Loading [MathJax]/jax/output/SVG/jax.js

羟基磷灰石包覆羟基锡酸钙复合微纳米阻燃剂的制备及其阻燃性能

王增豪, 马益恒, 娄元猛, 董璐铭, 马海云

王增豪, 马益恒, 娄元猛, 等. 羟基磷灰石包覆羟基锡酸钙复合微纳米阻燃剂的制备及其阻燃性能[J]. 复合材料学报, 2023, 40(5): 2699-2708. DOI: 10.13801/j.cnki.fhclxb.20220630.004
引用本文: 王增豪, 马益恒, 娄元猛, 等. 羟基磷灰石包覆羟基锡酸钙复合微纳米阻燃剂的制备及其阻燃性能[J]. 复合材料学报, 2023, 40(5): 2699-2708. DOI: 10.13801/j.cnki.fhclxb.20220630.004
WANG Zenghao, MA Yiheng, LOU Yuanmeng, et al. Preparation of calcium hydroxystannate coated by hydroxyapatite hybrid micro-nano flame retardant and its flame retardant properties[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2699-2708. DOI: 10.13801/j.cnki.fhclxb.20220630.004
Citation: WANG Zenghao, MA Yiheng, LOU Yuanmeng, et al. Preparation of calcium hydroxystannate coated by hydroxyapatite hybrid micro-nano flame retardant and its flame retardant properties[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2699-2708. DOI: 10.13801/j.cnki.fhclxb.20220630.004

羟基磷灰石包覆羟基锡酸钙复合微纳米阻燃剂的制备及其阻燃性能

基金项目: 国家自然科学基金(52173073)
详细信息
    通讯作者:

    马海云,博士,副教授,研究方向为高分子阻燃材料、纳米材料 E-mail: coffee1123@126.com

  • 中图分类号: O631;TB332

Preparation of calcium hydroxystannate coated by hydroxyapatite hybrid micro-nano flame retardant and its flame retardant properties

Funds: National Natural Science Foundation of China (52173073)
  • 摘要: 羟基锡酸盐是近些年来人们日益关注的新型阻燃剂。本文从阻燃设计入手,通过化学共沉淀法合成了亚微米级羟基锡酸钙(CSH)立方体,并通过高倍模拟体液法原位快速包覆羟基磷灰石(HA),得到羟基磷灰石包覆的羟基锡酸钙(CSH@HA)复合微纳米阻燃剂,并应用于软质聚氯乙烯(PVC)的阻燃研究。研究结果表明:CSH@HA对PVC展现出优异的阻燃效果。极少量的CSH@HA即能显著提高PVC的极限氧指数(LOI),降低PVC燃烧时的热释放速率、热释放量、烟释放量和CO排放量。CSH@HA在PVC降解过程中通过与HCl反应,保护内层CSH,将PVC转化为更稳定的炭层结构。低填充量CSH@HA还在保持PVC的力学性能的同时提升材料的韧性。本文得到的CSH@HA复合阻燃剂为高效环保阻燃剂的开发提供了思路。
    Abstract: Hydroxystannate is a novel flame retardant aroused in recent years. In this study, starting from the flame retardant design, submicron calcium hydroxystannate (CSH) cubes were synthesized by chemical co-precipitation method, and then were rapidly in-situ coated by hydroxyapatite (HA) in simulated body fluid with high concentrations. Finally, the hybrid CSH@HA micro-nano particles were prepared and applied to the flame retardant flexible polyvinyl chloride (PVC). The results show that CSH@HA exhibits excellent flame retardancy on PVC. A very small amount of CSH@HA can significantly increase the limit oxygen index (LOI) value, and reduce the heat release rate, total heat release, total smoke release and CO production during combustion of PVC. By reacting with HCl generated during the degradation of PVC, CSH@HA protects the inner CSH and promotes more PVC into stable chars. The low loading of CSH@HA also improves the toughness of PVC while maintaining the mechanical properties. The CSH@HA hybrid flame retardant obtained in this paper pave a new way to the development of novel flame retardants.
  • 聚氯乙烯(PVC)树脂是产量仅次于聚烯烃的高分子材料[1]。PVC树脂本身具有一定的阻燃性,但软质PVC材料中需添加大量的增塑剂,导致其燃烧时失去自熄性,且放出包含HCl在内的大量有毒气体,因此对软质PVC进行阻燃处理一直是人们关注的重要课题[2-5]。目前常见的PVC阻燃剂包括磷酸酯、氯化石蜡、Sb2O3、氢氧化镁(MDH)、硼酸锌等[6-9]。但Sb2O3有毒,且目前通用的PVC阻燃剂用量较大导致恶化其力学性能[10]

    近年来,钙钛矿型羟基锡酸盐(MSn(OH)x)微纳米粒子作为新兴的低毒环保阻燃剂展现出了较高的阻燃效率[11]。目前已经对包括ZnSn(OH)6[12-18]、SrSn(OH)6[19-20]、CoSn(OH)6[21]、CaSn(OH)6[22]在内的钙钛矿型羟基锡酸盐阻燃剂进行了研究。与其他无机阻燃剂相比,羟基锡酸盐具有低添加、低毒、高效等特点,特别是其双重金属元素对PVC的消烟效果显著。此外羟基锡酸盐还能够被调控形成微纳米尺度的立方体、球形或棒状,是具有广阔应用前景的微纳米阻燃剂[23-24]。目前对于羟基锡酸盐阻燃剂的研究除了ZnSn(OH)6报道较多之外,总体还处于起步阶段。且羟基锡酸盐由于其只含有金属元素,因此催化成炭能力和阻燃效能需要进一步提高。

