留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO@SnO2异质结复合纳米管的可控构筑及其光催化性能

高超民 于海瀚 赵悦含 张丽娜 葛慎光 于京华

高超民, 于海瀚, 赵悦含, 等. ZnO@SnO2异质结复合纳米管的可控构筑及其光催化性能[J]. 复合材料学报, 2022, 39(12): 5856-5867. doi: 10.13801/j.cnki.fhclxb.20211116.002
引用本文: 高超民, 于海瀚, 赵悦含, 等. ZnO@SnO2异质结复合纳米管的可控构筑及其光催化性能[J]. 复合材料学报, 2022, 39(12): 5856-5867. doi: 10.13801/j.cnki.fhclxb.20211116.002
GAO Chaomin, YU Haihan, ZHAO Yuehan, et al. Controllable construction of ZnO@SnO2 heterojunction composite nanotubes and their photocatalytic properties[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5856-5867. doi: 10.13801/j.cnki.fhclxb.20211116.002
Citation: GAO Chaomin, YU Haihan, ZHAO Yuehan, et al. Controllable construction of ZnO@SnO2 heterojunction composite nanotubes and their photocatalytic properties[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5856-5867. doi: 10.13801/j.cnki.fhclxb.20211116.002

ZnO@SnO2异质结复合纳米管的可控构筑及其光催化性能

doi: 10.13801/j.cnki.fhclxb.20211116.002
基金项目: 国家自然科学基金(22104043);济南市“一事一议”顶尖人才项目;济南市“高校20条”项目(2018GXRC001)
详细信息
    通讯作者:

    张丽娜,博士,副教授,硕士生导师,研究方向为功能纳米材料可控制备及其光催化应用 E-mail: mse_zhangln@ujn.edu.cn

    葛慎光,博士,教授,博士生导师,研究方向为功能纳米材料的制备与传感应用 E-mail: chm_gesg@163.com

  • 中图分类号: O611.4;O643.32;O643.36

Controllable construction of ZnO@SnO2 heterojunction composite nanotubes and their photocatalytic properties

  • 摘要: 性能优异的功能纳米材料的设计构筑对于光催化应用而言至关重要。基于模板自刻蚀机制,利用两步溶剂热技术,以一维ZnO纳米棒为模板,在无需附加酸刻蚀的条件下成功制备一维圆顶状ZnO@SnO2异质结纳米管复合材料(Heterojunction domed nanotubes,HDNs)。由于ZnO与SnO2具有匹配的能级结构,在纳米管界面处可形成促进载流子分离的内建电场,赋予该材料优异的光催化与稳定性能。通过控制实验过程中自产生的碱性强弱,实现两性氧化物ZnO的自刻蚀,从而实现ZnO@SnO2 HDNs的管壁厚度可控调控与催化性能的调节。借助SEM、TEM、STEM及PL等表征手段对材料的微观形貌、元素组成、生长机制与性能进行了考察。以甲基橙、亚甲基蓝、曙红等为污染物模型,光催化污染物降解实验结果表明,获得的ZnO@SnO2 HDNs具有优良的光催化性能,光照60 min内对亚甲基蓝、曙红的降解率可达到95%,表明构筑的纳米管异质结极大地促进了载流子的分离,抑制其复合,提高了光催化性能。同时,循环稳定性能测试说明构建的异质结纳米管催化剂具有良好的稳定性能,在染料降解方面具有广阔的应用前景。

     

  • 图  1  ZnO@SnO2异质结圆顶状纳米管(HDNs)的生长示意图

    Figure  1.  Schematic of preparation processes of ZnO@SnO2 heterojunction domed nanotubes (HDNs)

    图  2  ZnO@SnO2 HDNs样品的SEM图像(插图为ZnO@SnO2 HDNs的高分辨率SEM图像) (a) 、横截面SEM图像 (b) 及元素分布图 (c)

    Figure  2.  SEM image (Inset is the high-resolution SEM image of ZnO@SnO2 HDNs) (a), corresponding cross-sectional SEM image (b) and elemental mappings (c) of ZnO@SnO2 HDNs

    图  3  ZnO@SnO2 HDNs的低倍TEM图像 ((a)、(c)) 和高倍TEM图像 (d);(b) ZnO纳米棒的低倍TEM图像;ZnO纳米棒 (e)和ZnO@SnO2 HDNs (f)的EDS图谱

    Figure  3.  Low magnification TEM images ((a), (c)) and high-resolution TEM image (d) of ZnO@SnO2 HDNs; (b) Low magnification TEM image of ZnO NRs; EDS spectra of ZnO NRs (e) and ZnO@SnO2 HDNs (f)

