Advances in the application of biomass charcoal materials for gas sensing detection
-
摘要: 随着全球能源需求的增长和环境问题的加剧,开发新型高性能气体传感器变得尤为迫切。生物质炭材料是由生物质原料经过预碳化和活化处理获得,具有独特的孔隙结构、大的比表面积、丰富的表面活性官能团和活性位点,在气体传感检测领域具有巨大的应用潜力。本文按照生物质炭的主要来源对生物质进行了分类(植物基、动物基和微生物基)以及四种生物质炭材料的常见制备方法(水热炭化法、活化法、模板法和微波热解法)。本文重点讨论了生物质炭材料在半导体型气体传感器和非金属氧化物主导型气体传感器的最新研究进展,包括作为气敏材料在检测各类气体方面的应用。最后,分析了生物质炭材料基气体传感器目前需要解决的问题,为拓宽该类传感器的实际应用提出了研发的思路。Abstract: The development of new high-performance gas sensors has become particularly urgent with the growth of global energy demand and the aggravation of environmental problems. Biomass char materials are obtained from biomass raw materials through pre-carbonization and activation treatment, which have unique pore structure, large specific surface area, abundant surface active functional groups and active sites, and have great potential for application in the field of gas sensing and detection. In this paper, biomass is classified according to the main sources of biomass char (plant-based, animal-based, and microbial-based) as well as four common preparation methods of biomass char materials (hydrothermal carbonization, activation, templating, and microwave pyrolysis). The paper focuses on the recent research progress of biomass char materials in semiconductor-based gas sensors and non-metallic oxide dominated gas sensors, including their applications as gas-sensitive materials for the detection of various types of gases. Finally, the current problems that need to be solved for biomass charcoal material-based gas sensors are analyzed, and ideas for research and development are proposed to broaden the practical applications of such sensors.
-
Key words:
- biomass /
- carbon material /
- sensor /
- gas sensing /
- semiconductor /
- non-metallic oxide
-
图 6 (a) Ni@NSiC的X射线衍射图;(b) NSiC和(c) Ni@NSiC-900的扫描电子显微镜图;(d)和(e) Ni@NSiC-900的透射电子显微镜图;(f) Ni@NSiC-900的高分辨率的透射电子显微镜图(插图为选区电子衍射图);(g-k)Ni@NSiC-900的元素图谱结果
Figure 6. (a) XRD pattern of Ni@NSiC; (b) and (c) SEM images of Ni@NSiC-900; (d) and (e) TEM images of Ni@NSiC-900; (f) HR-TEM image of Ni@NSiC-900 (inset figure SAED pattern); (g-k) elemental mapping results of Ni@NSiC-900
图 9 (a) CoBC-700传感器在RT(相对湿度25%)条件下对NO2的动态响应-恢复曲线和响应时间;(b) CoBC-600、CoBC-700和CoBC-800传感器对100-0.01×10−6 NO2的响应和响应时间(其中直方图为响应值,线性图为响应时间);(c) CoBC-700传感器对0.01-100×10−6 NO2的校准曲线;(d) CoBC-700传感器连续暴露于30×10−6 NO2(7个周期)的重现性;(e) CoBC-700传感器对各种气体响应的选择性测试;(f) CoBC-700传感器在35天内对100×10−6 NO2的稳定性测试
Figure 9. (a) Dynamic response-recovery curve and response time of the CoBC-700 sensor to NO2 at the RT (RH 25%); (b) Response and response time of CoBC-600, CoBC-700 and CoBC-800 sensor from 100 to 0.01 ×10−6 NO2 (Among them, the histogram is the response value, and the linear graph is the response time); (c) The calibration curve of CoBC-700 sensor to 0.01-100×10−6 NO2; (d) The reproducibility of CoBC-700 sensor continuously exposed to 30×10−6 NO2 (7 cycles); (e) Selective testing of the response of CoBC-700 sensor to various gases;(f) The stability test of CoBC-700 sensor to 100×10−6 NO2 within 35 days
图 10 (a) In2O3-600传感器在92℃下对不同浓度NO2气体的响应-恢复曲线;(b) In2O3-600传感器的响应与不同浓度NO2气体之间的关系;In2O3-600传感器对100×10−9 (c)和1×10−6 (d) NO2气体的动态响应-恢复曲线[87]