    羟基磷灰石(Hydroxyapatite,HA),化学式为Ca10(PO4)6(OH)2,是脊椎动物骨骼和牙齿的主要无机成分,具有优良的生物相容性和生物活性,在生物材料领域已有大量的研究[25]。HA本身就是不燃物,且其结构中磷含量很高,从而使其作为一种新型无机阻燃剂也已经有若干报道[26-28]。HA的合成方法多种多样,作为骨骼的主要成分,在动物体内可以实现自主合成,而模拟体液法可以通过配制与体液相近的钙、磷浓度的模拟体液(SBF)诱导仿生过程,从而实现在短时间内合成大量纳米级羟基磷灰石微晶[29]

    如果能将HA与MSn(OH)x有机复合在一起,预期可以综合两者在阻燃上的各自优势,从而达到协同阻燃的效果,通过包覆HA对MSn(OH)x进行功能化,HA中的磷酸根与MSn(OH)x脱水形成磷酸类物质能进一步对树脂基体催化成炭,进一步提升阻燃效率。本课题组前期已经成功合成了CaSn(OH)6 (CSH)并成功应用于PVC的阻燃[23]。本文中使用10倍浓度模拟体液(10 SBF)作为反应介质,在用均相沉淀法合成CaSn(OH)6基础上,在其表面均匀生长包覆HA,得到HA包覆羟基锡酸钙(CaSn(OH)6@HA,CSH@HA),并将其添加到软质PVC中,考察CSH@HA对软质PVC的协同阻燃效果及力学性能的影响并探讨阻燃机制。

    NaCl、KCl、MgCl2·6H2O、Na2SnO3·3H2O、NaH2PO4·2H2O、硬脂酸、硬脂酸钙,分析纯,天津市科密欧化学试剂有限公司;结晶氯化钙(CaCl2·2H2O)、三羟甲基氨基甲烷,分析纯,天津市光复精细化工研究所;浓盐酸,分析纯,天津市大茂化学试剂厂;无水乙醇,分析纯,天津市汇杭化工科技有限公司;PVC树脂(TL-1000型),工业级,天津乐金大沽有限公司;偶联剂(KH550),分析纯,国药集团化学试剂有限公司;邻苯二甲酸二辛酯(DOP)、有机锡稳定剂,工业纯,保定市轶思达有限公司。

    在室温条件下,分别将0.555 g CaCl2和1.333 g Na2SnO3·3H2O溶于50 mL去离子水中,配制成浓度为0.1 mol/L的溶液。用0.5 mol/L NaOH溶液调节CaCl2溶液pH值为10并作为母液,在磁力搅拌下将Na2SnO3溶液倒入,持续搅拌反应5 min;澄清溶液中迅速产生大量白色沉淀,用去离子水离心洗涤3次后,于60℃真空干燥12 h,得到CaSn(OH)6白色粉末。

    研究使用的模拟体液(SBF)含有的Ca、P元素浓度是人体体液的10倍,故将其命名为10 SBF。称取NaCl (58.443 g,1000 mmol/L)、KCl (0.373 g,5 mmol/L)、CaCl2·2H2O (3.675 g,25 mmol/L)、MgCl2·6H2O (1.016 g,5 mmol/L)、NaH2PO4·2H2O (0.250 g,3.62 mmol/L),在80℃水浴条件下,依次溶解于900 mL去离子水中,后定容至1 L,并利用Tris-HCl缓冲液调节溶液pH至7,再称取1 g CSH加入其中于室温下搅拌1 h,后用无水乙醇和去离子水分别离心水洗3次,得到白色沉淀, 60℃下真空干燥12 h,得到CSH@HA白色粉末。CSH@HA的合成总路线如图1所示。

    称取36 g PVC、14.4 g DOP、1.08 g有机锡稳定剂、0.36 g KH550型偶联剂、0.18 g硬脂酸、0.18 g硬脂酸钙及相对于总配方质量不同比例(1wt%、3wt%、5wt%)的CSH@HA阻燃剂充分混合均匀。在双辊混炼机(ZG-120,东莞市正工机电设计科技有限公司)上140℃混炼8 min,继而放入平板模具中压制成型,得到PVC及CSH@HA/PVC阻燃复合材料,其配方如表1所示。为对比CSH@HA与单独CSH的阻燃效果,同时制备了5wt%添加量的PVC复合材料。利用万能制样机(ZZY-30,承德睿科科技有限公司)将PVC及其复合材料制成不同标准样品,待测。

    图  1  羟基磷灰石/羟基锡酸钙(CSH@HA)杂化微纳米阻燃剂的合成路线
    Figure  1.  Synthetic routes of the hybrid micro-nanoscale hydroxystannate/hydroxyapatite (CSH@HA) flame retardant
    表  1  CSH@HA/聚氯乙烯(PVC)复合材料配方
    Table  1.  Composition of CSH@HA/polyvinyl chloride (PVC) composite
    Sample CSH@HA/g CSH/g
    PVC 0.00 0.00
    1wt%CSH@HA/PVC 0.52 0.00
    3wt%CSH@HA/PVC 1.57 0.00
    5wt%CSH@HA/PVC 2.61 0.00
    5wt%CSH/PVC 0.00 2.61
    下载: 导出CSV 
    | 显示表格

