留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锰、磷共掺杂玉米秸秆生物炭活化过一硫酸盐降解诺氟沙星

傅翔宇 李亚峰 崔可清 刘奕含 王玲萍

傅翔宇, 李亚峰, 崔可清, 等. 锰、磷共掺杂玉米秸秆生物炭活化过一硫酸盐降解诺氟沙星[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 傅翔宇, 李亚峰, 崔可清, 等. 锰、磷共掺杂玉米秸秆生物炭活化过一硫酸盐降解诺氟沙星[J]. 复合材料学报, 2024, 42(0): 1-12.
FU Xiangyu, LI Yafeng, CUI Keqing, et al. Manganese and phosphorusco-doped corn stover biochar to activate peroxymonosulfate for degradation of norfloxacin[J]. Acta Materiae Compositae Sinica.
Citation: FU Xiangyu, LI Yafeng, CUI Keqing, et al. Manganese and phosphorusco-doped corn stover biochar to activate peroxymonosulfate for degradation of norfloxacin[J]. Acta Materiae Compositae Sinica.

锰、磷共掺杂玉米秸秆生物炭活化过一硫酸盐降解诺氟沙星

基金项目: 国家水体污染控制与治理科技重大专项(2018ZX07601-001)
详细信息
    通讯作者:

    李亚峰,博士,教授,博士生导师,研究方向为环境科学与资源利用 E-mail: yafengli88@sina.com

  • 中图分类号: TB333

Manganese and phosphorusco-doped corn stover biochar to activate peroxymonosulfate for degradation of norfloxacin

Funds: National Science and Technology Major Special Project on Water Pollution Control and Management (2018ZX07601-001)
  • 摘要: 抗生素的大规模使用对自然环境及人类健康造成极大威胁,因此急需探寻一种高效、绿色的降解方法。本研究制备了Mn、P掺杂玉米秸秆生物炭(Mn/P-C)用于活化过一硫酸盐(PMS)降解诺氟沙星(NOR)。对比纯生物炭(BC)、P掺杂生物炭(P-C),Mn/P-C具有更大的缺陷结构及丰富的表面含氧官能团。在pH为2.84、PMS为3 mmol/L、催化剂投加量为1 g/L的条件下,80 min反应时间内,NOR去除率达到94%,体系降解反应速率为0.034 min−1。催化剂表征、淬灭实验和电子顺磁共振(EPR)实验表明,在Mn/P-C活化PMS体系中,NOR主要通过SO4•−、O2•−自由基以及催化剂表面产生的1O2非自由基途径得到降解。此外,Mn/P-C在较宽的pH范围内均有效,并且具有较高的可重复利用性和稳定性,由于其良好的磁性,不会对环境造成二次污染。本研究证实了掺杂Mn、P可以有效提高生物炭活化PMS降解NOR的效能,为碳基材料的优化以及其在过硫酸盐活化中的应用提供了新的思路。

     

  • 图  1  生物炭(BC)(a)、P掺杂生物炭(P-C)(b)、Mn、P掺杂玉米秸秆生物炭(Mn/P-C)(c)的SEM 图像

    Figure  1.  SEM images of biochar (BC) (a), P-doped biochar (P-C) (b), Mn, P-doped corn stover biochar (Mn/P-C) (c)

    图  2  (a)BC, P-C和 Mn/P-C的XRD谱图、(b)FTIR图谱、(c)XPS全谱图、(d)拉曼光谱

    Figure  2.  (a)XRD spectra, (b)FTIR spectra, (c) XPS spectra ,(d) Raman spectra of BC, P-C and Mn/P-C

    图  3  BC, P-C和 Mn/P-C对NOR的吸附去除率(a)、对应的吸附反应速率常数(b)。反应条件:PMS = 1.5 mmol/L, BC、P-C、Mn/P-C = 1 g/L,NOR = 10 mg/L, pH=6

    Figure  3.  (a) XRD spectra, (b) FTIR spectra of BC, P-C and Mn/P-C.Reaction conditions:PMS = 1.5 mmol/L, BC、P-C、Mn/P-C = 1 g/L,NOR = 10 mg/L, pH=6