Figure 10. (a) Response–recovery curves of In2O3-600 sensor to different concentrations of NO2 gas at 92 °C;(b) The relationship between responses of In2O3-600 sensor and different concentrations of NO2 gas; Dynamic response-recovery curves of In2O3-600 sensor to 100×10−9 (c) and 1 ×10−6 (d) NO2 gas[87]
表 1 不同原料生物质炭理化性质比较(平均值±同原料置信区间)[30]
Table 1. Physical and chemical properties of biochars derived from different feedstocks (mean ± 95% confidence interval)[30]
Raw material pH Total organic carbon/% Surface area/(m2·g−1) Ash/% Total N/% Total P/% Total K/% Wood 8.2±0.2 72.6±1.3 164.4±24.1 7.84±1.1 0.6±0.1 0.4±0.1 0.7±0.2 Crop residue 9.5±0.2 61.1±1.6 109.2±1.7 23.6±1.7 1.3±0.1 0.7±0.1 3.3±0.5 Grass 8.7±0.3 63.9±1.8 63.4±2.3 17.9±2.3 1.2±0.1 0.4±0.1 1.7±0.4 Manure 9.4±0.2 45.6±2.7 36.6±3.1 38.82±3.1 2.5±0.2 2.4±0.4 3.2±0.4 Sludge 8.7±0.5 25.1±2.7 28.2±4.3 63.3±4.3 2.5±0.3 3.0±0.7 1.1±0.3 Sec-biowaste 8.8±0.3 59.2±3.0 71.3±4.1 23.1±4.1 2.7±0.3 1.2±0.5 1.2±0.3 -
[1] TANG X X, YU Z. Study of toxic gases concentration detecting method based on gas sensors and random forest[J]. Chinese Journal of Sensors and Actuators, 2020, 33(3): 340-343. [2] MOHANTY S K, VALENCA R, BERGER A W, et al. Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment[J]. Science of the Total Environment, 2018, 625: 1644-1658. doi: 10.1016/j.scitotenv.2018.01.037 [3] RAHMAN M Z, EDVINSSON T, KWONG P. Biochar for electrochemical applications[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 23: 25-30. doi: 10.1016/j.cogsc.2020.04.007 [4] LYU H H, ZHANG Q R, SHEN B X. Application of biochar and its composites in catalysis[J]. Chemosphere, 2020, 240: 124842. doi: 10.1016/j.chemosphere.2019.124842 [5] ROY D, SAMANTA S, ROY S, et al. Fuel cell integrated carbon negative power generation from biomass[J]. Applied Energy, 2023, 331: 120449. doi: 10.1016/j.apenergy.2022.120449 [6] BLANKENSHIP T S, BLANKENSHIP T S, BALAHMAR N, et al. Oxygen-rich microporous carbons with exceptional hydrogen storage capacity[J]. Nature Communications, 2017, 8(1): 1545. doi: 10.1038/s41467-017-01633-x [7] JING H Y, SHI Y T, WU D Y, et al. Well-defined heteroatom-rich porous carbon electrocatalyst derived from biowaste for high-performance counter electrode in dye-sensitized solar cells[J]. Electrochimica Acta, 2018, 281: 646-653. doi: 10.1016/j.electacta.2018.06.020 [8] CHO S K, IGLINSKI B, KUMAR G. Biomass based biochar production approaches and its applications in wastewater treatment, machine learning and microbial sensors[J]. Bioresource Technology, 2024, 391: 129904. doi: 10.1016/j.biortech.2023.129904 [9] TAN Y T, XU Z X, HE L J, et al. Three-dimensional high graphitic porous biomass carbon from dandelion flower activated by K2FeO4 for supercapacitor electrode[J]. Journal of Energy Storage, 2022, 52: 104889. doi: 10.1016/j.est.2022.104889 [10] LI Y X, XU R, WANG H B, et al. Recent advances of biochar-based electrochemical sensors and biosensors[J]. Biosensors-Basel, 2022, 12(6): 377. doi: 10.3390/bios12060377 [11] GONG X S, LI R, CHEN H G, et al. (1 1 1)-Oriented crystalline plane MnO loaded by biomass carbon separator to facilitate sulfur redox kinetics in lithium–sulfur batteries[J]. Arabian Journal of Chemistry, 2023, 16(6): 104752. doi: 10.1016/j.arabjc.2023.104752 [12] SALIMI P, JAVADIAN S, NOROUZI O, et al. Turning an environmental problem into