZHI M Y, YANG X, FAN R, et al. A comprehensive review of reactive flame-retardant epoxy resin: fundamentals, recent developments, and perspectives[J]. Polymer Degradation and Stability, 2022, 201: 109976. doi: 10.1016/j.polymdegradstab.2022.109976
    [2] 赵明月, 裴晓园, 王维, 等. 二维纳米材料/环氧树脂复合涂层在腐蚀防护中的应用[J]. 复合材料学报, 2022, 39(5): 2049-2059.

    ZHAO M Y, PEI X Y, WANG W, et al. Application of two-dimensional nanomaterials / epoxy resin composite coating in corrosion protection[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2049-2059(in Chinese).
    [3] RAQUEL GIMÉNEZ, BERNA SERRANO, VERÓNICA SAN-MIGUEL, et al. Recent Advances in MXene/Epoxy Composites: Trends and Prospects[J]. Polymers (Basel), 2022, 14(6): 1170. doi: 10.3390/polym14061170
    [4] MENG J J, ZENG Y S, CHEN P F, et al. Flame Retardancy and Mechanical Properties of Bio-Based Furan Epoxy Resins with High Crosslink Density[J]. Macromolecular Materials and Engineering, 2019, 305(1): 1900587.
    [5] BALJINDER K. KANDOLA, FEDERICO MAGNONI, JOHN R. EBDON. Flame retardants for epoxy resins: Application-related challenges and solutions[J]. Journal of Vinyl and Additive Technology, 2022, 28(1): 17-49. doi: 10.1002/vnl.21890
    [6] 曹兆林, 姚玉成, 谈继淮, 等. 原儿茶酸环氧树脂的制备与应用性能测试[J]. 复合材料学报, 2022, 39(7): 3224-3231.

