Co3O4 composite imine-type COFs-derived nitrogen-doped carbon materials as efficient hydrogen electrocatalysts
-
摘要: 亚胺型共价有机框架 (COFs) 材料多用于膜分离技术、气体储存和分离等,而由于其较差的导电性和较低的物理化学稳定性少有应用于电催化析氢中。为了得到了高稳定性且高活性的电催化剂,采用更为简便的溶剂热法合成了亚胺型COFs材料 (TAPA-TFB-COF) ,再以Co(OAC)2·4H2O为Co源,通过高温热解得到了二维片层自组装为3D微球结构的Co3O4复合氮掺杂碳材料 (Co3O4/NC) 。研究表明,由于3D微球结构、高温热解促进材料石墨化以及Co与杂原子N的协同作用,Co3O4/NC展现了优异的电催化析氢活性,起始电位从−0.92 V (vs RHE) 降到了−0.27 V (vs RHE) , 电流密度提升为TAPA-TFB-COF的14倍,Tafel斜率仅为151 mV·dec−1,电化学反应电荷转移电阻 (Rct)小至80.8 Ω。Abstract: Imine-type covalent organic frameworks (COFs) materials are mostly used in membrane separation technology, gas storage and separation, etc., while they are seldom used in electrocatalytic hydrogen precipitation due to their poor electrical conductivity and low physicochemical stability. In order to obtain highly stable and active electrocatalysts, a simpler solvothermal method was used to synthesize imine-type COFs (TAPA-TFB-COF), and then Co3O4 composite nitrogen-doped carbon materials with 3D microsphere structure were obtained by high-temperature pyrolysis using Co(OAC)2·4H2O as the Co source (Co3O4/NC).It is shown that due to the 3D microsphere structure, high temperature pyrolysis promoting graphitization of the material, and the synergistic effect of Co and heteroatom N, Co3O4/NC exhibits excellent electrocatalytic hydrogen precipitation activity, with the onset potential decreasing from −0.92 V (vs RHE) to −0.27 V (vs RHE), and the current density increasing to 14 times of that of TAPA-TFB-COF, and the Tafel slope being only 151 mV·dec−1 and electrochemical reaction charge transfer resistance (Rct) as small as 80.8 Ω.
-
图 6 TAPA-TFB-COF、Co3O4/COF (10:1) 、Co3O4、NC和Co3O4/NC (10:1) 的 (a) Lsv曲线;(b) 相应的Tafel曲线;(c) EIS曲线;(d) Co3O4/NC (10:1) 的稳定性测试图
Figure 6. (a) Lsv curves of TAPA-TFB-COF, Co3O4/COF (10:1), Co3O4,NC and Co3O4/NC (10:1); (b) Corresponding Tafel curves; (c) EIS curve; (d) Stability test diagram of Co3O4/NC (10:1)
表 1 近期报道的相关材料HER电催化剂的比较
Table 1. Comparison of the recently reported materials HER electrocatalysts
Electrocatalyst Application η10 (vs RHE)/mV Tafel slope/
(mV·dec−1)Current density/
(mA·cm−2)Rct/Ω Reference Co3O4/NC (10:1) HER 420 151 50 80.8 This Work 2DCCOF1 HER 541 130 37 / [43] CNT-f-FePF HER 457 67.9 34 30.15 [44] W-Co3O4 HER 428 / 0.054 325 [45] NSP/CNF-1000 HER 389 109 40 1500 [46] Notes: 2DCCOF1—C@C Bonded Two-Dimensional Conjugated Covalent Organic Framework Films; CNT-f-FePF—Carbon nanotubes covalently linked with phosphine-containing substituted 2 Fe2S complexes; W-Co3O4—W doped Co3O4; NSP/CNF-1000—N, S, P Multi-element Doped Carbon Nanofibre; η10—Overpotentials with a current density of 10 mA/cm−2; Tafel slope—Measurement of the polarisation capacity of an electrode; Current density—Describe current strength and direction of flow; Rct—charge transfer resistance -