    红外光谱(FTIR,TENSOR27, Bruker)分析采用KBr压片,扫描步频为2 cm−1,扫描范围为4000~400 cm−1;热重分析(TGA,STA449 C,Netzsch),N2流速为20 mL/min,升温速率为10℃/min,测试温度范围为30~800℃;扫描电子显微镜(SEM,QUANTATEG450,FEI) 和布鲁克X射线能谱仪(EDS QUANTAX,Bruker)用来分析微观形貌、粒径、元素组成和样条断面,加速电压30 kV,观察前喷金处理;透射电子显微镜(TEM,Tecnai G2 F20 S-TWIN,FEI)分析杂化材料的包覆形貌;极限氧指数(LOI,PX-05-005,PHINIX)测试按照GB/T 2406.1—2008标准[30],试样尺寸为120.0 mm×6.5 mm×3.0 mm;垂直燃烧(UL 94,CZF-5,北京中航时代)测试按照GB/T 2408—2008标准[31],试样尺寸为125 mm×13 mm×3 mm;燃烧测试采用的锥形量热仪(CONE,iCone Plus,FTT),热辐射功率为35 kW/m2,试样尺寸为100 mm×100 mm×3 mm;力学性能测试(UTM4204,深圳三思纵横科技)采用ASTM D638-14标准[32],试样尺寸为100 mm×6 mm×3 mm,标距30 mm,拉伸速度为2 mm/min。

    图2为CSH及CSH@HA杂化阻燃剂的微观形貌、粒径及元素面分布图。如图2(a)显示CSH为平均粒径480 nm (图2(d))的立方体,表面光滑,大小均一且无团聚;CSH@HA平均粒径增大至550 nm (图2(e))且依然维持立方体形貌,可以清晰观察到粗糙且均匀的HA包覆层(图2(b))。图2(c)为CSH@HA的透射电镜形貌图像,可清晰看出其核壳结构,证明HA实现了对羟基锡酸钙的包覆,通过对图中包覆层厚度进行采样拟合处理知包覆层厚度约为50 nm (图2(f))。CSH@HA的元素面扫描分布表征如图2(g)所示,可以看到CSH@HA中含有Ca、Sn、O、P 4种元素,且P元素的分布面积大于Sn、Ca元素,直观地体现了HA对CSH的包覆。

    图  2  CSH及CSH@HA的微观形貌、粒径及元素面分布图:((a), (d)) CSH的SEM图像及粒径分布图; ((b), (c), (e)~(g)) CSH@HA的SEM图像、TEM图像、粒径分布、包覆层厚度拟合和元素分布
    Figure  2.  Morphologies, size and element distribution map of CSH and CSH@HA: ((a), (d)) SEM image and size distribution of CSH; ((b), (c), (e)-(g)) SEM image, TEM image, size distribution, coating thickness fitting and element distribution of CSH@HA

    图3(a)为CSH、HA及CSH@HA的XRD图谱,通过对比可知,与CSH相比,CSH@HA除了出现与CSH完全对应的特征峰外(未发生变化与偏移),还出现了原位包覆的HA主要特征峰,出现在2θ=26°和32°处[29]。HA特征峰出现宽化现象,表明其结晶度较低。图3(b)为CSH、HA及CSH@HA的FTIR图谱,CSH中出现的3210 cm−1、1100 cm−1、500 cm−1处的吸收峰对应于—OH的伸缩振动、Sn—OH的弯曲振动和Ca—O晶格振动[33]。由于外层HA的包覆,在CSH@HA的红外图谱中除出现CSH的特征峰外,还出现PO34的特征吸收峰,分别为960 cm−1处的非简并P—O伸缩振动,1027 cm−1处三重简并P—O伸缩振动,600 cm−1和560 cm−1处的O—P—O角变形振动[34]。相对于HA,CSH@HA的PO34特征吸收峰由1020 cm−1移动到1027 cm−1处,说明CSH与HA存在相互作用,因此降低了HA中的氢键结合程度。EDS结果(图3(c))显示Ca、O、P及Sn的元素比例为13.69at%、75.58at%、3.44at%及7.29at%,HA的包覆质量百分比约为30.3%,与实际称量结果相符。

    图  3  CSH、HA、CSH@HA的XRD (a)、FTIR (b)及EDS (c)图谱
    Figure  3.  XRD (a), FTIR (b) and EDS (c) spectra of CSH, HA, CSH@HA

    图4为CSH@HA的TG和DTG曲线。TG曲线(图4(a))表明,HA拥有极佳的热稳定性,质量损失5wt%对应温度T5%达到406.3℃,且质量损失很小(800℃损失仅6.7wt%)。当HA包覆CSH后,CSH@HA的T5%由包覆前的233.2℃上升至236.9℃,残炭量由CSH的73.6wt%上升至77.9wt%。DTG曲线(图4(b))显示CSH@HA的降解速率峰值相比于CSH降低了21.53%,说明HA的包覆延缓了CSH的热降解速率,提升了阻燃剂的热稳定性。

    图  4  CSH、HA、CSH@HA的TG (a)和DTG (b)曲线
    Figure  4.  TG (a) and DTG (b) curves of CSH, HA, CSH@HA