    图  4  (a) 单根ZnO@SnO2 HDNs的暗场TEM图像;((b)~(d)) 沿图4(a)中所示斜线的扫描组分线图

    Figure  4.  (a) Dark field TEM image of a single ZnO@SnO2 HDNs; ((b)-(d)) Compositional line scanning profile along the diagonal line indicated in Fig. 4(a)

    图  5  ZnO NRs在溶剂热生长SnO2壳前后的SEM图像:当SnO2前驱体浓度为0 mmol/L、2 mmol/L, 7 mmol/L和15 mmol/L时样品的SEM图像 ((a)~(d)) 及相应的断面SEM图像 ((e)~(h))

    Figure  5.  SEM images of ZnO NRs before and after SnO2 shell coating with hydrothermal method: SnO2 precursors concentration are set at 0 mmol/L (as-prepared ZnO NRs), 2 mmol/L, 7 mmol/L, 15 mmol/L, and the plane SEM images are shown in ((a)-(d)) and present the corresponding cross-sectional SEM images, respectively ((e)-(h))

    图  6  ZnO@SnO2 HDNs随时间变化的生长过程:ZnO@SnO2 HDNs在反应时间为10 min (a)、20 min (b)、40 min (c) 和80 min (d) 时的TEM图像

    Figure  6.  Time-dependent growth process of ZnO@SnO2 HDNs: TEM images of the ZnO@SnO2 HDNs grown at the reaction time of 10 min (a), 20 min (b), 40 min (c) and 80 min (d)

    图  7  ZnO、SnO2和ZnO@SnO2 HDNs的稳态PL (a)和光电流响应曲线(b)

    Figure  7.  Steady state PL (a) and photocurrent responses (b) of ZnO@SnO2 HDNs (a), ZnO (b) and SnO2 (c)

    a—ZnO; b—SnO2; c—ZnO@SnO2 HDNs

    图  8  ZnO@SnO2 HDNs的带隙结构图及其电子-空穴分离示意图

    Figure  8.  Schematic diagram showing band configuration and electron-hole separation at interface of ZnO@SnO2 HDNs under UV irradiation

    Ef—Fermi level; Eg—Band gap; VB—Valence band; CB—Conduction band

    图  9  ZnO@SnO2 HDNs对曙红 (a)、甲基橙 (b) 和亚甲基蓝 (c) 的降解效果和上述3种有机染料的光催化降解速率图 (d)

    Figure  9.  UV-vis absorption spectra of eosin red (a), methyl orange (b) and methylene blue (c) in the presence of ZnO@SnO2 HDNs and the photocatalysis degradation rate of the three organic dyes (d)

    C—Real-time concentration of organic dyes; C0—Initial concentration of an organic dye

    图  10  汞灯照射不同时间下ZnO纳米棒对曙红 (a)、亚甲基蓝 (b) 和甲基橙 (c) 的降解效果

    Figure  10.  Variations of adsorption spectra of organic dye solutions in the presence of the ZnO irradiated by a mercury lamp for varying times: (a) Eosin red; (b) Methylene blue; (c) Methyl orange

    图  11  ZnO@SnO2 HDNs对亚甲基蓝光催化降解的循环稳定性能

    Figure  11.  Cycling tests of photocatalytic activity of the ZnO@SnO2 HDNs for methylene blue degradation

    表  1  本工作中ZnO@SnO2 HDNs与以往报道复合光催化剂对甲基橙光催化降解性能的比较

    Table  1.   Comparison of photocatalytic performance of ZnO@SnO2 HDNs toward methyl orange in this work with previously reported composite photocatalysts

    SampleLight sourceExperimental conditionDegradation timeRef.
    ZnO/SnO2 nanocomposites300 W Hg lamp200 mg; 100 mL, 6×10−5 mol/L100 min/56%[31]
    SnO2 aerogel/rGO nanocomposite40 W UV lamp
    (370 nm)
    100 mg L−1; 1×10−5 mol/L60 min/84%[32]
    SnO2-CNT nanocomposites9 W eight UV-vis
    lamps (365 nm)
    200 mg; 100 mL, 3×10−5 mol/L180 min/79%[33]
    Chitosan-SnO28 W mercury lamp100 mg; 5×10−5 mol/L100 min/92%[34]
    Cu-doped SnO2 QDs200 W xenon lamp100 mg; 100 mL, 6×10−5 mol/L180 min/99%[35]
    ZnO@SnO2 HDNs500 W xenon lamp50 mg80 min/95%This work
    Notes: rGO—reduced graphene oxide; CNT—carbon nanotube; QDs—quantum dot.
    下载: 导出CSV
  • [1] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3):471-489.