    图  4  (a) BC, P-C和 Mn/P-C对NOR的降解去除率、(b)相应的降解反应速率常数。反应条件:PMS = 1.5 mmol/L, BC、P-C、Mn/P-C = 0.5 g/L,NOR = 10 mg/L, pH=6

    Figure  4.  (a) The degradation removal rate of NOR caused by BC, P-C and Mn / P-C, (b) The corresponding degradation reaction rate constants. Reaction conditions: PMS = 1.5 mmol/L, BC、P-C、Mn/P-C = 0.5 g/L, NOR = 10 mg/L, pH=6

    图  5  (a) Mn/P-C 投加量对NOR降解的影响,反应条件:PMS = 1.5 mmol/L、pH=6、NOR = 10 mg/L;(b) PMS浓度对NOR降解的影响,反应条件:Mn/P-C = 0.5 g/L、pH=6、NOR = 10 mg/L

    Figure  5.  (a) Effect of Mn/P-C dosage for NOR degradation, Reaction conditions: PMS = 1.5 mmol/L、pH=6、NOR = 10 mg/L; (b) PMS concentrations for NOR degradation, Reaction conditions: Mn/P-C = 0.5 g/L、pH=6、NOR = 10 mg/L

    图  6  (a) pH值对NOR降解的影响,反应条件:Mn/P-C =1 g/L、PMS = 3 mmol/L、NOR = 10 mg/L;(b) 阴离子和腐殖酸HA对NOR 降解的影响,反应条件:Mn/P-C =1 g/L、PMS = 3 mmol/L、NOR = 10 mg/L、Cl=5 mmol/L、CO32-=5 mmol/L、HA=5 mmol/L

    Figure  6.  (a) Effect of pH for NOR degradation, Reaction conditions: Mn/P-C =1 g/L、PMS = 3 mmol/L、NOR = 10 mg/L; (b) anions and humic acid (HA) for NOR degradation, Reaction conditions: Mn/P-C =1 g/L、PMS = 3 mmol/L、NOR = 10 mg/L、Cl=5 mmol/L、CO32-=5 mmol/L、HA=5 mmol/L

    图  7  Mn/P-C重复使用三次及煅烧恢复后对NOR的去除效果;实验条件: PMS = 3 mmol/L、Mn/P-C = 1 g/L,NOR = 10 mg/L,pH=6

    Figure  7.  Effect of NOR removal after triple Mn / P-C repeats and recovery from calcination; Experimental conditions: PMS = 3 mmol/L, Mn/P-C = 1 g/L, NOR = 10 mg/L, pH=6

    图  8  (a) 以DMPO为捕获剂的Mn/P-C、PMS和Mn/P-C活化PMS体系中SO4•−、•OH、O2•− 的EPR图谱;(b) 以TEMP为捕获剂的Mn/P-C、PMS和Mn/P-C活化PMS体系中1O2 的EPR图谱;实验条件: PMS = 3 mmol/L、Mn/P-C = 1 g/L,NOR = 10 mg/L,pH=6

    Figure  8.  (a) EPR spectrum of SO4•−、•OH、O2•− radicals in Mn/P-C, PMS and Mn/P-C to activate PMS system with DMPO; (b) EPR spectrum of 1O2 radical in Mn/P-C, PMS and Mn/P-C to activate PMS system with TEMP; Experimental conditions: PMS = 3 mmol/L, Mn/P-C = 1 g/L, NOR = 10 mg/L, pH=6

    图  9  (a)不同抑制剂EtOH、TBA、L-histine和p-BQ对NOR的降解动力学;(b)相应的反应速率常数。反应条件:PMS = 3 mmol/L,Mn/P-C = 1 g/L,NOR = 10 mg/L,pH=6

    Figure  9.  (a) Degradation kinetics of NOR by different scavengers EtOH , TBA , L-histidine and p-BQ;(b)The corresponding degradation reaction rate constants.Reaction conditions:PMS = 3 mmol/L, Mn/P-C = 1 g/L, NOR = 10 mg/L, pH=6

    图  10  (a) Mn/P-C反应前后Mn2 p的XPS图谱; (b) 降解机制图

    Figure  10.  (a) XPS map of Mn 2 p before and after Mn / P-C reaction; (b) degradation mechanism diagram