an opportunity: potential use of biochar derived from a harmful marine biomass named Cladophora glomerata as anode electrode for Li-ion batteries[J]. Environmental Science and Pollution Research, 2017, 24(36): 27974-27984. doi: 10.1007/s11356-017-0181-1 [13] ZHAO J Y, ZHU M, PANG Y C, et al. Layered NiPS3 nanoparticles anchored on two-dimensional nitrogen-doped biochar nanosheets for ultra-high rate sodium-ion storage[J]. Composites Communications, 2022, 29: 100988. doi: 10.1016/j.coco.2021.100988 [14] LI X, ZHOU Y M, DENG B, et al. Research progress of biomass carbon materials as anode materials for potassium-ion batteries[J]. Frontiers in Chemistry, 2023, 11: 1162909. doi: 10.3389/fchem.2023.1162909 [15] BAYU A, ABUDULA A, GUAN G Q. Reaction pathways and selectivity in chemo-catalytic conversion of biomass-derived carbohydrates to high-value chemicals: A review[J]. Fuel Processing Technology, 2019, 196: 106162. doi: 10.1016/j.fuproc.2019.106162 [16] TANGUY N R, KAZEMI K K, HONG J, et al. Flexible, robust, and high-performance gas sensors based on lignocellulosic nanofibrils[J]. Carbohydrate Polymers, 2022, 278: 118920. doi: 10.1016/j.carbpol.2021.118920 [17] SUN Q H, WU Z F, QIN Z J, et al. A dog nose-inspired high-performance NH3 gas sensor of biomass carbon materials with a pleated structure derived from rose tea[J]. Journal of Materials Chemistry A, 2022, 10(27): 14326-14335. doi: 10.1039/D2TA02670H [18] XU H, GONG Z X, HUO L Z, et al. Zinc oxide-loaded cellulose-based carbon gas sensor for selective detection of ammonia[J]. Nanomaterials, 2023, 13(24): 3151. doi: 10.3390/nano13243151 [19] 吕贺. 基于超薄MoS2的复合材料可控制备及其室温NO2气敏性能 [D]. 哈尔滨: 黑龙江大学, 2021.LV He. Controllable preparation of composite materials based on few-layers MoS2 and their room temperature NO2 gas sensitivity [D]. Harbin: Heilongjiang University, 2021 (in Chinese). [20] QIN Z J, WU Z F, SUN Q H, et al. Biomimetic gas sensor derived from disposable bamboo chopsticks for highly sensitive and selective detection of NH3[J]. Chemical Engineering Journal, 2023, 462: 142203. doi: 10.1016/j.cej.2023.142203 [21] WU Z F, XIA Y D, LIU L X, et al. Preparation and gas sensing properties of hair-based carbon sheets[J]. Nanomaterials, 2022, 12(19): 3512. doi: 10.3390/nano12193512 [22] GAO F, QU J Y, ZHAO Z B, et al. Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors[J]. Electrochimica Acta, 2016, 190: 1134-1141. doi: 10.1016/j.electacta.2016.01.005 [23] SHI W W, CHANG B B, YIN H, et al. Crab shell-derived honeycomb-like graphitized hierarchically porous carbons for satisfactory rate performance of all-solid-state supercapacitors[J]. Sustainable Energy & Fuels, 2019, 3(5): 1201-1214. [24] ALAM M K, RAHMAN M M, ELZWAWY A, et al. Highly sensitive and selective detection of bis-phenol a based on hydroxyapatite decorated reduced graphene oxide nanocomposites[J]. Electrochimica Acta, 2017, 241: 353-361. doi: 10.1016/j.electacta.2017.04.135 [25] BILGE S, BAKIRHAN N K, DONAR Y O, et al. Green synthesis of carbon based biosensor materials from algal biomass for the sensitive detection of vardenafil[J]. Journal of Electroanalytical Chemistry, 2020, 871: 114286. doi: 10.1016/j.jelechem.2020.114286 [26] 马鸿梁. 细菌纤维素基柔性湿度传感器的制备及其机理研究 [D]. 