    图5(a)展现了CSH@HA/PVC复合材料的极限氧指数(LOI)变化趋势,纯PVC的LOI为26.6%,随着CSH@HA添加量的增加,复合材料的LOI值逐步提升,当添加量达到5wt%时,复合材料的LOI值提升至33.1%,明显高于相同份数的CSH/PVC材料(32.8%)[22-23],说明HA与CSH之间对PVC的阻燃有着协同效应。

    图5(b)~5(f)为CSH@HA/PVC复合材料在锥形量热测试中各项燃烧参数随时间变化曲线,具体数值列于表2。总体可以看出,CSH@HA对PVC有着优异的阻燃效果。热释放速率(HRR)(图5(b))、总热释放量(THR)(图5(c))、烟释放速率(SPR)(图5(d))、总放烟量(TSP)(图5(e))、质量损失 (图5(f))等均大幅下降,且相同添加量下,CSH@HA的阻燃表现均大幅优于CSH。相较于纯PVC,在相同添加量下(5wt%),CSH@HA、CSH两者对PHRR降低程度分别为52.2%和45.2%,对THR降低程度分别为29.2%和14.1%,对TSP降低程度分别为44.6%和39.5%,对COP降低程度分别为38.1%和28.5%,对残炭率提升程度分别为360.6%和235.1%。此外,从表2数据可以看出,HA与CSH的简单共混并未取得任何协同阻燃效应,说明在抑制热释放、消烟和催化成炭上,HA对CSH的包覆使两者之间存在显著的协同效应。

    图  5  CSH@HA/PVC复合材料的极限氧指数(LOI) (a)、热释放速率(HRR) (b)、总放热量(THR) (c)、烟释放速率(SPR) (d)、总放烟量(TSP) (e)及质量损失(f)随时间变化曲线
    Figure  5.  Limiting oxygen index (LOI) value (a), heat release rate (HRR) (b), total heat release (THR) (c), smoke production rate (SPR) (d), total smoke release (TSP) (e), and specimen mass residual (f) vs time curves of CSH@HA/PVC composites
    表  2  PVC及其复合材料的锥形量热测试数据
    Table  2.  Cone calorimeter data of PVC and its composites
    PHRR/
    (kW·m−2)
    THR/
    (MJ·m−2)
    TSP/m2Residue/
    wt%
    COP/(g·s−1)LOI/%UL 94
    PVC338.6954.4429.54 4.350.02126.6NR
    1wt%CSH@HA/PVC221.6150.5222.6110.820.01628.3NR
    3wt%CSH@HA/PVC202.0148.7620.2910.610.01529.7V-2
    5wt%CSH@HA/PVC162.0538.5616.3620.040.01333.1V-1
    5wt%CSH/PVC185.5746.7417.8514.580.01532.8V-2
    5wt%HA/PVC250.1148.6224.1415.850.01829.0NR
    5wt%(HA+CSH)/PVC197.7845.9321.5015.230.01630.2V-2
    Notes: PHRR—Peak heat release rate; COP—Carbon monoxide production; UL 94—Vertical burning test; NR—No rating.
    下载: 导出CSV 
    | 显示表格

    图6为CSH@HA/PVC及其复合材料的残炭宏观形貌及微观形貌图,图7为其XRD、FTIR及能谱图。从残炭宏观形貌可以看出,纯PVC燃烧后形成团缩状残炭,质地轻盈,蓬松多孔(图6(a)),微观形貌可看到残炭表面5~15 μm的连通孔及无数亚微米尺度的微孔(图6(d)),说明PVC燃烧后生成的大量HCl气体及其他可燃有机碎片由这些孔道逸出。CSH/PVC的残炭质地坚硬,炭层厚度明显增加(图6(b)),微观形貌显示残炭表面亚微米微孔数量显著减少,但仍存在大量1~2 μm尺度的微孔(图6(e))。CSH@HA/PVC的残炭看起来更坚韧,炭层更厚(图6(c)),微观形貌可看出炭层表面微孔接近消失(图6(f)),证明其可更有效地抑制PVC降解生成的烟气释放。

    图  6  CSH@HA/PVC及其复合材料的残炭宏观形貌及微观形貌:((a), (d)) PVC;((b), (e)) 5wt%CSH/PVC;((c), (f)) 5wt%CSH@HA/PVC
    Figure  6.  Macro- and micro-morphologies of CSH@HA/PVC composites: ((a), (d)) PVC; ((b), (e)) 5wt%CSH/PVC; ((c), (f)) 5wt%CSH@HA/PVC
    图  7  CSH@HA/PVC及其复合材料残炭XRD (a)、FTIR (b)及能谱(c)图谱
    Figure  7.  XRD (a), FTIR (b) and EDS (c) spectra of CSH@HA/PVC composites

    XRD结果表明(图7(a)),CSH/PVC残炭中白色颗粒为CaCl2、SnCl2、CaSn。除此之外,CSH@HA/PVC的残炭中还出现Ca5(PO4)3Cl的特征衍射峰。残炭的能谱分析结果显示(图7(c)),纯PVC残炭所含主要元素为C和O,对应于残炭中的芳香炭层;随CSH@HA含量提升,残炭中P、O、Cl 3种元素峰值逐渐增强,说明CSH@HA降解过程中可高效捕捉Cl自由基,降低了PVC的热降解速率并提升了残炭的生成率,这与XRD结果相互印证。残炭FTIR图谱(图7(b))显示CSH@HA/PVC在1105 cm−1和1025 cm−1处出现分别对应于P=O键和P—O键的伸缩振动吸收峰[35];1615 cm−1和1427 cm−1处发现芳香炭层C=C键的特征吸收峰。随着CSH@HA含量提升,芳环中C=C键的峰强度增加,证明CSH@HA具有催化PVC降解转化为更稳定残炭的能力。