    CAO Z L, YAO Y C, TAN J H, et al. Preparation and application performance test of raw catechin acid epoxy resin[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3224-3231(in Chinese).
    [7] BIJENDER KUMAR, SAMIA ADIL and JAEHWAN KIM. Adhesion Improvement of Bio-Based Epoxy in Environmentally Friendly and High-Performance Natural Fiber-Reinforced Composites[J]. Macromolecular Materials and Engineering, 2023, 308(8): 2300003. doi: 10.1002/mame.202300003
    [8] ZHANG Y H, ZHAI M J, MA F, et al. Fully Eugenol-Based Epoxy Thermosets: Synthesis, Curing, and Properties[J]. Macromolecular Materials and Engineering, 2021, 307(6): 2100833.
    [9] TANG J J, ZHANG J S, LU J Y, et al. , Preparation and Properties of Plant-Oil-Based Epoxy Acrylate-Like Resins for UV-Curable Coatings[J]. Polymers (Basel), 2020, 12(9): 2165. doi: 10.3390/polym12092165
    [10] MIAO Z X, PENG C H, XIA L, et al. Fire-Safe Fully Bio-Based Schiff Base Epoxy Thermosets with Excellent Mechanical Properties and Adjustable Degradability[J]. ACS Applied Polymer Materials, 2023, 5(8): 6325-6337. doi: 10.1021/acsapm.3c00953
    [11] . Cao Q , ZHAO H Y, LI J H, et al. The synergistic effect of biphenyl structure and N element in flame retardant and high value-added recycling of bio-based epoxy resin[J]. Polymer Degradation and Stability, 2023, 215: 110424.
    [12] IBRAHIMA FAYE, MÉLANIE DECOSTANZI, YVAN ECOCHARD and SYLVAIN CAILLO. Eugenol bio-based epoxy thermosets: from cloves to applied materials[J]. Green Chem., 2017, 19(21): 5236-5242. doi: 10.1039/C7GC02322G
    [13] . YVAN ECOCHARD , MÉLANIE DECOSTANZI , CLAIRE NEGRE. Cardanol and Eugenol Based Flame Retardant Epoxy Monomers for Thermostable Networks[J]. Molecules, 2019, 24(9): 1818.
    [14] LIU J K, DAI J Y, WANG S P, et al. Facile synthesis of bio-based reactive flame retardant from vanillin and guaiacol for epoxy resin[J]. Composites Part B: Engineering, 2020, 190: 107926. doi: 10.1016/j.compositesb.2020.107926
    [15] LI M L, HAO X H, HU M L, et al. Synthesis of bio-based flame-retardant epoxy co-curing agent and application in wood surface coating[J]. Progress in Organic Coatings, 2022, 167: 106848. doi: 10.1016/j.porgcoat.2022.106848
    [16] XU X W, WANG S, MA S Q, et al. Vanillin-derived phosphorus-containing compounds and ammonium polyphosphate as green fire-resistant systems for epoxy resins with balanced properties[J]. Polym Adv Technol, 2019, 30: 264-278. doi: 10.1002/pat.4461
    [17] QI Y, WENG Z H, ZHANG K W, et al. Magnolol-based bio-epoxy resin with acceptable glass transition temperature, processability and flame retardancy[J]. Chemical Engineering Journal, 2020, 387: 124115. doi: 10.1016/j.cej.2020.124115
    [18] HU G L, ZHANG X Q, BU M L, et al. Toughening and strengthening epoxy resins with a new bi-DOPO biphenyl reactive flame retardant[J]. European Polymer Journal, 2022, 178: 111488. doi: 10.1016/j.eurpolymj.2022.111488
    [19] DUAN H J, CHEN Y S, JI S, et al. A novel phosphorus/nitrogen-containing polycarboxylic acid endowing epoxy resin with excellent flame retardance and mechanical properties[J]. Chemical Engineering Journal, 2019, 375: 121916. doi: 10.1016/j.cej.2019.121916
    [20] CAO J F, DUAN H J, ZOU J H, et al. Bio-based phosphorus-containing benzoxazine towards high fire safety, heat resistance and mechanical properties of anhydride-cured epoxy resin[J]. Polymer Degradation and Stability, 2022, 198: 109878. doi: 10.1016/j.polymdegradstab.2022.109878
    [21] SELVARAJ V and T. R. RAGHAVARSHINI. Development of high-performance hybrid sustainable bio-composites from biobased carbon reinforcement and cardanol-benzoxazine matrix[J]. Polymer Bulletin, 2020, 78(8): 4129-4148.
    [22] CHEN K Y, LU X Q, ZHONG G, et al. DOPO-based curing flame retardant of epoxy composite material for char formation and intumescent flame retardance[J]. Journal of Applied Polymer Science, 2020, 138(9): 49918.
    [23] LIU S H, ZHANG X Q, BU M L, et al. Properties tailoring of biobased epoxy resins by regulating the degree of polymerization of oligomers[J]. European Polymer Journal, 2022, 173: 111253. doi: 10.1016/j.eurpolymj.2022.111253
    [24] KUMAR K. S. SANTHOSH, NAIR C. P. REGHUNADHAN RADHAKRISHNAN T. S, et al. Bis allyl benzoxazine: Synthesis, polymerisation and polymer properties[J]. European Polymer Journal, 2007, 43(6): 2504-2514. doi: 10.1016/j.eurpolymj.2007.03.028
    [25] LUP Y S, XU M Z, PAN H, et al. Effect of ortho-diallyl bisphenol A on the processability of phthalonitrile-based resin and their fiber-reinforced laminates[J]. Polymer Engineering & Science, 2016, 56(2): 150-157.
    [26] LIU S H, ZHANG X Q, LIU J H, et al. A novel bio-based epoxy resin from oligomer: Excellent processability, high heat resistance, and intrinsic flame retardancy[J]. Express Polymer Letters, 2021, 15(12): 1189-1205. doi: 10.3144/expresspolymlett.2021.95