济南: 齐鲁工业大学, 2023.MA Hongliang. Preparation and mechanism study of bacterial cellulose-based flexible humidity sensors [D]. Ji nan: Qilu University of Technology, 2023 (in Chinese). [27] 曹鹏飞. 三维FeYO3, WO3, 和Bi2WO6的构筑及其气敏性能的研究 [D]. 兰州: 西北师范大学, 2021.CAO Pengfei. Construction of three-dimensional FeYO3, WO3, Bi2WO6 and study on their gas performance [D]. Lanzhou: Northwest Normal University, 2021 (in Chinese). [28] XU Y J, LEI W, ZHANG Y H, et al. Bamboo fungus-derived porous nitrogen-doped carbon for the fast, sensitive determination of bisphenol a[J]. Journal of the Electrochemical Society, 2017, 164(5): B3043-B3048. doi: 10.1149/2.0021705jes [29] CHEN Y Q, ZHANG X, CHEN W, et al. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance[J]. Bioresource Technology, 2017, 246: 101-109. doi: 10.1016/j.biortech.2017.08.138 [30] 邱良祝, 朱脩玥, 马彪, 等. 生物质炭热解炭化条件及其性质的文献分析[J]. 植物营养与肥料学报, 2017, 23(6): 1622-1630. doi: 10.11674/zwyf.17031QIU Liangzhu, ZHU Xiuyue, MA Biao, et al. Literature analysis on properties and pyrolyzing conditions of biochars[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1622-1630(in Chinese). doi: 10.11674/zwyf.17031 [31] 李健, 徐欢, 张涛, et al. 不同热解温度对牛粪生物质炭中不同形态硫含量及SO42-释放的影响研究[J]. 广州化工, 2023, 51(16): 88-92+9.LI Jian, XU Huan, ZHANG Tao, et al. Study on the effect of different pyrolysis temperatures on sulfur content and SO42- release from different forms of cow dung biomass charcoal[J]. Guangzhou Chemical, 2023, 51(16): 88-92+9(in Chinese). [32] ZHANG Y Z, WU Z F, SUN J, et al. Modulation of gas sensing properties of chitin-based carbon fibers and Fe3O4 carbon fibers by controlling carbonization temperature[J]. Sensors and Actuators a-Physical, 2023, 363: 114760. doi: 10.1016/j.sna.2023.114760 [33] SUN Q H, WU Z F, CAO B B, et al. Gas sensing performance of biomass carbon materials promoted by nitrogen doping and p-n junction[J]. Applied Surface Science, 2022, 592: 153254. doi: 10.1016/j.apsusc.2022.153254 [34] XIA Y D, WU Z F, QIN Z J, et al. Wool-Based carbon fiber/MoS2 composite prepared by low-temperature catalytic hydrothermal method and its application in the field of gas sensors[J]. Nanomaterials, 2022, 12(7): 1105. doi: 10.3390/nano12071105 [35] 韩闯. 污泥生物炭水热制备及其对染料脱色研究 [D]. 上海: 东华大学, 2017.HAN Chuang. Preparation of sludge biochar and its decolorization of dye [D]. Shanghai: Donghua University, 2017 (in Chinese). [36] CONTESCU C I, ADHIKARI S P, GALLEGO N C, et al. Activated carbons derived from high-temperature pyrolysis of lignocellulosic biomass[J]. C-Journal of Carbon Research, 2018, 4(3): 51. doi: 10.3390/c4030051 [37] AKBULUT D, PAKSERESHT S, CETINKAYA T, et al. Carbon electrodes supported with nickel oxide derived from olive pits for Li-O2 air cathode[J]. Diamond and Related Materials, 2023, 136: 109970. doi: 10.1016/j.diamond.2023.109970 [38] CHEN W F, HE F F, ZHANG S J, et al. Development of porosity and surface chemistry of textile waste jute-based activated carbon by physical activation[J]. Environmental Science and Pollution Research, 2018, 25(10): 9840-9848. doi: 10.1007/s11356-018-1335-5 [39] DENG W Y, HU M T, XU S Y, et al. Pyrolysis of sludge briquettes for the preparation of cylindrical-shaped biochar and comparison between CO2 and steam activation[J]. Fuel, 2023, 338: 127317. doi: 10.1016/j.fuel.2022.127317 [40] WANG H Y, GAO B, WANG S S, et al. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood[J]. Bioresource Technology, 2015, 197: 356-362. doi: 10.1016/j.biortech.2015.08.132 [41] LI Y C, SHAO J G, WANG X H, et al. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption[J]. Energy & Fuels, 2014, 28(8): 5119-5127. [42] MOHAMMED A A, PANDA P K, HOTA A, et al. Flexible asymmetric supercapacitor based on Hyphaene fruit shell-derived multi-heteroatom doped carbon and NiMoO4@NiCo2O4 hybrid structure electrodes[J]. Biomass & Bioenergy, 2023, 179: 106981. [43] YUMAK T, YAKABOYLU G A, OGINNI O, et al. Comparison of the electrochemical properties of engineered switchgrass biomass-derived activated carbon-based EDLCs[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2020, 586: 124150. [44] SUN Q Y, JIANG T Y, SHI J Y, et al. Porous carbon material based on biomass prepared by MgO template method and ZnCl2 activation method as electrode for high performance supercapacitor[J]. International Journal of Electrochemical Science, 2019, 14(1): 1-14. doi: 10.20964/2019.01.50 [45] 李滨. 超级电容器用生物质基电极材料的制备及其电学性能的研究 [D]. 哈尔滨: 东北林业大学, 2023.LI Bin. Preparation and electrical properties of biomass-based electrode materials for supercapacitors [D]. Harbin: Northeast Forestry University, 2023 (in Chinese). [46] CUONG D V, WU P C, LIU N L, et al. Hierarchical porous carbon derived from activated biochar as an eco-friendly electrode for the electrosorption of inorganic ions[J]. Separation and Purification Technology, 2020, 242: 116813. doi: 10.1016/j.seppur.2020.116813 [47] ZHENG Z H, ZHAO B L, GUO Y P, et al. Preparation of mesoporous batatas biochar via soft-template method for high efficiency removal of tetracycline[J]. Science of the Total Environment, 2021, 787: 147397. doi: 10.1016/j.scitotenv.2021.147397 [48] 郑佳. 葵花籽壳基碳负极材料的制备及其储钾性能研究 [D]. 长春: 吉林大学, 2024.ZHENG Jia. Preparation of sunflower seed shell-based carbon anode materials and their potassium storage performance. Changchun: Jilin University, 2024 (in Chinese). [49] WU Q, GAO M M, ZHANG G Y, et al. Preparation and application performance study of biomass-based carbon materials with various morphologies by a hydrothermal/soft template method[J]. Nanotechnology, 2019, 30(18): 185702. doi: 10.1088/1361-6528/ab0042 [50] KIM D, KIM G, OH D Y, et al. Enhanced hydrogen production from anaerobically digested sludge using microwave assisted pyrolysis[J]. Fuel, 2022, 314: 123091. doi: 10.1016/j.fuel.2021.123091 [51] LI J, TAO J Y, YAN B B, et al. Microwave reforming with char-supported Nickel-Cerium catalysts: A potential approach for thorough conversion of biomass tar model compound[J]. Applied Energy, 2020, 261: 114375. doi: 10.1016/j.apenergy.2019.114375 [52] ALLENDE S, LIU Y, ZAFAR MUHAMMAD A, et al. Nitrite sensor using activated biochar synthesised by microwave-assisted pyrolysis[J]. Waste Disposal & Sustainable Energy, 2023, 5(1): 1-11. [53] CAI J, VASUDEVAN S V, WANG M, et al. Microwave-assisted synthesized renewable carbon nanofiber/nickel oxide for high-sensitivity detection of H2O2[J]. Journal of Electroanalytical Chemistry, 2022, 924: 116876. doi: 10.1016/j.jelechem.2022.116876 [54] 蔡进. 生物质微波辅助构建炭基传感器及其在过氧化氢检测中的研究 [D]. 