Advances in interfacial modulation and thermal conductivity of diamond/Al composite heat dissipation materials
-
摘要: 金刚石/Al复合材料兼具低密度、高热导率和热膨胀系数可调等优点,近年来成为新一代热管理材料的研究热点之一。但是,复合材料制备过程中金刚石和Al界面产物Al4C3会严重影响复合材料的性能,增大金刚石-Al界面热阻,并且其易水解的特性容易在使用过程中造成复合材料失效。本文从界面Al4C3相的负面作用入手,详细介绍了目前抑制界面Al4C3相的主要方法(包括界面调控、金刚石表面化学改性、金刚石表面改性涂层和基体合金化等)对复合材料界面和热导率的影响,最后对未来金刚石/Al复合散热材料的发展方向进行了展望。Abstract: Diamond /Al composites have the advantages of low density, high thermal conductivity and adjustable thermal expansion coefficient, and thus become one of the research hotspots of thermal management materials in recent years. However, Al4C3, the interface product between diamond and Al, will seriously affect the properties of the composites, increase the thermal resistance at the diamond-Al interface, and its easy hydrolysis will easily lead to the failure of the composites in service. In this paper, starting with the negative effects of interface Al4C3 phase, the effects of the current main methods to inhibit interfacial Al4C3 phase (including interfacial control, diamond surface chemical modification, diamond surface modified coating and matrix alloying, etc.) on the interface and thermal conductivity of composites are described in detail. Finally, the development direction of diamond/Al composite heat dissipation materials in future is prospected.
-
图 2 金刚石 {100}/Al界面的透射电镜显微照片。(a)界面区域的低放大倍率,(b)金刚石的会聚光束图案,Z=[011],(c)金刚石-Al4C3界面的HRTEM图像,(d)金刚石和Al4C3的SAD图案,(e)对(d)的解释[15]
Figure 2. Transmission electron microscope micrographs of the diamond {100}/Al interface. (a) Low magnification of the interfacial region, (b) convergent beam pattern of diamond, Z=[011], (c) HRTEM image of the diamond-Al4C3 interface, (d) SAD pattern of diamond and Al4C3, (e) interpretation of (d) [15]
-
[1] MOORE A L, SHI L. Emerging challenges and materials for thermal management of electronics[J]. Materials Today, 2014, 17(4): 163. doi: 10.1016/j.mattod.2014.04.003 [2] KIDALOV S, SHAKHOV F. Thermal Conductivity of Diamond Composites[J]. Materials, 2009, 2(4): 2467. doi: 10.3390/ma2042467 [3] ARSHA A G, MANOJ V, AKHIL M G, et al. Squeeze infiltration processing and characterization of silicon reinforced composites[J]. Materials Today Communications, 2022, 32: 103870. doi: 10.1016/j.mtcomm.2022.103870 [4] 贾鑫. GaN基金刚石散热层的制备及其性能研究[D]. 北京: 北京科技大学, 2021.JIA X. Preparation of GaN-based diamond heat dissipation layer and its performance study [D]. Beijing: University of Science and Technology Beijing, 2021(in Chinese). [5] ZHANG M K, TAN Z X, HUANG Y H, et al. Preparation and interfacial microstructure of high thermal conductivity diamond/SiC composites[J]. Ceramics International, 2024, 50(13): 23754 doi: 10.1016/j.ceramint.2024.04.099 [6] PENG J W, ZHANG F L, ZHOU Y M, et al. Fabrication of diamond/copper composite thin plate based on a single-layer close packed diamond particles network for heat dissipation[J]. Chemical Engineering Journal, 2023, 476: 146666. doi: 10.1016/j.cej.2023.146666 [7] 华志亮. 金刚石/铝复合材料的界面微 观结构和导热性能研究 [D]. 中南林业科技大学, 2024.HUA Z L. Interfacial microstructure and thermal conductivity of diamond/aluminum composites [D]. Changsha: Central South University of Forestry and Technology, 2024(in Chinese). [8] 张静龙, 高导热金刚石/金属基复合材料界面结构对界面结构对界面热导的调控机制研究[D]. 