    综合以上阻燃性能和成炭化学分析,推测CSH@HA对PVC的阻燃机制如下:受热时,高热稳定性的HA包覆层提升了内层CSH的热稳定性,并使其降解速度延缓。CSH@HA对PVC的阻燃机制如图8所示,在降解过程中包覆层HA在PVC降解初期受热脱水生成水蒸气稀释可燃性气体,并且与PVC降解释放的HCl反应生成Ca5(PO4)3Cl,从而降低HCl释放。进而内层CSH催化近火端PVC迅速交联成炭,并在高温条件下受热持续脱水生成水蒸气稀释可燃性气体,失水得到的锡酸钙进一步吸附空气中游离的HCl并与之反应,所得产物CaCl2和SnCl4与CO发生一系列氧化还原反应产生SnCl2和CaSn的同时降低烟气毒性。同时由Ca5(PO4)3Cl、SnCl2、SnCl2、CaSn等与芳香炭层一起起到更显著的热质阻隔效应。因此,HA和CSH共同作用,改变了PVC热解途径,生成了更多的凝聚相炭层,从而更加有效的保护了炭层下的树脂基体。

    图  8  CSH@HA对PVC的阻燃机制示意图
    Figure  8.  Flame retardant mechanism illustration of CSH@HA on PVC

    PVC及其复合材料的力学性能(包括拉伸强度和断裂伸长率)数据列于表3,其拉伸断面微观形貌如图9所示。结果表明,CSH@HA的添加使PVC的拉伸强度基本维持不变,而断裂伸长率呈现先增高后降低的趋势,当CSH@HA填充量达到3wt%时,PVC复合材料的断裂伸长率提升11.4%,说明适量CSH@HA的加入在维持PVC本来力学强度的同时,还增强了其韧性。拉伸断面微观形貌可以看出,纯PVC断裂面较平滑,拉伸韧窝小而浅,如图中圆圈所示。随着CSH@HA含量提升,材料断面可观察到越来越密集分布的CSH@HA颗粒,但并未明显团聚现象,且断面河流状褶皱逐渐增多,韧窝明显被拉伸且变深,证明拉伸断裂难度逐渐增大。力学性能的提升是由于CSH@HA与PVC良好的相容性,高分散的微纳米颗粒可以分散和传递材料断裂过程中的应力,从而提升材料的韧性[36]

    表  3  CSH@HA/PVC复合材料的力学性能
    Table  3.  Mechanical properties of CSH@HA/PVC composites
    Tensile
    strength/MPa
    Elongation at
    break/%
    PVC19.28±1.12496.81±15.01
    1wt%CSH@HA/PVC19.75±1.25530.96±14.12
    3wt%CSH@HA/PVC19.62±1.20552.58±18.36
    5wt%CSH@HA/PVC19.34±1.18496.99±20.06
    5wt%CSH/PVC19.88±0.87515.72±16.11
    下载: 导出CSV 
    | 显示表格
    图  9  PVC及其CSH@HA/PVC复合材料的拉伸断面图像: (a) PVC;((b)~(d)) 1wt%CSH@HA/PVC、3wt%CSH@HA/PVC、5wt%CSH@HA/PVC
    Figure  9.  Tensile fracture morphologies of PVC and CSH@HA/PVC composites: (a) PVC; ((b)-(d)) 1wt%CSH@HA/PVC, 3wt%CSH@HA/PVC, 5wt%CSH@HA/PVC

    (1) 通过化学共沉淀法合成了立方体型CaSn(OH)6(CSH)微纳米阻燃剂,并通过10倍模拟体液法(10 SBF)原位包覆杂化羟基磷灰石(HA),最终得到HA包覆的羟基锡酸钙(CSH@HA)杂化微纳米阻燃剂,并成功应用于软质聚氯乙烯(PVC)的阻燃研究。

    (2) CSH@HA对PVC展现出优异的阻燃效果。极少量的CSH@HA即能显著提高PVC的极限氧指数、降低PVC燃烧时的热释放速率、热释放量、烟释放量和CO排放量。CSH@HA在PVC降解过程中通过与HCl反应,保护内层CSH,将PVC转化为更稳定的炭层结构,延长了阻燃剂的使用寿命。低填充量CSH@HA还在保持软质PVC的力学性能的同时提升材料的韧性。

  • 图  1   羟基磷灰石/羟基锡酸钙(CSH@HA)杂化微纳米阻燃剂的合成路线

    Figure  1.   Synthetic routes of the hybrid micro-nanoscale hydroxystannate/hydroxyapatite (CSH@HA) flame retardant

    图  2   CSH及CSH@HA的微观形貌、粒径及元素面分布图:((a), (d)) CSH的SEM图像及粒径分布图; ((b), (c), (e)~(g)) CSH@HA的SEM图像、TEM图像、粒径分布、包覆层厚度拟合和元素分布

    Figure  2.   Morphologies, size and element distribution map of CSH and CSH@HA: ((a), (d)) SEM image and size distribution of CSH; ((b), (c), (e)-(g)) SEM image, TEM image, size distribution, coating thickness fitting and element distribution of CSH@HA