镇江: 江苏大学, 2023.CAI Jin. Biomass microwave-assisted construction of carbon-based sensor and its application in hydrogen peroxide detection [D]. Zhenjiang: Jiangsu University, 2023(in Chinese). [55] BU Q, CAI J , VASUDEVAN S V, et al. Microwave-assisted synthesis of bio-based Ni@NSiC nanocomposites for high efficient electrocatalysis of glucose[J]. Electrochimica Acta, 2021, 398: 139319. [56] KOO W T, JANG J S, KIM I D. Metal-Organic frameworks for chemiresistive sensors[J]. Chem, 2019, 5(8): 1938-1963. doi: 10.1016/j.chempr.2019.04.013 [57] WANG Z, ZHU L, WANG J Z, et al. Advances in functional guest materials for resistive gas sensors[J]. Rsc Advances, 2022, 12(38): 24614-24632. doi: 10.1039/D2RA04063H [58] YAMAZOE N, SHIMANOE K. Roles of shape and size of component crystals in semiconductor gas sensors[J]. Journal of the Electrochemical Society, 2008, 155(4): J85-J92. doi: 10.1149/1.2832655 [59] BAER W. Wiley encyclopedia of electrical and electronics engineering[J]. Library Journal, 1999, 124(15): 71 [60] RODIAWAN, WANG S C, Suhdi. Preparation and application of rubber fruit shell carbon as decoration material on ZnO for H2S gas sensors[J]. Sensors and Materials, 2024, 36(5): 1787-1796. doi: 10.18494/SAM4794 [61] HOON E T, KIM T, WON J H. Hydrogen sensing of graphene-based chemoresistive gas sensor enabled by surface decoration[J]. Journal of Sensor Science and Technology, 2020, 29(6): 382-387. doi: 10.46670/JSST.2020.29.6.382 [62] PALIWAL A, SHARMA A, TOMAR M, et al. Carbon monoxide (CO) optical gas sensor based on ZnO thin films[J]. Sensors and Actuators B-Chemical, 2017, 250: 679-685. doi: 10.1016/j.snb.2017.05.064 [63] CUI X S, LU Z R, WANG Z C, et al. Highly sensitive SF6 decomposition byproducts sensing platform based on CuO/ZnO heterojunction nanofibers[J]. Chemosensors, 2023, 11(1): 58. doi: 10.3390/chemosensors11010058 [64] JI F F, HU J Y, ZHANG Y. Functionalized carbon-nanotubes-based thin-film transistor sensor for highly selective detection of methane at room temperature[J]. Chemosensors, 2023, 11(7): 365. doi: 10.3390/chemosensors11070365 [65] RIEK N T, SO S, AKCAKAYA M, et al. Selection of classifiers to enhance efficacy of metal/organic hybrid sensor array for VOC and toxic gas identification[J]. Ieee Sensors Journal, 2022, 22(20): 19136-19143. doi: 10.1109/JSEN.2022.3198014 [66] ZHU J J, SHAO S R, XIA J X, et al. Hydrothermal synthesis of SnO2 hollow spheres and performance research for ethanol gas sensitive[J]. Chemical Research and Application, 2019, 31(12): 2099-2105. [67] LU P, QIU W, YUE C J, et al. Research progress of resistance-type semiconductor formaldehyde sensors[J]. Transducer and Microsystem Technology, 2016, 35(12): 1-5. [68] CAO X O, ZHANG Z Y, ZHANG X R. A study of gaseous acetaldehyde sensor utilizing cataluminescence on nanosized SrCO3[J]. Chinese Journal of Analytical Chemistry, 2004, 32(12): 1567-1570. [69] BO X Q, LIU C B, WANG L Y, et al. Synthesis of crustose ZnO and its sensing properties to acetone[J]. Journal of the Chinese Ceramic Society, 2013, 41(12): 1709-1713. [70] LEE CHIAYEN, CHANG CHINLUNG, LIN CHIUFENG, et al. MEMS-based benzene gas sensor with WO3 thin film[J]. Journal of Functional Materials and Devices, 2008, 14(2): 389-393. [71] LI D K, HE B Y, CHEN K Q, et al. Xylene gas sensing performance of Au nanoparticles loaded