  • [1] JIANG X, GUO Y, ZHANG L, et al. Catalytic degradation of tetracycline hydrochloride by persulfate activated with nano Fe0 immobilized mesoporous carbon[J]. Chemical Engineering Journal, 2018, 341: 392-401. doi: 10.1016/j.cej.2018.02.034
    [2] XU M, DENG J, CAI A, et al. Comparison of UVC and UVC/persulfate processes for tetracycline removal in water[J]. Chemical Engineering Journal, 2020, 384: 123320. doi: 10.1016/j.cej.2019.123320
    [3] SCARIA J, ANUPAMA K V, NIDHEESH P V. Tetracyclines in the environment: An overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management[J]. Science of the Total Environment, 2021, 771: 145291. doi: 10.1016/j.scitotenv.2021.145291
    [4] ZHANG X, CAI T, ZHANG S, et al. Contamination distribution and non-biological removal pathways of typical tetracycline antibiotics in the environment: a review[J]. Journal of Hazardous Materials, 2024, 463: 132862. doi: 10.1016/j.jhazmat.2023.132862
    [5] SONG Z, Ma Y, Li C. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite[J]. Science of the Total Environment, 2019, 651: 580-590. doi: 10.1016/j.scitotenv.2018.09.240
    [6] LI Y, ZHANG G, LIANG D, et al. Tetracycline hydrochloride degradation in polarity inverted microbial fuel cells: Performance, mechanisms and microbiology[J]. Chemosphere, 2024, 349: 140902. doi: 10.1016/j.chemosphere.2023.140902
    [7] ZHANG Z, CHEN Y, WANG Z, et al. Effective and structure-controlled adsorption of tetracycline hydrochloride from aqueous solution by using Fe-based metal-organic frameworks[J]. Applied Surface Science, 2021, 542: 148662. doi: 10.1016/j.apsusc.2020.148662
    [8] XIANG W, ZHANG X, LUO J, et al. Performance of lignin impregnated biochar on tetracycline hydrochloride adsorption: Governing factors and mechanisms[J]. Environmental Research, 2022, 215: 114339. doi: 10.1016/j.envres.2022.114339
    [9] PENG H, WANG H, WANG L, et al. Efficient adsorption-photocatalytic removal of tetracycline hydrochloride over La2S3-modified biochar with S, N-codoping[J]. Journal of Water Process Engineering, 2022, 49: 103038. doi: 10.1016/j.jwpe.2022.103038
    [10] ZHENG J, XU Z, XIN S, et al. Low-temperature molten salt synthesis of Na, K-codoped g-C3N4 Fenton-like catalyst with remarkable TCH degradation performance in a wide pH range[J]. Materials Letters, 2022, 325: 132912. doi: 10.1016/j.matlet.2022.132912
    [11] ZHANG X, YAO Z, ZHOU Y, et al. Theoretical guidance for the construction of electron-rich reaction microcenters on C–O–Fe bridges for enhanced Fenton-like degradation of tetracycline hydrochloride[J]. Chemical Engineering Journal, 2021, 411: 128535. doi: 10.1016/j.cej.2021.128535
    [12] SHI X, WANG L, ZUH A, et al. Photo-Fenton reaction for the degradation of tetracycline hydrochloride using a FeWO4/BiOCl nanocomposite[J]. Journal of Alloys and Compounds, 2022, 903: 163889. doi: 10.1016/j.jallcom.2022.163889
    [13] LIU Y, LI J, WU L, et al. Synergetic adsorption and Fenton-like degradation of tetracycline hydrochloride by magnetic spent bleaching earth carbon: Insights into performance and reaction mechanism[J]. Science of the Total Environment, 2021, 761: 143956. doi: 10.1016/j.scitotenv.2020.143956