    图  3   CSH、HA、CSH@HA的XRD (a)、FTIR (b)及EDS (c)图谱

    Figure  3.   XRD (a), FTIR (b) and EDS (c) spectra of CSH, HA, CSH@HA

    图  4   CSH、HA、CSH@HA的TG (a)和DTG (b)曲线

    Figure  4.   TG (a) and DTG (b) curves of CSH, HA, CSH@HA

    图  5   CSH@HA/PVC复合材料的极限氧指数(LOI) (a)、热释放速率(HRR) (b)、总放热量(THR) (c)、烟释放速率(SPR) (d)、总放烟量(TSP) (e)及质量损失(f)随时间变化曲线

    Figure  5.   Limiting oxygen index (LOI) value (a), heat release rate (HRR) (b), total heat release (THR) (c), smoke production rate (SPR) (d), total smoke release (TSP) (e), and specimen mass residual (f) vs time curves of CSH@HA/PVC composites

    图  6   CSH@HA/PVC及其复合材料的残炭宏观形貌及微观形貌:((a), (d)) PVC;((b), (e)) 5wt%CSH/PVC;((c), (f)) 5wt%CSH@HA/PVC

    Figure  6.   Macro- and micro-morphologies of CSH@HA/PVC composites: ((a), (d)) PVC; ((b), (e)) 5wt%CSH/PVC; ((c), (f)) 5wt%CSH@HA/PVC

    图  7   CSH@HA/PVC及其复合材料残炭XRD (a)、FTIR (b)及能谱(c)图谱

    Figure  7.   XRD (a), FTIR (b) and EDS (c) spectra of CSH@HA/PVC composites

    图  8   CSH@HA对PVC的阻燃机制示意图

    Figure  8.   Flame retardant mechanism illustration of CSH@HA on PVC

    图  9   PVC及其CSH@HA/PVC复合材料的拉伸断面图像: (a) PVC;((b)~(d)) 1wt%CSH@HA/PVC、3wt%CSH@HA/PVC、5wt%CSH@HA/PVC

    Figure  9.   Tensile fracture morphologies of PVC and CSH@HA/PVC composites: (a) PVC; ((b)-(d)) 1wt%CSH@HA/PVC, 3wt%CSH@HA/PVC, 5wt%CSH@HA/PVC

    表  1   CSH@HA/聚氯乙烯(PVC)复合材料配方

    Table  1   Composition of CSH@HA/polyvinyl chloride (PVC) composite

    Sample CSH@HA/g CSH/g
    PVC 0.00 0.00
    1wt%CSH@HA/PVC 0.52 0.00
    3wt%CSH@HA/PVC 1.57 0.00
    5wt%CSH@HA/PVC 2.61 0.00
    5wt%CSH/PVC 0.00 2.61
    下载: 导出CSV

    表  2   PVC及其复合材料的锥形量热测试数据

    Table  2   Cone calorimeter data of PVC and its composites

    PHRR/
    (kW·m−2)
    THR/
    (MJ·m−2)
    TSP/m2Residue/
    wt%
    COP/(g·s−1)LOI/%UL 94
    PVC338.6954.4429.54 4.350.02126.6NR
    1wt%CSH@HA/PVC221.6150.5222.6110.820.01628.3NR
    3wt%CSH@HA/PVC202.0148.7620.2910.610.01529.7V-2
    5wt%CSH@HA/PVC162.0538.5616.3620.040.01333.1V-1
    5wt%CSH/PVC185.5746.7417.8514.580.01532.8V-2
    5wt%HA/PVC250.1148.6224.1415.850.01829.0NR
    5wt%(HA+CSH)/PVC197.7845.9321.5015.230.01630.2V-2
    Notes: PHRR—Peak heat release rate; COP—Carbon monoxide production; UL 94—Vertical burning test; NR—No rating.
    下载: 导出CSV

    表  3   CSH@HA/PVC复合材料的力学性能

    Table  3   Mechanical properties of CSH@HA/PVC composites

    Tensile
    strength/MPa
    Elongation at
    break/%
    PVC19.28±1.12496.81±15.01
    1wt%CSH@HA/PVC19.75±1.25530.96±14.12
    3wt%CSH@HA/PVC19.62±1.20552.58±18.36
    5wt%CSH@HA/PVC19.34±1.18496.99±20.06
    5wt%CSH/PVC19.88±0.87515.72±16.11
    下载: 导出CSV
  • [1]

    LEVCHIK S V, WEIL E D. Overview of the recent literature on flame retardancy and smoke suppression in PVC[J]. Polymers for Advanced Technologies,2005,16(10):707-716. DOI: 10.1002/pat.645

    [2]

    PAN Y T, YUAN Y S, WANG D Y, et al. An overview of the flame retardants for poly(vinyl chloride): Current states and perspective[J]. Chinese Journal of Chemistry,2020,38(12):1870-1896. DOI: 10.1002/cjoc.202000375

    [3] 尚松川, 杨保俊, 张睿辰, 等. Sb2O3-ZnMgAl类水滑石的制备及其在软聚氯乙烯阻燃中的应用[J]. 复合材料学报, 2017, 34(8):1667-1673.