WO3 nanoflowers[J]. Acta Physica Sinica, 2019, 68(19): 198101. doi: 10.7498/aps.68.20190678 [72] GAO L K, GAN W T, QIU Z, et al. Biomorphic carbon-doped TiO2 for photocatalytic gas sensing with continuous detection of persistent volatile organic compounds[J]. Acs Applied Nano Materials, 2018, 1(4): 1766-1775. doi: 10.1021/acsanm.8b00209 [73] CHANG X, LI K, QIAO X R, et al. ZIF-8 derived ZnO polyhedrons decorated with biomass derived nitrogen-doped porous carbon for enhanced acetone sensing[J]. Sensors and Actuators B-Chemical, 2021, 330: 129366. doi: 10.1016/j.snb.2020.129366 [74] LUO K H, YAN M S, HUNG Y H, et al. Polyaniline composites containing eco-friendly biomass carbon from agricultural-waste coconut husk for enhancing gas sensor performance in hydrogen sulfide detection[J]. Polymers, 2023, 15(23): 4554. doi: 10.3390/polym15234554 [75] CHUANG C C, PRASANNAN A, HUANG B R, et al. Simple synthesis of eco-friendly multifunctional silk-sericin capped zinc oxide nanorods and their potential for fabrication of hydrogen sensors and UV photodetectors[J]. Acs Sustainable Chemistry & Engineering, 2017, 5(5): 4002-4010. [76] LEE J-H, KIM J-H, YOUNG K J, et al. CO2 sensing properties of SnO2-Cr2O3 composite nanofibers via electrospinning method[J]. Journal of The Korean Institute of Surface Engineering, 2017, 50(4): 289-295. [77] GATTY H K, LEIJONMARCK S, ANTELIUS M, et al. An amperometric nitric oxide sensor with fast response and ppb-level concentration detection relevant to asthma monitoring[J]. Sensors and Actuators B-Chemical, 2015, 209: 639-644. doi: 10.1016/j.snb.2014.11.147 [78] WANG G L, WANG X H, QIU L Z. High sensitivity organic transistor nitrogen dioxide sensor based on three component conjugated polymer[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(7): 797-805. doi: 10.37188/CJLCD.2022-0101 [79] CHAABENE M, GASSOUMI B, SOURY R, et al. Insights into theoretical detection of CO2, NO, CO, O2, and O3 gases molecules using zinc phthalocyanine with peripheral mono and tetra quinoleinoxy substituents: Molecular geometries, electronic properties, and vibrational analysis[J]. Chemical Physics, 2021, 547: 111198. doi: 10.1016/j.chemphys.2021.111198 [80] LEE D W, JUNG J S, KIM K H, et al. Highly sensitive oxygen sensing characteristics observed in IGZO based gasistor in a mixed gas ambient at room temperature[J]. Acs Sensors, 2022, 7(9): 2567-2576. doi: 10.1021/acssensors.2c00484 [81] SINGH S, GOSWAMY J K, SAPRA G, et al. Sensitivity and selectivity analysis of toxic gases NO2, SO2, O2, Cl2, (CH3)2NH, CH3NH2, NH3, HCl, CH2CHCl and ClO2 on GO sheet platform for environmental sustainability: A DFT Prediction[J]. Sensors and Actuators a-Physical, 2022, 347: 113899. doi: 10.1016/j.sna.2022.113899 [82] HSUEH T J, LEE S H. A La2O3 nanoparticle SO2 gas sensor that uses a ZnO thin film and Au adsorption[J]. Journal of the Electrochemical Society, 2021, 168(7): 077507. doi: 10.1149/1945-7111/ac120e [83] SONG B Y, HUANG J, CUI Z Q, et al. Temperature-controlled dual-selectivity nitric oxide/acetone sensor constructed from mesoporous SnO2 tubes doped by biomass-derived graphitic carbon[J]. Applied Surface Science, 2023, 623: 157009. doi: 10.1016/j.apsusc.2023.157009 [84] LI C, SONG B Y, TENG Y, et al. Biomass-derived