留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直流传导式液态金属电磁泵流场畸变及其电磁构型补偿

杨进 陈观慈 张文斌 陈永华 杨照林

杨进, 陈观慈, 张文斌, 等. 直流传导式液态金属电磁泵流场畸变及其电磁构型补偿[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 杨进, 陈观慈, 张文斌, 等. 直流传导式液态金属电磁泵流场畸变及其电磁构型补偿[J]. 复合材料学报, 2024, 42(0): 1-12.
YANG Jin, CHEN Guanci, ZHANG Wenbin, et al. DC conduction liquid metal electromagnetic pump flow field distortion and its electromagnetic configuration compensation[J]. Acta Materiae Compositae Sinica.
Citation: YANG Jin, CHEN Guanci, ZHANG Wenbin, et al. DC conduction liquid metal electromagnetic pump flow field distortion and its electromagnetic configuration compensation[J]. Acta Materiae Compositae Sinica.

直流传导式液态金属电磁泵流场畸变及其电磁构型补偿

基金项目: 促进绿色能源发展的新型智能传感技术研发(202104BN050011)
详细信息
    通讯作者:

    陈观慈,博士,教授,博士生导师,研究方向为:液态金属电磁驱动及其传热技术 E-mail: gcchen@kust.edu.cn

  • 中图分类号: TH35;TB331

DC conduction liquid metal electromagnetic pump flow field distortion and its electromagnetic configuration compensation

Funds: Research and development of new smart sensor technology to promote the development of green energy (No. 202104BN050011)
  • 摘要: 利用直流传导电磁泵(DC-EMP)驱动低熔点的镓基液态金属作为冷却工质的散热方法,在高热流芯片的热控领域展现出重要的应用前景。为削弱液态金属的磁流体动力学(Magnetohydrodynamic, MHD)效应及其导致的流场畸变,提高DC-EMP的驱动性能。对液态金属的流动特性,流道内电流密度场、磁感应强度及洛伦兹力矢量分布进行了研究,采用磁轭和绝缘板进行电磁构型补偿以提高DC-EMP作用区的磁感应强度和有效电流,从而削弱MHD效应。结果表明:受MHD效应的影响,靠近侧壁面的液态金属被加速主流区流速降低,流道内液态金属在穿过作用区后会发生严重的流场畸变。液态金属切割磁感线产生的感应电流在作用区端部形成涡电流,减弱了作用区内的有效电流,同时在涡电流和电、磁场端部效应的耦合下,在作用区外产生与流速方向相反的洛伦兹力阻力,抑制液态金属进入和离开作用区,进而降低DC-EMP的性能。试验表明电磁泵的进出口压差∆P随输入电流It的增加而增大,当It=50 A时补偿后的∆P较传统结构提高了78.08%。

     

  • 图  1  直流传导电磁泵(DC-EMP) 原理示意图

    Figure  1.  DC-conduction electromagnetic pump (DC-EMP) principle schematic

    图  2  不同Ha数解析解与数值解($ \xi =y/d $,$ \lambda =u/{u}_{0} $)

    Figure  2.  Analytical and numerical solutions for different Ha numbers ($ \xi =y/d $,$ \lambda =u/{u}_{0} $)

    图  3  数值解与解析解速度误差

    Figure  3.  Numerical and analytical solution velocity errors

    图  4  DC-EMP 等效电路模型:(a)基础模型,(b)简化模型

    Figure  4.  The electrical equivalent circuit of DC-EMP:(a) basic form, (b) simplified form

    图  5  数值解与等效电路模型结果对比

    Figure  5.  Comparison of numerical solution and equivalent circuit model results

    图  6  (a)不同流向横截面的速度剖面;(b)近壁面(y=18.8 mm)处和中心 (y=0 mm) 处的速度分布

    Figure  6.  (a) Velocity profiles for cross sections in different flow directions; (b) Velocity distribution near the wall (y=18.8 mm) and at the center of the flow channel (y=0 mm)

    图  7  沿流动方向不同流向截面的速度分布

    Figure  7.  Velocity distribution in different flow sections along the flow direction

    图  8  DC-EMP等效电路

    Figure  8.  Equivalent circuit diagram of DC-EMP

    图  9  感应电流密度矢量分布

    Figure  9.  Vector diagram of induced current density

    图  10  磁感应强度与电流密度分布

    Figure  10.  Magnetic flux density and current density distribution

    图  11  洛伦兹力矢量分布

    Figure  11.  Lorentz force vector distribution

    图  12  磁场补偿前后流道中心平面磁感应强度分布

    Figure  12.  Magnetic flux density in the center plane of the flow channel before and after magnetic field compensation

    图  13  含绝缘板的DC-EMP结构

    Figure  13.  Sectional structure of the channel after inserting the insulation bars