    SHANG Songchuan, YANG Baojun, ZHANG Ruichen, et al. Preparation of Sb2O3-LDHs and its assisting flame retardant effects on soft polyvinyl chloride[J]. Acta Materiae Compositae Sinica,2017,34(8):1667-1673(in Chinese).

    [4]

    MEHTA B, KATHALEWAR M, SABNIS A. Diester based on castor oil fatty acid as plasticizer for poly(vinyl chloride)[J]. Journal of Applied Polymer Science,2014,131(11):1-8.

    [5]

    QU H Q, WU W H, XIE J X, et al. A novel intumescent flame retardant and smoke suppression system for flexible PVC[J]. Polymers for Advanced Technologies,2011,22(7):1174-1181. DOI: 10.1002/pat.1934

    [6]

    GIORGIO Z, SERGIO B, TIZIANA B, et al. Safer plasticized polyvinyl chloride synthetic leathers for the automotive industry: Evaluation of alternatives to antimony compounds as flame retardants[J]. Polymer Engineering and Science,2019,59(12):2488-2497. DOI: 10.1002/pen.25121

    [7]

    NING Y, GUO S Y. Flame-retardant and smoke-suppressant properties of zinc borate and aluminum trihydrate-filled rigid PVC[J]. Journal of Applied Polymer Science,2000,77(14):3119-3127. DOI: 10.1002/1097-4628(20000929)77:14<3119::AID-APP130>3.0.CO;2-N

    [8]

    LU Y H, WU C F, XU S A. Mechanical, thermal and flame retardant properties of magnesium hydroxide filled poly(vinyl chloride) composites: The effect of filler shape[J]. Composites Part A: Applied Science and Manufacturing,2018,113:1-11. DOI: 10.1016/j.compositesa.2018.07.012

    [9]

    GREEN J. Mechanisms for flame retardancy and smoke suppression—A review[J]. Journal of Fire Sciences,1996,14(6):426-442. DOI: 10.1177/073490419601400602

    [10]

    QU H Q, WU W H, ZHENG Y J, et al. Synergistic effects of inorganic tin compounds and Sb2O3 on thermal properties and flame retardancy of flexible poly(vinyl chloride)[J]. Fire Safety Journal,2011,46(7):462-467. DOI: 10.1016/j.firesaf.2011.07.006

    [11]

    ZHANG B, JIAO Y H, XU J Z. A study on the flame-retardance of poly(vinyl chloride) incorporated with metal hydroxystannates[J]. Journal of Applied Polymer Science,2009,112(1):82-88. DOI: 10.1002/app.29404

    [12]

    ZHANG Z D, LI X L, YUAN Y S, et al. Confined dispersion of zinc hydroxystannate nanoparticles into layered bimetallic hydroxides nanocapsules and its application in flame retardant epoxy nanocomposites[J]. ACS Applied Materials & Interfaces,2019,11(43):40951-40960.

    [13]

    LONG M Y, PENG S, DENG W S, et al. A robust superhydrophobic PDMS@ZnSn(OH)6 coating with under-oil self-cleaning and flame retardancy[J]. Journal Materials Chemistry A,2017,5(43):22761-22771. DOI: 10.1039/C7TA06190K

    [14]

    WANG B B, SHENG H B, SHI Y Q, et al. The influence of zinc hydroxystannate on reducing toxic gases (CO, NOx and HCN) generation and fire hazards of thermoplastic polyurethane composites[J]. Journal of Hazardous Materials,2016,314:260-269. DOI: 10.1016/j.jhazmat.2016.04.029

    [15]

    LI P P, ZHENG Y P, LI M Z, et al. Enhanced flame-retardant property of epoxy composites filled with solvent-free and liquid-like graphene organic hybrid material decorated by zinc hydroxystannate boxes[J]. Composites Part A: Applied Science and Manufacturing,2016,81:172-181. DOI: 10.1016/j.compositesa.2015.11.013

    [16] 李志伟, 黄永山, 李小红, 等. 一种新型ZHS-MF复合阻燃剂的制备及其在软质PVC中的应用[J]. 复合材料学报, 2013, 30(4):29-34. DOI: 10.13801/j.cnki.fhclxb.2013.04.010

    LI Zhiwei, HUANG Yongshan, LI Xiaohong, et al. Preparation of a novel ZHS-MF composite flame retardant and its application in flexible poly(vinyl chloride)[J]. Acta Materiae Compositae Sinica,2013,30(4):29-34(in Chinese). DOI: 10.13801/j.cnki.fhclxb.2013.04.010

    [17]

    HUO Z Y, WU H J, SONG Q G, et al. Synthesis of zinc hydroxystannate/reduced graphene oxide composites using chitosan to improve poly(vinyl chloride) performance[J]. Carbohydrate Polymers,2021,256:117575. DOI: 10.1016/j.carbpol.2020.117575

    [18]

    XU W Z, CHEN R, XU J Y, et al. Nickel hydroxide and zinc hydroxystannate dual modified graphite carbon nitride for the flame retardancy and smoke suppression of epoxy resin[J]. Polymer Degradation and Stability,2020,182:109366. DOI: 10.1016/j.polymdegradstab.2020.109366

    [19] 张冲, 耿晓维, 高香迪, 等. 环交联聚磷腈包覆羟基锡酸锶杂化纳米棒的合成及阻燃环氧树脂研究[J]. 无机材料学报, 2019, 34(7):761-767. DOI: 10.15541/jim20180493