hierarchical porous ZnO microtubules for highly selective detection of ppb-level nitric oxide at low temperature[J]. Sensors and Actuators B-Chemical, 2021, 333: 129627. doi: 10.1016/j.snb.2021.129627 [85] LV H, LIU Z, CHEN J K, et al. Enhanced room-temperature NO2 sensing properties of biomorphic hierarchical mixed phase WO3[J]. Nanoscale, 2020, 12(47): 24285-24295. doi: 10.1039/D0NR07093A [86] CHEN J K, LV H, BAI X, et al. Synthesis of hierarchically porous Co3O4/biomass carbon composites derived from MOFs and their highly NO2 gas sensing performance[J]. Microporous and Mesoporous Materials, 2021, 321: 111108. doi: 10.1016/j.micromeso.2021.111108 [87] WANG N, YE J X, SUN J B, et al. Rapid and accurate detection of highly toxic NO2 gas based on catkins biomass-derived porous In2O3 microtubes at low temperature[J]. Sensors and Actuators B-Chemical, 2022, 361: 131692. doi: 10.1016/j.snb.2022.131692 [88] SONG Y, MIAO Y L, MENG Y D, et al. Synthesizing and modifying carbon-based nanomaterials by plasma techniques[J]. Materials Review, 2018, 32(10A): 3295. [89] PARVEEN R A, RAKKESH R A, DURGALAKSHMI D, et al. Graphene-Ag2S hybrid nanostructures: A hybrid gas sensor for room temperature hydrogen sensing application[J]. Materials Letters, 2021, 303: 130470. doi: 10.1016/j.matlet.2021.130470 [90] LIU H, LV H, KAN K, et al. Biocarbon-templated synthesis of porous Ni-Co-O nanocomposites for room-temperature NH3 sensors[J]. New Journal of Chemistry, 2018, 42(21): 17606-17614. doi: 10.1039/C8NJ03832E [91] LI Y, CHEN L L, LV T. Enhanced gas sensing performance of pollen template synthesized Ag/ZnO nanoparticles[J]. Journal of Functional Materials, 2017, 48(5): 5099-5103. [92] SANKAR V, BALASUBRAMANIAM K, RAMAPRABHU S, et al. Invasive species prosopis juliflora derived carbon biomass/SnO2 based hazardous NO2 gas sensor [C] // proceedings of the 20th IEEE Sensors Conference. Electr Network, 2021: 1-4. [93] TAHA S, BEGUM S, NARWADE V N, et al. Enhancing alcohol sensing properties of hydroxyapatite via synthesis of its composite with TiO2 nano-tube[J]. Applied Physics a-Materials Science & Processing, 2021, 127(7): 514. [94] XU X L, JIANG H T, WANG X P, et al. A novel glycol sensor of silkworm excrement based microporous carbons (SEMCs)/SnO2 nanoparticles[J]. Vacuum, 2023, 209: 111754. doi: 10.1016/j.vacuum.2022.111754 [95] ZHANG Y Z, WU Z F, SUN J, et al. Synthesis and sensing performance of chitin fiber/MoS2 composites[J]. Nanomaterials, 2023, 13(9): 1567. doi: 10.3390/nano13091567 [96] ZHAI X W, WU Z F, SUN Q H, et al. Bioinspired bacterial cellulose carbon nanofibers/AgO composite for sensitive and selective detection of H2O2 vapor at room temperature[J]. Journal of Electronic Materials, 2023, 52(8): 5377-5387. doi: 10.1007/s11664-023-10456-0 [97] ZHAI X W, WU Z F, SUN Q H, et al. Fe2O3 nanorod/bacterial cellulose carbon nanofiber composites for enhanced acetone sensing[J]. Acs Applied Nano Materials, 2023, 6(13): 12168-12176. doi: 10.1021/acsanm.3c01912 [98] QI L L, ZHONG C Y, DENG Z H, et al. Bacterial cellulose templated p-Co3O4/n-ZnO nanocomposite with excellent VOCs response performance[J]. Chinese Journal of Chemical Physics, 2020, 33(4): 477-484. doi: 10.1063/1674-0068/cjcp2003038
计量
- 文章访问数: 29
- HTML全文浏览量: 19
- 被引次数: 0