    YI Xiaohong, WANG Chongchen. Elimination of emerging organic contaminants in wastewater by advanced oxidation process over iron-based mofs and their composites[J]. Progress in chemistry,2021,33(3):471-489(in Chinese).
    [2] LIU Y T, ZHAGN Q P, XU M, et al. Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation[J]. Applied Surface Science,2019,476:632-640. doi: 10.1016/j.apsusc.2019.01.137
    [3] ZOU W X, GUO B, OK Y S, et al. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review[J]. Chemosphere,2019,218:845-859. doi: 10.1016/j.chemosphere.2018.11.175
    [4] CHEN F, MA, T, ZHANG, T, et al. Atomic-level charge separation strategies in semiconductor-based photocatalysts[J]. Advanced Materials,2021,33:2005256. doi: 10.1002/adma.202005256
    [5] 孟培媛, 郭明媛, 乔勋. WS2/g-C3N4异质结光催化分解水制氢性能及机制[J]. 复合材料学报, 2021, 38(2):591-600.

    MENG Peiyuan, GUO Mingyuan, QIAO Xun. H2 production performance of photocatalyst and mechanism of WS2/g-C3N4 heterojunction[J]. Acta Materiae Compositae Sinica,2021,38(2):591-600(in Chinese).
    [6] ZHANG L, JARONIEC M. Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications[J]. Applied Surface Science,2017,430(1):2-17.
    [7] ZHANG Y F, ZHU Y K, LV C X, et al. Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction[J]. Rare Metals,2020,39(7):841-849. doi: 10.1007/s12598-019-01311-5
    [8] YANG L Q, HUANG J F, SHI L, et al. Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation[J]. Nano Energy,2017,36:331-340. doi: 10.1016/j.nanoen.2017.04.039
    [9] LI D G, HUANG J X, LI R B, et al. Synthesis of a carbon dots modified g-C3N4/SnO2 Z-scheme photocatalyst with superior photocatalytic activity for PPCPs degradation under visible light irradiation[J]. Journal of Hazardous Materials,2021,401(5):123257.
    [10] SUN Y K, ZHU Q, BAI B, et al. Novel all-solid-state Z-scheme SnO2/Pt/In2O3 photocatalyst with boosted photocatalytic performance on water splitting and 2, 4-dichlorophenol degradation under visible light[J]. Che-mical Engineering Journal,2020,390(15):124518.
    [11] LIU H J, DU C W, LI M, et al. One-pot hydrothermal synthesis of SnO2/BiOBr heterojunction photocatalysts for the efficient degradation of organic pollutants under visible light[J]. ACS Applied Materials & Interfaces,2018,10(34):28686-28694.
    [12] HU R, ZHANG H, LIU J, et al. Deformable fibrous carbon supported ultrafine nano-SnO2 as a high volumetric capacity and cyclic durable anode for Li storage[J]. Journal of Materials Chemistry A,2015,3(29):15097-15107. doi: 10.1039/C5TA03401A
    [13] SHEN R, HONG Y, STANKOVICH J J, et al. Synthesis of cambered nano-walls of SnO2/rGO composites using a recyclable melamine template for lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(34):17635-17643. doi: 10.1039/C5TA03166D
    [14] LWIN H M, ZHAN W Q, SONG S X, et al. Visible-light photocatalytic degradation pathway of tetracycline hydrochloride with cubic structured ZnO/SnO2 heterojunction nanocatalyst[J]. Chemical Physics Letters,2019,736:136806. doi: 10.1016/j.cplett.2019.136806
    [15] HE Z L, ZHANG J, LI X, et al. 1D/2D heterostructured photocatalysts: From design and unique properties to their environmental applications[J]. Small,2020,16(46):2005051. doi: 10.1002/smll.202005051
    [16] HOU H L, ZHANG X W. Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications[J]. Chemical Engineering Journal,2020,395:125030. doi: 10.1016/j.cej.2020.125030
    [17] ZHANG Y, PENG C D, HE Z T, et al. Interface engineering of heterojunction photocatalysts based on 1D nanomate-rials[J]. Catalysis Science & Technology,2021,11:27-42.
    [18] HAN Z H, HONG W Z, XING W N, et al. Shockley partial dislocation-induced self-rectified 1D hydrogen evolution photocatalyst[J]. ACS Applied Materials & Interfaces,2019,11(22):20521-20527.