    图  14  绝缘板对电流分布的影响

    Figure  14.  Effect of insulation bars on current distribution

    图  15  (a)补偿前电流与速度分布;(b)补偿后电流与速度分布;(c)沿流速方向非均匀波动程度Fd变化曲线

    Figure  15.  (a) Current and velocity distribution before compensation; (b) Current and velocity distribution after compensation; (c) Variation curve of the degree of non-uniform fluctuation Fd along the flow direction

    图  16  DC-EMP进出口压差试验系统

    Figure  16.  DC-EMP inlet and outlet differential pressure test system

    图  17  含磁轭和绝缘板的DC-EMP结构

    Figure  17.  DC-EMP structure with iron yoke and insulation bars

    图  18  DC-EMP进出口压差(∆P)随输入电流的变化

    Figure  18.  Variation of ∆P with input current for DC-EMP

    表  1  Ga68In20Sn12和水的物性参数

    Table  1.   Physical parameters of Ga68In20Sn12 and water

    ParametersGa68In20Sn12Water
    Electrical conductivity/
    (106S·m−1)
    3.6<5×10−4
    Density/(kg·m−3)6050998
    Dynamic viscosity/(mPa·s)2.400.97
    Coefficient of thermal
    conductivity/(W·m−1·K−1)
    23.670.61
    下载: 导出CSV

    表  2  材料物性参数

    Table  2.   Physical parameters

    Element Materials Relative magnetic
    permeability
    Electrical
    conductivity/(S·m−1)
    Relative electric
    permittivity
    Density/
    (kg·m−3)
    Dynamic
    viscosity/(Pa·s)
    Magnet Sm2Co17 1.1 0 1 8300 -
    Electrode Copper 1 5.99×107 1 8940 -
    Channel PLA 1 0 1 1260 -
    Liquid metal Ga68In20Sn12 1 3.6×106 1 6050 2.4×10−3
    下载: 导出CSV

    表  3  网格无关性验证

    Table  3.   Mesh independence verification

    Number of meshes Δδmin/mm Pressure/Pa Relative Error
    M1 990248 0.379 2954.6 1.22%
    M2 1118999 0.142 2973.8 0.55%
    M3 1476318 0.059 2990 -
    Notes: Δδmin—Mesh thickness
    下载: 导出CSV
  • [1] MUHAMMAD A, SELVAKUMAR D, WU J. Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119265. doi: 10.1016/j.ijheatmasstransfer.2019.119265
    [2] 李锡英, 王爽, 鲁璐, 等. 液相夹杂复合软材料的设计、制备与力学性能研究进展[J]. 复合材料学报, 2021, 38(1): 1-15.

    LI X Y, WANG S, LU L, et al. Design, fabrication and mechanical properties of soft composites with liquid inclusions[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 1-15(in Chinese).
    [3] HEINZEL A, HERING W, KONYS J, et al. Liquid Metals as Efficient High-Temperature Heat-Transport Fluids[J]. Energy Technology, 2017, 5(7): 1026-1036. doi: 10.1002/ente.201600721
    [4] KIM H R. The design and fabrication of a small MHD pump for liquid sodium circulation[J]. Annals of Nuclear Energy, 2014, 73: 162-167.
    [5] AL-HABAHBEH O M, AL-SAQQA M, Safi M, et al. Review of magnetohydrodynamic pump applications[J]. Alexandria Engineering Journal, 2016, 55(2): 1347-1358. doi: 10.1016/j.aej.2016.03.001
    [6] KIM C N. Numerical examination of liquid metal magnetohydrodynamic flow in multiple channels in the plane perpendicular to the magnetic field[J]. Journal of Mechanical Science and Technology, 2014, 28(12): 4959-4968. doi: 10.1007/s12206-014-1117-z
    [7] 王军, 鹿鹏, 黄护林, 等. 垂直上升通道内气泡-液态金属MHD流动与传热的数值研究[J]. 中国电机工程学报, 2024, 43(3): 1058-1070.

    WANG J, LU P, HUANG H L, et al. Numerical Investigation on MHD Flow and Heat Transfer of Bubble-Liquid Metal in a Vertical Upward Channel[J]. Proceedings of the CSEE, 2024, 43(3): 1058-1070(in Chinese).
    [8] CHEN L, LI M, NI M, et al. MHD effects and heat transfer analysis in magneto-thermo-fluid-structure coupled field in DCLL blanket[J]. International Communications in Heat and Mass Transfer, 2017, 84: 110-120. doi: 10.1016/j.icheatmasstransfer.2017.04.009
    [9] 王凡, 张秀杰, 潘传杰. 高特征参数下绝缘圆管内液态金属MHD效应研究[J]. 核聚变与等离子体物理, 2023, 43(2): 175-179.