[1] 崔慧娜, 董文斌, 廖港丽等. Se掺杂WO3·0.5H2O/g-C3N4光电催化剂的析氢反应性能[J]. 无机化学学报, 2023, 39(1): 109-116. doi: 10.11862/CJIC.2022.261CUI Huina, DONG Wenbin, LIAO Gangli et al. Hydrogen evolution reaction performance of Se doped WO3·0.5H2O/g-C3N4 photo electrocatalyst[J]. Journal of Inorganic Chemistry, 2023, 39(1): 109-116(in Chinese). doi: 10.11862/CJIC.2022.261 [2] LEI Z, WAYMENT L J, CAHN J R, et al. Cyanurate-Linked Covalent Organic Frameworks Enabled by Dynamic Nucleophilic Aromatic Substitution[J]. J Am Chem Soc, 2022, 144(39): 17737-17742. doi: 10.1021/jacs.2c00778 [3] ZHANG L, WANG L, WANG N, et al. Covalent organic frameworks hybird membrane with optimized mass transport nanochannel for aromatic/aliphatic mixture pervaporation[J]. Journal of Membrane Science, 2020, 598: 117652. doi: 10.1016/j.memsci.2019.117652 [4] YAN X, WANG B, REN J, et al. An Unsaturated Bond Strategy to Regulate Active Centers of Metal-Free Covalent Organic Frameworks for Efficient Oxygen Reduction[J]. Angew Chem Int Ed Engl, 2022, 61(46): e202209583. doi: 10.1002/anie.202209583 [5] HAO S, ZHANG T, FAN S, et al. Preparation of COF-TpPa1 membranes by chemical vapor deposition method for separation of dyes[J]. Chemical Engineering Journal, 2021, 421: 129750. doi: 10.1016/j.cej.2021.129750 [6] BISWAL B P, CHANDRA S, KANDAMBETH S, et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks[J]. J Am Chem Soc, 2013, 135(14): 5328-31. doi: 10.1021/ja4017842 [7] XIAO A, ZHANG Z, SHI X, et al. Enabling Covalent Organic Framework Nanofilms for Molecular Separation: Perforated Polymer-Assisted Transfer[J]. ACS Appl Mater Interfaces, 2019, 11(47): 44783-44791. doi: 10.1021/acsami.9b18062 [8] GAO Z, YU Z, HUANG Y, et al. Flexible and robust bimetallic covalent organic frameworks for the reversible switching of electrocatalytic oxygen evolution activity[J]. Journal of Materials Chemistry A, 2020, 8(12): 5907-5912. doi: 10.1039/C9TA14023A [9] MONDAL S, MOHANTY B, NURHUDA M, et al. A Thiadiazole-Based Covalent Organic Framework: A Metal-Free Electrocatalyst toward Oxygen Evolution Reaction[J]. ACS Catalysis, 2020, 10(10): 5623-5630. doi: 10.1021/acscatal.9b05470 [10] DAUTZENBERG E, LAM M, LI G, et al. Enhanced surface area and reduced pore collapse of methylated, imine-linked covalent organic frameworks[J]. Nanoscale, 2021, 13(46): 19446-19452. doi: 10.1039/D1NR05911D [11] ZHANG Y, WU Y, LIU Y, et al. Flexible and freestanding heterostructures based on COF-derived N-doped porous carbon and two-dimensional MXene for all-solid-state lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 428: 131040. doi: 10.1016/j.cej.2021.131040 [12] LI J, JING X, LI Q, et al. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion[J]. Chem Soc Rev, 2020, 49(11): 3565-3604. doi: 10.1039/D0CS00017E [13] ZHANG J, WANG X, LV J, et al. A multivalent mixed-metal strategy for single-Cu+-ion-bridged cluster-based chalcogenide open frameworks for sensitive nonenzymatic detection of glucose[J]. Chem Commun (Camb), 2019, 55(45): 6357-6360. doi: 10.1039/C9CC02905B [14] CHEN R, HU T, ZHANG W, et al. Synthesis of nitrogen-containing covalent organic framework with reversible iodine capture capability[J]. 2021, 312: 110739. [15] DONG J, WANG Y, LIU G, et al. Isoreticular covalent organic frameworks for hydrocarbon uptake and separation: the important role of monomer planarity[J]. CrystEngComm, 2017, 19(33): 4899-4904. doi: 10.1039/C7CE00344G [16] LIU J, HAN G, ZHAO D, et al. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation[J]. 