留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石/Al复合散热材料界面调控及热导率研究进展

张文海 高洁 朱军武 杜乐 郑可 于盛旺

张文海, 高洁, 朱军武, 等. 金刚石/Al复合散热材料界面调控及热导率研究进展[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 张文海, 高洁, 朱军武, 等. 金刚石/Al复合散热材料界面调控及热导率研究进展[J]. 复合材料学报, 2024, 42(0): 1-9.
ZHANG Wenhai, GAO Jie, ZHU Junwu, et al. Advances in interfacial modulation and thermal conductivity of diamond/Al composite heat dissipation materials[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Wenhai, GAO Jie, ZHU Junwu, et al. Advances in interfacial modulation and thermal conductivity of diamond/Al composite heat dissipation materials[J]. Acta Materiae Compositae Sinica.

金刚石/Al复合散热材料界面调控及热导率研究进展

基金项目: 国家自然科学基金(51901154);山西省自然科学基金项目(202103021223096);山西省自然科学基金项目(202303021211039)
详细信息
    通讯作者:

    高洁,博士,副教授,硕士生导师,研究方向为金刚石热管理;金刚石耐磨工具 E-mail: gaojie01@tyut.edu.cn

  • 中图分类号: TB333

Advances in interfacial modulation and thermal conductivity of diamond/Al composite heat dissipation materials

Funds: Natural Science Foundation of China (NO.51901154); Shanxi Provincial Natural Science Foundation (NO.202103021223096); Shanxi Provincial Natural Science Foundation (NO.202303021211039)
  • 摘要: 金刚石/Al复合材料兼具低密度、高热导率和热膨胀系数可调等优点,近年来成为新一代热管理材料的研究热点之一。但是,复合材料制备过程中金刚石和Al界面产物Al4C3会严重影响复合材料的性能,增大金刚石-Al界面热阻,并且其易水解的特性容易在使用过程中造成复合材料失效。本文从界面Al4C3相的负面作用入手,详细介绍了目前抑制界面Al4C3相的主要方法(包括界面调控、金刚石表面化学改性、金刚石表面改性涂层和基体合金化等)对复合材料界面和热导率的影响,最后对未来金刚石/Al复合散热材料的发展方向进行了展望。

     

  • 图  1  金刚石/Al复合材料热导率改善方式

    Figure  1.  Diamond/aluminum composite thermal conductivity improvement approach

    图  2  金刚石 {100}/Al界面的透射电镜显微照片。(a)界面区域的低放大倍率,(b)金刚石的会聚光束图案,Z=[011],(c)金刚石-Al4C3界面的HRTEM图像,(d)金刚石和Al4C3的SAD图案,(e)对(d)的解释[15]

    Figure  2.  Transmission electron microscope micrographs of the diamond {100}/Al interface. (a) Low magnification of the interfacial region, (b) convergent beam pattern of diamond, Z=[011], (c) HRTEM image of the diamond-Al4C3 interface, (d) SAD pattern of diamond and Al4C3, (e) interpretation of (d) [15]

    图  3  文献[21]金刚石/Al复合材料的断裂形貌由(a)原金刚石和(b)氩离子轰击金刚石增强

    Figure  3.  Fracture morphology of diamond/aluminum composites from literature [21] enhanced by (a) original diamond and (b) argon ion bombardment of diamond

    图  4  金刚石/金属复合材料的界面热阻模型[22-23] ;Dia、C、M、I 和 Matrix 分别代表金刚石、碳化物、金属、金属间化合物和基体

    Figure  4.  Interface thermal resistance model of diamond/metalcomposites[22-23]; Dia, C, M, I and Matrix stand for diamond, carbide, metal, intermetallic compound and matrix, respectively

    图  5  金刚石/Al(Ti)和金刚石(Ti)/Al复合材料的导热系数随Ti含量的变化[39]

    Figure  5.  ariation of thermal conductivity of diamond/aluminum (Ti) and diamond (Ti)/aluminum composites with Ti content[39]

    图  6  汇总的不同方式改善的金刚石/Al复合材料的热导率,图中文献编号对应于本文中的文献编号

    Figure  6.  Summarized thermal conductivity of diamond/Al composites improved by different ways, the literature numbers in the figure correspond to the literature numbers in this paper

  • [1] MOORE A L, SHI L. Emerging challenges and materials for thermal management of electronics[J]. Materials Today, 2014, 17(4): 163. doi: 10.1016/j.mattod.2014.04.003
    [2] KIDALOV S, SHAKHOV F. Thermal Conductivity of Diamond Composites[J]. Materials, 2009, 2(4): 2467. doi: 10.3390/ma2042467
    [3] ARSHA A G, MANOJ V, AKHIL M G, et al. Squeeze infiltration processing and characterization of silicon reinforced composites[J]. Materials Today Communications, 2022, 32: 103870. doi: 10.1016/j.mtcomm.2022.103870
    [4] 贾鑫. GaN基金刚石散热层的制备及其性能研究[D]. 北京: 北京科技大学, 2021.