    WANG F, ZHANG X J, PAN C J. Investigations on the MHD effect of liquid metals through an insulating circular pipe under large characteristic parameters[J]. Nuclear Fusion and Plasma Physics, 2023, 43(2): 175-179(in Chinese).
    [10] 雷天扬, 孟旭, 王增辉, 等. 强磁场下液态金属微槽道流动与换热实验研究[J]. 中国科学院大学学报, 2021, 38(4): 459-666. doi: 10.7523/j.issn.2095-6134.2021.04.004

    LEI T Y, MENG X, WANG Z H, et al. Experimental study of flow pattern and heat transfer of liquid metal in microchannel under the magnetic field[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(4): 459-666(in Chinese). doi: 10.7523/j.issn.2095-6134.2021.04.004
    [11] KANDEV N, KAGAN V, DAOUD A. Electromagnetic DC Pump of Liquid Aluminum: Computer Simulation and Experimental Study[J]. FDMP: Fluid Dynamics & Materials Processing, 2010, 6(3): 291-318.
    [12] ZHANG X D, ZHOU Y X, LIU J. A novel layered stack electromagnetic pump towards circulating metal fluid: Design, fabrication and test[J]. Applied Thermal Engineering, 2020, 179: 115610. doi: 10.1016/j.applthermaleng.2020.115610
    [13] LEE G H, KIM H R. Design analysis of DC electromagnetic pump for liquid sodium–CO2 reaction experimental characterization[J]. Annals of Nuclear Energy, 2017, 109: 490-497. doi: 10.1016/j.anucene.2017.05.054
    [14] 谢开旺, 刘明, 刘静, 等. 电磁泵驱动室温金属流体的数值模拟与试验研究[J]. 电子机械工程, 2009, 25(3): 1-5+23. doi: 10.3969/j.issn.1008-5300.2009.03.001

    XIE K W, LIU M, LIU J, et al. Simulation and experiment of study on electromagnetic pump for driving liquid metal[J]. Electro-Mechanical Engineering, 2009, 25(3): 1-5+23(in Chinese). doi: 10.3969/j.issn.1008-5300.2009.03.001
    [15] JIAN B T, XI Z, JING L, et al. Gallium-Based Liquid Metal Amalgams: Transitional-State Metallic Mixtures (TransM2ixes) with Enhanced and Tunable Electrical, Thermal, and Mechanical Properties.[J]. ACS applied materials & interfaces, 2017, 9(41): 35977-35987.
    [16] LEE G H, KIM H R. Magnetic-field analysis of an MHD channel in a liquid-metal circulation system of a prototype GenIV sodium fast reactor[J]. Annals of Nuclear Energy, 2018, 115: 343-351. doi: 10.1016/j.anucene.2018.01.049
    [17] SUN P, LIU C K, HE Z Z. A compact Double-spiral electromagnetic pump for liquid metal cooling[J]. Annals of Nuclear Energy, 2023, 180: 109486. doi: 10.1016/j.anucene.2022.109486
    [18] LEE G H, KIM H R. Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump[J]. Nuclear Engineering and Technology, 2018, 50(6): 869-876. doi: 10.1016/j.net.2018.04.010
    [19] 王赵波, 陈龙, 倪明玖. 强磁场对突扩管中液态金属剪切层的影响[J]. 工程热物理学报, 2021, 42(10): 2672-2680.

    WANG Z B, CHEN L, NI M J. Influence of the High Magnetic Fields on the Shear Layer of Liquid Metal Sudden Expansion Flow[J]. Journal of Engineering Thermophysics, 2021, 42(10): 2672-2680(in Chinese).
    [20] HUNT J C R. Magnetohydrodynamic flow in rectangular ducts[J]. Journal of Fluid Mechanics, 1965, 21(4): 577-590. doi: 10.1017/S0022112065000344
    [21] LEE G H, KIM H R. Mathematical approach for optimization of magnetohydrodynamic circulation system[J]. Nuclear Engineering and Technology, 2019, 51(3): 654-664. doi: 10.1016/j.net.2018.12.008
    [22] KWAK J, KIM H R. Design and preliminary test of an annular linear induction electromagnetic pump for a sodium-cooled fast reactor thermal hydraulic experiment[J]. Journal of Nuclear Science and Technology, 2017, 54(12): 1292-1299. doi: 10.1080/00223131.2017.1365020
    [23] YAO L, LI X B, ZHANG H N, et al. A novel Halbach array electromagnetic pump for liquid metal flow: Design proposal and performance analysis[J]. Annals of Nuclear Energy, 2023, 183: 109614.
    [24] TAKORABET N. Computation of force density inside the channel of an electromagnetic pump by Hermite projection[J]. IEEE Transactions on Magnetics, 2006, 42(3): 430-433. doi: 10.1109/TMAG.2005.863085
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-14
  • 修回日期:  2024-09-18
  • 录用日期:  2024-09-22
  • 网络出版日期:  2024-10-12

目录

    /

    返回文章
    返回