    [19] WANG W J, NIU Q Y, ZENG G M, et al. 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction[J]. Applied Catalysis B: Environmental,2020,273:119051. doi: 10.1016/j.apcatb.2020.119051
    [20] MAO L, CAI X Y, ZHU M S, Hierarchically 1D CdS decorated on 2D perovskite-type La2Ti2O7 nanosheet hybrids with enhanced photocatalytic performance[J]. Rare Metals, 2021, 40: 1067-1076.
    [21] CHEN X, ZHANG F, WANG Q, et al. The synthesis of ZnO/SnO2 porous nanofibers for dye adsorption and degradation[J]. Dalton Transactions,2015,44(7):3034-3042. doi: 10.1039/C4DT03382E
    [22] WANG C, HU L, CHAI B, et al. Enhanced photocatalytic activity of electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalyst under simulated solar light[J]. Applied Surface Science,2017,430(1):243-252.
    [23] WANG J Z, DU N, ZHANG H, et al. Large-scale synthesis of SnO2 nanotube arrays as high-performance anode mate-rials of Li-ion batteries[J]. The Journal of Physical Chemistry C,2011,115(22):11302-11305. doi: 10.1021/jp203168p
    [24] MONIZ S J, SHEVLIN S A, MARTIN D J, et al. Visible-light driven heterojunction photocatalysts for water splitting-A critical review[J]. Energy & Environmental Science,2015,8(3):731-759.
    [25] WANG X, SUN F, DUAN Y, et al. Highly sensitive, tempera-ture-dependent gas sensor based on hierarchical ZnO nanorod arrays[J]. Journal of Materials Chemistry C,2015,3(43):11397-11405. doi: 10.1039/C5TC02187A
    [26] JUTTUKONDA V PADDOCK R L, RAYMOND J E, et al. Facile synthesis of tin oxide nanoparticles stabilized by dendritic polymers[J]. Journal of the American Chemical Society,2006,128:420-421. doi: 10.1021/ja056902n
    [27] GAO C M, WEI T, ZHANG Y Y, et al. A Photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution[J]. Advanced Materials,2019,31(8):1806596. doi: 10.1002/adma.201806596
    [28] WANG C, WANG K W, FENG Y B, et al. Co and Pt dual-single-atoms with oxygen-coordinated Co-O-Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency[J]. Advanced Materials,2021,33:2003327. doi: 10.1002/adma.202003327
    [29] ZHUANG T T, LIU Y, LI Y, et al. Integration of semiconducting sulfides for full-spectrum solar energy absorption and efficient charge separation[J]. Angewandte Chemie International Edition,2016,55:6396-6400. doi: 10.1002/anie.201601865
    [30] FENG N D, LIN H W, DENG F, et al. Interfacial-bonding Ti-N-C boosts efficient photocatalytic H2 evolution in close coupling g-C3N4/TiO2[J]. The Journal of Physical Chemistry C,2021,125(22):12012-12018. doi: 10.1021/acs.jpcc.1c02606
    [31] ALI W, ULLAH H, ZADA A, et al. Effect of calcination temperature on the photoactivities of ZnO/SnO2 nanocompo-sites for the degradation of methyl orange[J]. Materials Chemistry and Physics,2018,213(1):259-266.
    [32] KIM T, PARALE V G, JUNG H N, et al. Facile synthesis of SnO2 aerogel/reduced graphene oxide nanocomposites via in situ annealing for the photocatalytic degradation of methyl orange[J]. Nanomaterials,2019,9(3):358. doi: 10.3390/nano9030358
    [33] KIM S P, CHOI M Y, CHOI H C, Characterization and photocatalytic performance of SnO2-CNT nanocomposites[J]. Applied Surface Science, 2015, 357: 302-308.
    [34] GUPTA V K, SARAVANAN R, AGARWAL S, et al. Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO2 nanocomposites[J]. Journal of Molecular Liquids,2017,232:423-430. doi: 10.1016/j.molliq.2017.02.095
    [35] BABU B, KADAM A, RAVIKUMAR R, et al. Enhanced visible light photocatalytic activity of Cu-doped SnO2 quantum dots by solution combustion synthesis[J]. Jour-nal of Alloys and Compounds,2017,703(5):330-336.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1165
  • HTML全文浏览量:  605
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2021-10-26
  • 录用日期:  2021-11-06
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回