    JIA X. Preparation of GaN-based diamond heat dissipation layer and its performance study [D]. Beijing: University of Science and Technology Beijing, 2021(in Chinese).
    [5] ZHANG M K, TAN Z X, HUANG Y H, et al. Preparation and interfacial microstructure of high thermal conductivity diamond/SiC composites[J]. Ceramics International, 2024, 50(13): 23754 doi: 10.1016/j.ceramint.2024.04.099
    [6] PENG J W, ZHANG F L, ZHOU Y M, et al. Fabrication of diamond/copper composite thin plate based on a single-layer close packed diamond particles network for heat dissipation[J]. Chemical Engineering Journal, 2023, 476: 146666. doi: 10.1016/j.cej.2023.146666
    [7] 华志亮. 金刚石/铝复合材料的界面微 观结构和导热性能研究 [D]. 中南林业科技大学, 2024.

    HUA Z L. Interfacial microstructure and thermal conductivity of diamond/aluminum composites [D]. Changsha: Central South University of Forestry and Technology, 2024(in Chinese).
    [8] 张静龙, 高导热金刚石/金属基复合材料界面结构对界面结构对界面热导的调控机制研究[D]. 华北电力大学(北京), 2024.

    ZHANG J L. Study on the regulation mechanism of interfacial thermal conductivity by interfacial structure of high thermal conductivity diamond/metal matrix composites [D]. Beijing: North China Electric Power University (Beijing), 2024 (in Chinese).
    [9] MONACHON C, WEBER L. Effect of diamond surface orientation on the thermal boundary conductance between diamond and aluminum[J]. Diamond and Related Materials, 2013, 39: 8. doi: 10.1016/j.diamond.2013.06.017
    [10] ZHU P, ZHANG Q, GOU H S, et al. First-principles calculation of diamond/Al interface properties and study of interface reaction[J]. Acta Physica Sinica, 2021, 70(17): 178101. doi: 10.7498/aps.70.20210341
    [11] LU Y F, WANG X T, ZHANG Y, et al. Aluminum carbide hydrolysis induced degradation of thermal conductivity and tensile strength in diamond/aluminum composite[J]. Journal of Composite Materials, 2018, 52(20): 2709. doi: 10.1177/0021998317752504
    [12] MONJE I E, LOUIS E, MOLINA J M. Role of Al4C3 on the stability of the thermal conductivity of Al/diamond composites subjected to constant or oscillating temperature in a humid environment[J]. Journal of Materials Science, 2016, 51(17): 8027. doi: 10.1007/s10853-016-0072-8
    [13] LI N, HAO J P, ZHANG Y J, et al. Thermal Conductivity Stability of Interfacial in Situ Al4C3 Engineered Diamond/Al Composites Subjected to Thermal Cycling[J]. Materials, 2022, 15(19): 6640. doi: 10.3390/ma15196640
    [14] TAN Z Q, LI Z Q, FAN G L, et al. Fabrication of diamond/aluminum composites by vacuum hot pressing: process optimization and thermal properties[J]. Composites Part B: Engineering, 2013, 47: 173. doi: 10.1016/j.compositesb.2012.11.014
    [15] JIANG L T, WANG P P, XIU Z Y, et al. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method[J]. Materials Characterization, 2015, 106: 346. doi: 10.1016/j.matchar.2015.06.023
    [16] LI C X, WANG X T, WANG L H, et al. Interfacial characteristic and thermal conductivity of Al/diamond composites produced by gas pressure infiltration in a nitrogen atmosphere[J]. Materials & Design, 2016, 92: 643.
    [17] ZHOU H Y, RAN M R, LI Y Q, et al. Improvement of thermal conductivity of diamond/Al composites by optimization of liquid-solid separation process[J]. Journal of Materials Processing Technology, 2021, 297: 117267. doi: 10.1016/j.jmatprotec.2021.117267
    [18] ACCIA M, RODRIGUEZ A, NARCISOA J. Diamond Surface Modification to Enhance Interfacial Thermal Conductivity in Al/Diamond Composites[J]. Jom, 2014, 66(6): 920. doi: 10.1007/s11837-014-0918-y
    [19] COLLINS K C, CHEN S, CHEN G. Effects of surface chemistry on thermal conductance at aluminum–diamond interfaces[J]. Applied Physics Letters, 2010, 97(8): 083102. doi: 10.1063/1.3480413
    [20] MONJE I E, LOUIS E, MOLINA J M. Interfacial nano-engineering in Al/diamond composites for thermal management by in situ diamond surface gas desorption[J]. Scripta Materialia, 2016, 115: 159. doi: 10.1016/j.scriptamat.2016.01.004
    [21] YANG W L, SANG J Q, ZHOU L P, et al. Overcoming selective interfacial bonding and enhancing thermal conductivity of diamond/aluminum composite by an ion bombardment pretreatment[J]. Diamond and Related Materials, 2018, 81: 127. doi: 10.1016/j.diamond.2017.12.006
    [22] TAN Z Q, LI Z Q, XIONG D B, et al. A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites[J]. Materials & Design, 2014, 55: 257.