    [14] REN W, CHENG C, SHAO P, et al. Origins of electron-transfer regime in persulfate-based nonradical oxidation processes[J]. Environmental Science & Technology, 2021, 56(1): 78-97.
    [15] USHANI U, LU X, WANG J, et al. Sulfate radicals-based advanced oxidation technology in various environmental remediation: A state-of-the–art review[J]. Chemical Engineering Journal, 2020, 402: 126232. doi: 10.1016/j.cej.2020.126232
    [16] ZHOU Z, LIU X, SUN K, et al. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review[J]. Chemical Engineering Journal, 2019, 372: 836-851. doi: 10.1016/j.cej.2019.04.213
    [17] SONG W, LI J, WANG Z, et al. A mini review of activated methods to persulfate-based advanced oxidation process[J]. Water Science and Technology, 2019, 79(3): 573-579. doi: 10.2166/wcc.2018.168
    [18] LI F, DUAN F, JI W, et al. Biochar-activated persulfate for organic contaminants removal: Efficiency, mechanisms and influencing factors[J]. Ecotoxicology and Environmental Safety, 2020, 198: 110653. doi: 10.1016/j.ecoenv.2020.110653
    [19] MISERLI K, KOGOLA D, PARASCHOUDI I, etal. Activation of persulfate by biochar for the degradation of phenolic compounds in aqueous systems[J]. Chemical Engineering Journal Advances, 2022, 9: 100201. doi: 10.1016/j.ceja.2021.100201
    [20] OUYANG D, CHEN Y, YAN J, etal. Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1, 4-dioxane: Important role of biochar defect structures[J]. Chemical Engineering Journal, 2019, 370: 614-624. doi: 10.1016/j.cej.2019.03.235
    [21] YUAN T, TAHMASEBI A, YU J. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor[J]. Bioresource Technology, 2015, 175: 333-341. doi: 10.1016/j.biortech.2014.10.108
    [22] LIU X, RAO L, YAO Y, etal. Phosphorus-doped carbon fibers as an efficient metal-free bifunctional catalyst for removing sulfamethoxazole and chromium (VI)[J]. Chemosphere, 2020, 246: 125783. doi: 10.1016/j.chemosphere.2019.125783
    [23] HUANG D, ZHANG Q, ZHANG C, etal. Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline[J]. Chemical Engineering Journal, 2020, 391: 123532. doi: 10.1016/j.cej.2019.123532
    [24] HUANG P, ZHANG P, WANG C, etal. Enhancement of persulfate activation by Fe-biochar composites: Synergism of Fe and N-doped biochar[J]. Applied Catalysis B: Environmental, 2022, 303: 120926. doi: 10.1016/j.apcatb.2021.120926
    [25] ZHONG Q, LIN Q, HUANG R, etal. Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar[J]. Chemical Engineering Journal, 2020, 380: 122608. doi: 10.1016/j.cej.2019.122608
    [26] WANG C, HOLM P E, ANDERSEN M L, etal. Phosphorus doped cyanobacterial biochar catalyzes efficient persulfate oxidation of the antibiotic norfloxacin[J]. Bioresource Technology, 2023, 388: 129785. doi: 10.1016/j.biortech.2023.129785
    [27] 陈思良, 孙雯, 洪耀良. 氮掺杂生物炭负载CuS活化过硫酸盐去除橙黄G[J]. 中国环境科学, 2024, 44(5): 2483-2494. doi: 10.3969/j.issn.1000-6923.2024.05.011