2020, 6(41): eabb1110. [17] ZHENG J, HUANG S, TONG Y, et al. In-situ layer-by-layer synthesized TpPa-1 COF solid-phase microextraction fiber for detecting sex hormones in serum[J]. Anal Chim Acta, 2020, 1137: 28-36. doi: 10.1016/j.aca.2020.08.047 [18] YAO Y, JIN Z, CHEN Y, et al. Graphdiyne-WS2 2D-Nanohybrid electrocatalysts for high-performance hydrogen evolution reaction[J]. Carbon, 2018, 129: 228-235. doi: 10.1016/j.carbon.2017.12.024 [19] YAO Y, YIN M, YAN J, et al. Controllable synthesis of Ag-WO3 core-shell nanospheres for light-enhanced gas sensors[J]. Sensors and Actuators B: Chemical, 2017, 251: 583-589. doi: 10.1016/j.snb.2017.05.007 [20] YAO Y, JI F, YIN M, et al. Ag Nanoparticle-Sensitized WO3 Hollow Nanosphere for Localized Surface Plasmon Enhanced Gas Sensors[J]. ACS Applied Materials & Interfaces, 2016, 8(28): 18165-18172. [21] CHENG X, ZHANG Y, FAN Q, et al. Preparation of Co3O4@carbon nanotubes modified ceramic membrane for simultaneous catalytic oxidation and filtration of secondary effluent[J]. 2023, 454: 140450. [22] LI R, HUANG Y, ZHU D, et al. Improved Oxygen Activation over a Carbon/Co3O4 Nanocomposite for Efficient Catalytic Oxidation of Formaldehyde at Room Temperature[J]. Environ Sci Technol, 2021, 55(6): 4054-4063. doi: 10.1021/acs.est.1c00490 [23] DUAN X, PAN N, SUN C, et al. MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn–air batteries and water-splitting[J]. Journal of Energy Chemistry, 2021, 56: 290-298. doi: 10.1016/j.jechem.2020.08.007 [24] WU D, XU Q, QIAN J, et al. Bimetallic Covalent Organic Frameworks for Constructing Multifunctional Electrocatalyst[J]. Chemistry, 2019, 25(12): 3105-3111. doi: 10.1002/chem.201805550 [25] ZHENG J, XU A, WU A, et al. Plasma-Engraved Co2N Nanostructures toward High-Performance Alkaline Hydrogen Evolution[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21231-21240. [26] LU M, LIU J, LI Q, et al. Rational Design of Crystalline Covalent Organic Frameworks for Efficient CO2 Photoreduction with H2O[J]. Angew Chem Int Ed Engl, 2019, 58(36): 12392-12397. doi: 10.1002/anie.201906890 [27] CAO R, YANG H, ZHANG S, et al. Engineering of Z-scheme 2D/3D architectures with Ni(OH)2 on 3D porous g-C3N4 for efficiently photocatalytic H2 evolution[J]. Applied Catalysis B: Environmental, 2019, 258. [28] ANDRE R S, PEREIRA J C, MERCANTE L A, et al. ZnO-Co3O4 heterostructure electrospun nanofibers modified with poly (sodium 4-styrenesulfonate): Evaluation of humidity sensing properties[J]. Journal of Alloys and Compounds, 2018, 767: 1022-1029. doi: 10.1016/j.jallcom.2018.07.132 [29] ZHANG H, ZHONG L, XIE J, et al. A COF-Like N-Rich Conjugated Microporous Polytriphenylamine Cathode with Pseudocapacitive Anion Storage Behavior for High-Energy Aqueous Zinc Dual-Ion Batteries[J]. Adv Mater, 2021, 33(34): e2101857. doi: 10.1002/adma.202101857 [30] JIA Z, YAN Z, ZHANG J, et al. Pore Size Control via Multiple-Site Alkylation to Homogenize Sub-Nanoporous Covalent Organic Frameworks for Efficient Sieving of Xenon/Krypton[J]. ACS Appl Mater Interfaces, 2021, 13(1): 1127-1134. doi: 10.1021/acsami.0c14610 [31] RANI B J, RAJ S P, SARAVANAKUMAR B, et al. Controlled synthesis and electrochemical properties of Ag-doped Co3O4 nanorods[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29666-29671. doi: 10.1016/j.ijhydene.2017.10.051 [32] PAPAILIAS I, TODOROVA N, GIANNAKOPOULOU T, et al. Chemical vs thermal exfoliation of g-C3N4 for NOx removal under visible light irradiation[J]. Applied Catalysis B: Environmental, 2018, 239: 16-26. doi: 10.1016/j.apcatb.2018.07.078 [33] YAN D, DOU S, TAO L, et al. Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction[J]. Journal of materials chemistry A, 2016, 4(36): 13726-13730. doi: 10.1039/C6TA05863A [34] 田鹿岩, 李新梅 , 刘伟斌. CeO2添加量对激光熔覆TiB2-TiC/Ni复合涂层组织和性能的影响[J]. 机械工程材料, 2023, 47(09): 82-86+93.TIAN Luyan, LI Xinmei, LIU Weibin. Effect of CeO2 additions on the organisation and properties of laser melted TiB2-TiC/Ni composite coatings[J]. Mechanical Engineering Materials, 2023, 47(09): 82-86+93. (in Chinese). [35] MENG J, NIU C, XU L, et al. General Oriented Formation of Carbon Nanotubes from Metal-Organic Frameworks[J]. J Am Chem Soc, 2017, 139(24): 8212-8221. doi: 10.1021/jacs.7b01942 [36] JIANG M, HAN L, PENG P, et al. Quasi-Phthalocyanine Conjugated Covalent Organic Frameworks with Nitrogen-Coordinated Transition Metal Centers for High-Efficiency Electrocatalytic Ammonia Synthesis[J]. Nano Lett, 2022, 22(1): 372-379. doi: 10.1021/acs.nanolett.1c04009 [37] CHENG H, PAN Y, WANG X, et al. Ni Flower/MXene-Melamine Foam Derived 3D Magnetic/Conductive Networks for Ultra-Efficient Microwave Absorption and Infrared Stealth[J]. Nanomicro Lett, 2022, 14(1): 63. [38] SHU T, WANG H, LI Q, et al. Highly stable Co3O4 nanoparticles/carbon nanosheets array derived from flake-like ZIF-67 as an advanced electrode for supercapacacitor[J]. 2021, 419: 129631. [39] ZHANG X L, ZHANG D X, CHANG G G, et al. Bimetallic Zn/Co MOFs-Derived Highly Dispersed Metallic Co/HPC for Completely Hydrolytic Dehydrogenation of Ammonia–Borane[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7209-7216. [40] LI Y, LUONG D X, ZHANG J, et al. Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces[J]. Advanced Materials, 2017, 29(27): 1700496. doi: 10.1002/adma.201700496 [41] REN X, MA Q, FAN H, et al. A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction[J]. Chem Commun (Camb), 2015, 51(88): 15997-6000. doi: 10.1039/C5CC06847A [42] ZHAO Y, LI K, SHENG B, et al. Nitrogen-Doped Core-Shell Mesoporous Carbonaceous Nanospheres for Effective Removal of Fluorine in Capacitive Deionization[J]. Water, 2023, 15(3): 608. doi: 10.3390/w15030608 [43] ZHOU D, TAN X, WU H, et al. Synthesis of C−C Bonded Two-Dimensional Conjugated Covalent Organic Framework Films by Suzuki Polymerization on a Liquid–Liquid Interface[J]. Angewandte Chemie, 2019, 131(5): 1390-1395. doi: 10.1002/ange.201811399 [44] 靳波. 碳纳米管共价连接含膦取代2Fe2S配合物的合成与电化学析氢研究[D]. 中北大学, 2023.JIN Bo. Synthesis and electrochemical hydrogenolysis of phosphine-containing substituted 2Fe2S complexes covalently linked to carbon nanotubes[D]. North University of China, 2023. (in Chinese). [45] TRAN-PHU T, CHATTI M, LEVERETT J, et al. Understanding the Role of (W, Mo, Sb) Dopants in the Catalyst Evolution and Activity Enhancement of Co3O4 during Water Electrolysis via In Situ Spectroelectrochemical Techniques[J]. Small, 2023: 2208074. [46] 张智虹. 杂原子掺杂碳材料的制备及其电催化二氧化碳还原和析氢性能的研究[D]. 浙江大学, 2023.ZHANG Zhihong. Preparations and performances of heteroatom-doped carbon materials for electrocatalytic carbon dioxide reduction and hydrogen evolution[D]. Zhejiang University, 2023. (in Chinese).
计量
- 文章访问数: 172
- HTML全文浏览量: 66
- 被引次数: 0