    [27] WANG P, CHEN L and XIAO H. Flame retardant effect and mechanism of a novel DOPO based tetrazole derivative on epoxy resin[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 104-113. doi: 10.1016/j.jaap.2019.01.015
    [28] Cao J F, DUAN H J, ZOU J H, et al. A bio-based phosphorus-containing co-curing agent towards excellent flame retardance and mechanical properties of epoxy resin[J]. Polymer Degradation and Stability, 2021, 187: 109548. doi: 10.1016/j.polymdegradstab.2021.109548
    [29] LEO-WANG CHEN, SHIH-CHI FU & CHING-SHENG CHO. Kinetics of aryl phosphinate anhydride curing of epoxy resins using differential scanning calorimetry[J]. Polymer International, 1998, 46(4): 325-330. doi: 10.1002/(SICI)1097-0126(199808)46:4<325::AID-PI33>3.0.CO;2-I
    [30] LIU J K, WANG S P, PENG Y Y, et al. Advances in sustainable thermosetting resins: From renewable feedstock to high performance and recyclability[J]. Progress in Polymer Science, 2021, 113: 101353. doi: 10.1016/j.progpolymsci.2020.101353
    [31] WANG S, MA S Q, XU C X, et al. Vanillin-Derived High-Performance Flame Retardant Epoxy Resins: Facile Synthesis and Properties[J]. Macromolecules, 2017, 50(5): 1892-1901. doi: 10.1021/acs.macromol.7b00097
    [32] QI Y, WENG Z H, KOU Y, et al. Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: Enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers[J]. Chemical Engineering Journal, 2021, 406: 126881. doi: 10.1016/j.cej.2020.126881
    [33] . B. SCHARTEL, U. BRAUN, A. I. BALABANOVICH, et al. Pyrolysis and fire behaviour of epoxy systems containing a novel 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener[J]. European Polymer Journal, 2008, 44(3): 704-715.
    [34] CHI Z Y, GUO Z W, XU Z C, et al. A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: Synthesis, flame-retardant behavior and mechanism[J]. Polymer Degradation and Stability, 2020, 176: 109151. doi: 10.1016/j.polymdegradstab.2020.109151
    [35] MA C, GUO Z H, FANG Z P, et al. Flame retardancy and chemical degradation of epoxy containing phenylphosphonate group under mild conditions[J]. Composites Part B: Engineering, 2022, 239: 109967. doi: 10.1016/j.compositesb.2022.109967
    [36] LIU D Y, ZHAO W H, CUI Y H, et al. Influence of the Chemical Structure on the Flame Retardant Mechanism and Mechanical Properties of Flame-Retardant Epoxy Resin Thermosets[J]. Macromolecular Materials and Engineering, 2022, 307(9): 2200169. doi: 10.1002/mame.202200169
    [37] QIAN L J, YE L J, QIU Y, et al. Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin[J]. Polymer, 2011, 52(24): 5486-5493. doi: 10.1016/j.polymer.2011.09.053
    [38] JIN S L, QIAN L J, QIU Y, et al. High-efficiency flame retardant behavior of bi-DOPO compound with hydroxyl group on epoxy resin[J]. Polymer Degradation and Stability, 2019, 166: 344-352. doi: 10.1016/j.polymdegradstab.2019.06.024
    [39] TENG N, DAI J Y, WANG S P, et al. Hyperbranched flame retardant for epoxy resin modification: Simultaneously improved flame retardancy, toughness and strength as well as glass transition temperature[J]. Chemical Engineering Journal, 2022, 428: 131226. doi: 10.1016/j.cej.2021.131226
    [40] ZHANG W C, ALBERTO FINAET, GIUSEPPE FERRARO, et al. FTIR and GCMS analysis of epoxy resin decomposition products feeding the flame during UL 94 standard flammability test. Application to the understanding of the blowing-out effect in epoxy/polyhedral silsesquioxane formulations[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 271-280. doi: 10.1016/j.jaap.2018.08.026
    [41] CHENG J W, WANG J, YANG S, et al. Aminobenzothiazole-substituted cyclotriphosphazene derivative as reactive flame retardant for epoxy resin[J]. Reactive and Functional Polymers, 2020, 146: 104412. doi: 10.1016/j.reactfunctpolym.2019.104412
    [42] ZOU J H, DUAN H J, CHEN Y S, et al. A P/N/S-containing high-efficiency flame retardant endowing epoxy resin with excellent flame retardance, mechanical properties and heat resistance[J]. Composites Part B: Engineering, 2020, 199: 108228. doi: 10.1016/j.compositesb.2020.108228
    [43] ZHANG W H, MI X Q, CHEN S Y, et al. A bio-based hyperbranched flame retardant for epoxy resins[J]. Chemical Engineering Journal, 2020, 381: 122719. doi: 10.1016/j.cej.2019.122719
    [44] QIU Y, LIU Z, QIAN L J, et al. Pyrolysis and flame retardant behavior of a novel compound with multiple phosphaphenanthrene groups in epoxy thermosets[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 23-30. doi: 10.1016/j.jaap.2017.09.006
  • 加载中
计量
  • 文章访问数:  171
  • HTML全文浏览量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-19
  • 修回日期:  2024-03-20
  • 录用日期:  2024-03-28
  • 网络出版日期:  2024-04-29

目录

    /

    返回文章
    返回