    CHEN Siliang, SUN Wen, HONG Yaoliang. Removal of Orange G by nitrogen-doped biochar loaded with CuS activated persulfate[J]. China Environmental Science, 2024, 44(5): 2483-2494(in Chinese). doi: 10.3969/j.issn.1000-6923.2024.05.011
    [28] XU L , FU B, SUN Y, et al. Degradation of organic pollutants by Fe/N co-doped biochar via peroxymonosulfate activation: Synthesis, performance, mechanism and its potential for practival application[J]. Chemical Engineering Journal, 2020, 400: 125870.
    [29] 黄仕元, 林森焕, 董雯, 等. 锰氮共掺杂稻壳生物炭活化过二硫酸盐降解酸性橙[J]. 复合材料学报, 2023, 40(2): 1071-1084.

    HUANG Shiyuan, LIN Senhuan, DONG Wen, et al. Manganese-nitrogen co-doped rice husk biochar activated peroxydisulfate to degrade acid orange[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1071-1084(in Chinese).
    [30] SHI C, HU K, NIE L, etal. Degradation of acetaminophen using persulfate activated with P-doped biochar and thiosulfate[J]. Inorganic Chemistry Communications, 2022, 146: 110160. doi: 10.1016/j.inoche.2022.110160
    [31] HUNG C, CHEN C, HUANG C, etal. Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar for enhancing the degradation of sulfathiazole antibiotics by peroxymonosulfate and its effects on bacterial community dynamics[J]. Environmental Pollution, 2022, 311: 119984. doi: 10.1016/j.envpol.2022.119984
    [32] ZHONG S, PAN J, TIAN K, etal. Efficient degradation of p-chlorophenol by N, S-codoped biochar activated perxymonosulfate[J]. Process Safety and Environmental Protection, 2023, 169: 437-446. doi: 10.1016/j.psep.2022.10.081
    [33] QIU X, YANG S, DZAKPASU M, et al. Attenuation of BPA degradation by SO4 in a system of peroxymonosulfate coupled with Mn/Fe MOF-templated catalysts and its synergism with Cl and bicarbonate[J]. Chemical Engineering Journal, 2019, 372: 605-615. doi: 10.1016/j.cej.2019.04.175
    [34] GAO L, GUO Y, ZHAN J, et al. Assessment of the validity of the quenching method for evaluating the role of reactive species in pollutant abatement during the persulfate-based process[J]. Water Research, 2022, 221: 118730. doi: 10.1016/j.watres.2022.118730
    [35] GAO Y, WANG Q, JI G, et al. Degradation of Antibiotic Pollutants by Persulfate Activated with Various Carbon Materials[J]. Chemical Engineering Journal, 2022, 429: 132387. doi: 10.1016/j.cej.2021.132387
    [36] HUSSAIN I, LI M, ZHANG Y, et al. Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol[J]. Chemical Engineering Journal, 2017, 311: 163-172. doi: 10.1016/j.cej.2016.11.085
    [37] WU Y, GUO J, HAN Y, et al. Insights into the mechanism of persulfate activated by rice straw biochar for the degradation of aniline[J]. Chemosphere, 2018, 200: 373-379. doi: 10.1016/j.chemosphere.2018.02.110
    [38] LIU Y, GUO H, ZHANG Y, et al. Activation of peroxymonosulfate by BiVO4 under visible light for degradation of Rhodamine B[J]. Chemical Physics Letters, 2016, 653: 101-107. doi: 10.1016/j.cplett.2016.04.069
    [39] LUO R, LI M, WANG C, et al. Singlet Oxygen-Dominated Non-Radical Oxidation Process for Efficient Degradation of Bisphenol A under High Salinity Condition[J]. Water Research, 2019, 148: 416-424. doi: 10.1016/j.watres.2018.10.087
    [40] YANG S, GUO, X, WANG Z, et al. Significance of B-Site Cobalt on Bisphenol A Degradation by MOFs-Templated CoxFe3−xO4 Catalysts and Its Severe Attenuation by Excessive Cobalt-Rich Phase[J]. Chemical Engineering Journal, 2019, 359: 552-563. doi: 10.1016/j.cej.2018.11.187
    [41] WANG B, LI Y, WANG L. Metal-free activation of persulfates by corn stalk biochar for the degradation of antibiotic norfloxacin: activation factors and degradation mechanism[J]. Chemosphere, 2019, 237: 124454. doi: 10.1016/j.chemosphere.2019.124454
    [42] WANG L, LAN X, PENG W, et al. Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: a review[J]. Journal of Hazard Materials, 2021, 408: 124436. doi: 10.1016/j.jhazmat.2020.124436
    [43] ZHANG J, HAN J, WANG M, et al. Fe3O4/PANI/MnO2 core–shell hybrids as advanced adsorbents for heavy metal ions[J]. Journal of Materials Chemistry A, 2017, 5(8): 4058-4066. doi: 10.1039/C6TA10499A
    [44] SHAO P, TIAN J, YANG F, et al. Identification and regulation of active sites on nanodiamonds: Establishing a highly efficient catalytic system for oxidation of organic contaminants[J]. Advanced Functional Materials, 2018, 28(13): 17052
    [45] TAN L, TONG Y, YANG Y, et al. Degradation of Tetracycline Using Persulfate Activated by Mn, Ce Co-Doped g-C3N4 Composites under Visible Light[J]. Diamond and Related Materials, 2023, 140: 110522. doi: 10.1016/j.diamond.2023.110522
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-10
  • 修回日期:  2024-06-16
  • 录用日期:  2024-06-21
  • 网络出版日期:  2024-07-05

目录

    /

    返回文章
    返回