    [23] ZHU P, WANG P P, SHAO P Z, et al. Research progress in interface modification and thermal conduction behavior of diamond/metal composites[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(2): 200. doi: 10.1007/s12613-021-2339-6
    [24] ZHU P, ZHANG Q, QU S, et al. Effect of interface structure on thermal conductivity and stability of diamond/aluminum composites[J]. Composites Part A: Applied Science and Manufacturing, 2022, 162: 107161. doi: 10.1016/j.compositesa.2022.107161
    [25] XIN L, TIAN X, YANG W S, et al. Enhanced stability of the Diamond/Al composites by W coatings prepared by the magnetron sputtering method[J]. Journal of Alloys and Compounds, 2018, 763: 305. doi: 10.1016/j.jallcom.2018.05.310
    [26] DONG Z Y, WANG D, WANG W G, et al. Effect of Nanometer WC Coating on Thermal Conductivity of Diamond/6061 Composites[J]. Acta Metallurgica Sinica (English Letters), 2022, 36(1): 118.
    [27] MA S D, ZHAO N Q, SHI C S, et al. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites[J]. Applied Surface Science, 2017, 402: 372. doi: 10.1016/j.apsusc.2017.01.078
    [28] LIANG X B, JIA C C, CHU K, et al. Thermal conductivity and microstructure of Al/diamond composites with Ti-coated diamond particles consolidated by spark plasma sintering[J]. Journal of composite materials, 2012, 46(9): 1127. doi: 10.1177/0021998311413689
    [29] FENG H, YU J K, TAN W. Microstructure and thermal properties of diamond/aluminum composites with TiC coating on diamond particles[J]. Materials chemistry and physics, 2010, 124(1): 851. doi: 10.1016/j.matchemphys.2010.08.003
    [30] LI X J, YANG W L, SANG J Q, et al. Low-temperature synthesizing SiC on diamond surface and its improving effects on thermal conductivity and stability of diamond/Al composites[J]. Journal of Alloys and Compounds, 2020, 846: 156258. doi: 10.1016/j.jallcom.2020.156258
    [31] SANG J Q, CHEN Q L, YANG W L, et al. Architecting micron SiC particles on diamond surface to improve thermal conductivity and stability of Al/diamond composites[J]. Surfaces and Interfaces, 2022, 31: 102019. doi: 10.1016/j.surfin.2022.102019
    [32] DONG Z Y, LIU X Y, WANG D, et al. Effect of Nano-SiC coating on the thermal properties and microstructure of diamond/Al composites[J]. Composites Communications, 2023, 40: 1011564.
    [33] KONDAKCI E, SOLAK N. Enhanced thermal conductivity and long-term stability of diamond/aluminum composites using SiC-coated diamond particles[J]. Journal of Materials Science, 2022, 57(5): 3430. doi: 10.1007/s10853-021-06817-x
    [34] LI N, WANG L H, DAI J J, et al. Interfacial products and thermal conductivity of diamond/Al composites reinforced with ZrC-coated diamond particles[J]. Diamond and Related Materials, 2019, 00: 107565.
    [35] WU J H, ZHANG H L, ZHANG Y, et al. Effect of copper content on the thermal conductivity and thermal expansion of Al–Cu/diamond composites[J]. Materials & Design, 2012, 39: 87.
    [36] GUO C Y, HE X B, REN S B, et al. Effect of (0–40) wt. % Si addition to Al on the thermal conductivity and thermal expansion of diamond/Al composites by pressure infiltration[J]. Journal of Alloys and Compounds, 2016, 664: 777. doi: 10.1016/j.jallcom.2015.12.255
    [37] ZHANG Y, LI J W, ZHAO L L, et al. Effect of metalloid silicon addition on densification, microstructure and thermal–physical properties of Al/diamond composites consolidated by spark plasma sintering[J]. Materials & Design, 2014, 63: 838.
    [38] GUO C Y, HE X B, REN S B, et al. Thermal properties of diamond/Al composites by pressure infiltration: comparison between methods of coating Ti onto diamond surfaces and adding Si into Al matrix[J]. Rare Metals, 2016, 35(3): 249. doi: 10.1007/s12598-015-0672-5
    [39] XUE C, YU J K. Enhanced thermal conductivity in diamond/aluminum composites: comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface[J]. Surface and Coatings Technology, 2013, 217: 46. doi: 10.1016/j.surfcoat.2012.11.070
    [40] XIE H N, CHEN Y T, ZHANG T B, et al. Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: A first principles study[J]. Applied Surface Science, 2020, 527: 146817. doi: 10.1016/j.apsusc.2020.146817
  • 加载中
计量
  • 文章访问数:  56
  • HTML全文浏览量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 修回日期:  2024-07-22
  • 录用日期:  2024-07-25
  • 网络出版日期:  2024-08-03

目录

    /

    返回文章
    返回