华北电力大学(北京), 2024.ZHANG J L. Study on the regulation mechanism of interfacial thermal conductivity by interfacial structure of high thermal conductivity diamond/metal matrix composites [D]. Beijing: North China Electric Power University (Beijing), 2024 (in Chinese). [9] MONACHON C, WEBER L. Effect of diamond surface orientation on the thermal boundary conductance between diamond and aluminum[J]. Diamond and Related Materials, 2013, 39: 8. doi: 10.1016/j.diamond.2013.06.017 [10] ZHU P, ZHANG Q, GOU H S, et al. First-principles calculation of diamond/Al interface properties and study of interface reaction[J]. Acta Physica Sinica, 2021, 70(17): 178101. doi: 10.7498/aps.70.20210341 [11] LU Y F, WANG X T, ZHANG Y, et al. Aluminum carbide hydrolysis induced degradation of thermal conductivity and tensile strength in diamond/aluminum composite[J]. Journal of Composite Materials, 2018, 52(20): 2709. doi: 10.1177/0021998317752504 [12] MONJE I E, LOUIS E, MOLINA J M. Role of Al4C3 on the stability of the thermal conductivity of Al/diamond composites subjected to constant or oscillating temperature in a humid environment[J]. Journal of Materials Science, 2016, 51(17): 8027. doi: 10.1007/s10853-016-0072-8 [13] LI N, HAO J P, ZHANG Y J, et al. Thermal Conductivity Stability of Interfacial in Situ Al4C3 Engineered Diamond/Al Composites Subjected to Thermal Cycling[J]. Materials, 2022, 15(19): 6640. doi: 10.3390/ma15196640 [14] TAN Z Q, LI Z Q, FAN G L, et al. Fabrication of diamond/aluminum composites by vacuum hot pressing: process optimization and thermal properties[J]. Composites Part B: Engineering, 2013, 47: 173. doi: 10.1016/j.compositesb.2012.11.014 [15] JIANG L T, WANG P P, XIU Z Y, et al. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method[J]. Materials Characterization, 2015, 106: 346. doi: 10.1016/j.matchar.2015.06.023 [16] LI C X, WANG X T, WANG L H, et al. Interfacial characteristic and thermal conductivity of Al/diamond composites produced by gas pressure infiltration in a nitrogen atmosphere[J]. Materials & Design, 2016, 92: 643. [17] ZHOU H Y, RAN M R, LI Y Q, et al. Improvement of thermal conductivity of diamond/Al composites by optimization of liquid-solid separation process[J]. Journal of Materials Processing Technology, 2021, 297: 117267. doi: 10.1016/j.jmatprotec.2021.117267 [18] ACCIA M, RODRIGUEZ A, NARCISOA J. Diamond Surface Modification to Enhance Interfacial Thermal Conductivity in Al/Diamond Composites[J]. Jom, 2014, 66(6): 920. doi: 10.1007/s11837-014-0918-y [19] COLLINS K C, CHEN S, CHEN G. Effects of surface chemistry on thermal conductance at aluminum–diamond interfaces[J]. Applied Physics Letters, 2010, 97(8): 083102. doi: 10.1063/1.3480413 [20] MONJE I E, LOUIS E, MOLINA J M. Interfacial nano-engineering in Al/diamond composites for thermal management by in situ diamond surface gas desorption[J]. Scripta Materialia, 2016, 115: 159. doi: 10.1016/j.scriptamat.2016.01.004 [21] YANG W L, SANG J Q, ZHOU L P, et al. Overcoming selective interfacial bonding and enhancing thermal conductivity of diamond/aluminum composite by an ion bombardment pretreatment[J]. Diamond and Related Materials, 2018, 81: 127. doi: 10.1016/j.diamond.2017.12.006 [22] TAN Z Q, LI Z Q, XIONG D B, et al. A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites[J]. Materials & Design, 2014, 55: 257. [23] ZHU P, WANG P P, SHAO P Z, et al. Research progress in interface modification and thermal conduction behavior of diamond/metal composites[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(2): 200. doi: 10.1007/s12613-021-2339-6 [24] ZHU P, ZHANG Q, QU S, et al. Effect of interface structure on thermal conductivity and stability of diamond/aluminum composites[J]. Composites Part A: Applied Science and Manufacturing, 2022, 162: 107161. doi: 10.1016/j.compositesa.2022.107161 [25] XIN L, TIAN X, YANG W S, et al. Enhanced stability of the Diamond/Al composites by W coatings prepared by the magnetron sputtering method[J]. Journal of Alloys and Compounds, 2018, 763: 305. doi: 10.1016/j.jallcom.2018.05.310 [26] DONG Z Y, WANG D, WANG W G, et al. Effect of Nanometer WC Coating on Thermal Conductivity of Diamond/6061 Composites[J]. Acta Metallurgica Sinica (English Letters), 2022, 36(1): 118. [27] MA S D, ZHAO N Q, SHI C S, et al. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites[J]. Applied Surface Science, 2017, 402: 372. doi: 10.1016/j.apsusc.2017.01.078 [28] LIANG X B, JIA C C, CHU K, et al. Thermal conductivity and microstructure of Al/diamond composites with Ti-coated diamond particles consolidated by spark plasma sintering[J]. Journal of composite materials, 2012, 46(9): 1127. doi: 10.1177/0021998311413689 [29] FENG H, YU J K, TAN W. Microstructure and thermal properties of diamond/aluminum composites with TiC coating on diamond particles[J]. Materials chemistry and physics, 2010, 124(1): 851. doi: 10.1016/j.matchemphys.2010.08.003 [30] LI X J, YANG W L, SANG J Q, et al. Low-temperature synthesizing SiC on diamond surface and its improving effects on thermal conductivity and stability of diamond/Al composites[J]. Journal of Alloys and Compounds, 2020, 846: 156258. doi: 10.1016/j.jallcom.2020.156258 [31] SANG J Q, CHEN Q L, YANG W L, et al. Architecting micron SiC particles on diamond surface to improve thermal conductivity and stability of Al/diamond composites[J]. Surfaces and Interfaces, 2022, 31: 102019. doi: 10.1016/j.surfin.2022.102019 [32] DONG Z Y, LIU X Y, WANG D, et al. Effect of Nano-SiC coating on the thermal properties and microstructure of diamond/Al composites[J]. Composites Communications, 2023, 40: 1011564. [33] KONDAKCI E, SOLAK N. Enhanced thermal conductivity and long-term stability of diamond/aluminum composites using SiC-coated diamond particles[J]. Journal of Materials Science, 2022, 57(5): 3430. doi: 10.1007/s10853-021-06817-x [34] LI N, WANG L H, DAI J J, et al. Interfacial products and thermal conductivity of diamond/Al composites reinforced with ZrC-coated diamond particles[J]. Diamond and Related Materials, 2019, 00: 107565. [35] WU J H, ZHANG H L, ZHANG Y, et al. Effect of copper content on the thermal conductivity and thermal expansion of Al–Cu/diamond composites[J]. Materials & Design, 2012, 39: 87. [36] GUO C Y, HE X B, REN S B, et al. Effect of (0–40) wt. % Si addition to Al on the thermal conductivity and thermal expansion of diamond/Al composites by pressure infiltration[J]. Journal of Alloys and Compounds, 2016, 664: 777. doi: 10.1016/j.jallcom.2015.12.255 [37] ZHANG Y, LI J W, ZHAO L L, et al. Effect of metalloid silicon addition on densification, microstructure and thermal–physical properties of Al/diamond composites consolidated by spark plasma sintering[J]. Materials & Design, 2014, 63: 838. [38] GUO C Y, HE X B, REN S B, et al. Thermal properties of diamond/Al composites by pressure infiltration: comparison between methods of coating Ti onto diamond surfaces and adding Si into Al matrix[J]. Rare Metals, 2016, 35(3): 249. doi: 10.1007/s12598-015-0672-5 [39] XUE C, YU J K. Enhanced thermal conductivity in diamond/aluminum composites: comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface[J]. Surface and Coatings Technology, 2013, 217: 46. doi: 10.1016/j.surfcoat.2012.11.070 [40] XIE H N, CHEN Y T, ZHANG T B, et al. Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: A first principles study[J]. Applied Surface Science, 2020, 527: 146817. doi: 10.1016/j.apsusc.2020.146817
计量
- 文章访问数: 56
- HTML全文浏览量: 35
- 被引次数: 0