    ZHANG Chong, GENG Xiaowei, GAO Xiangdi, et al. Synthesis of cyclic crosslinked polyphosphazene coated strontium hydroxystannate hybrid nanorods and research on flame retardant epoxy resin[J]. Journal of Inorganic Materials,2019,34(7):761-767(in Chinese). DOI: 10.15541/jim20180493

    [20]

    ZHANG C, GUO X D, MA S M, et al. Strontium hydroxystannate nanorods encapsulated by hybrid polyphosphazene: Synthesis and flame retardancy on epoxy resin[J]. Materials Letters,2018,229:297-300. DOI: 10.1016/j.matlet.2018.07.047

    [21] 胡伟东, 赵贺, 焦运红, 等. 羟基锡酸钴在软质聚氯乙烯中的高效阻燃消烟作用[J]. 复合材料学报, 2019, 36(9):2067-2075.

    HU Weidong, ZHAO He, JIAO Yunhong, et al. High efficient flame retardancy and smoke suppression effect of cobalt hydroxystannate on flexible polyvinyl chloride[J]. Acta Materiae Compositae Sinica,2019,36(9):2067-2075(in Chinese).

    [22] 董璐铭, 苏衍跃, 王春征, 等. 微纳米钙钛矿型羟基锡酸钙的合成及对环氧树脂的阻燃性能[J]. 高等学校化学学报, 2021, 42(3):937-945.

    DONG Luming, SU Yanyue, WANG Chunzheng, et al. Synthesis of micro- to nano-scale perovskite calcium hydroxystannate and its performance as a flame retardant in epoxy resin[J]. Chemical Journal of Chinese Universities,2021,42(3):937-945(in Chinese).

    [23]

    DONG L M, SU Y Y, QIAO Y F, et al. Structure regulation of boron-doped calcium hydroxystannate and its enhancement on flame retardancy and mechanical properties of PVC[J]. Polymers for Advanced Technologies,2021,32(4):1831-1843. DOI: 10.1002/pat.5224

    [24]

    YANG D Q, ZHANG C, DONG L M, et al. Synthesis and properties of SrSn(OH)6 nanorods and their flame retardancy and smoke suppression effects on epoxy resin[J]. Journal of Coatings Technology and Research,2019,16(6):1715-1725. DOI: 10.1007/s11998-019-00254-x

    [25]

    FIUME E, MAGNATERRA G, RAHDAR A, et al. Hydroxyapatite for biomedical applications: A short overview[J]. Ceramics,2021,4(4):542-563. DOI: 10.3390/ceramics4040039

    [26]

    ZHU J D, XIONG R J, ZHAO F X, et al. Lightweight, high-strength, and anisotropic structure composite aerogel based on hydroxyapatite nanocrystal and chitosan with thermal insulation and flame retardant properties[J]. ACS Sustainable Chemistry & Engineering, 2019, 8(1): 71-83.

    [27]

    CHEN F F, ZHU Y J, XIONG Z C, et al. Hydroxyapatite nanowire-based all-weather flexible electrically conduc-tive paper with superhydrophobic and flame-retardant properties[J]. ACS Applied Materials & Interfaces,2017,9(45):39534-39548.

    [28]

    VAHABI H, SHABANIAN M, ARYANASAB F, et al. Inclusion of modified lignocellulose and nano-hydroxyapatite in development of new bio-based adjuvant flame retardant for poly(lactic acid)[J]. Thermochimica Acta,2018,666:51-59. DOI: 10.1016/j.tca.2018.06.004

    [29]

    DEMIRTAS T T, KAYNAK G, GÜMÜSDERELIOGLU M. Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation[J]. Materials Science and Engineering: C,2015,49:713-719. DOI: 10.1016/j.msec.2015.01.057

    [30] 中国国家标准化管理委员会. 塑料用氧指数法测定燃烧行为 第2部分: 室温试验: GB/T 2406.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics: Determination of burning behaviour by oxygen index Part 2: Ambient temperature test: GB/T 2406.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).

    [31] 中国国家标准化管理委员会. 塑料燃烧性能的测定 水平法和垂直法: GB/T 2408—2008[S].北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Plastics: Determination of burning characteristics: Horizontal and vertical test: GB/T 2408—2008[S]. Beijing: China Standards Press, 2009(in Chinese).

    [32]

    ASTM Committee. Standard test method for tensile properties of plastics: ASTM D638-14[S]. West Conshohocken: ASTM International, 2014.

    [33]

    SANDESH S, KRISTACHAR P K R, MANJUNATHAN P, et al. Synthesis of biodiesel and acetins by transesterification reactions using novel CaSn(OH)6 heterogeneous base catalyst[J]. Applied Catalysis A: General,2016,523:1-11. DOI: 10.1016/j.apcata.2016.05.006

    [34] 陈景帝, 王迎军, 魏坤, 等. 羟基磷灰石的可控制备及其研究[J]. 材料科学与工艺, 2007, 4(4):515-518. DOI: 10.3969/j.issn.1005-0299.2007.04.019

    CHEN Jingdi, WANG Yingjun, WEI Kun, et al. Synthesis and characterization of nano hydroxyapatite particles[J]. Materials Science and Technology,2007,4(4):515-518(in Chinese). DOI: 10.3969/j.issn.1005-0299.2007.04.019

    [35] 贺梦, 张冲, 郭晓东, 等. 含硫功能聚磷腈微纳米球的合成及其在环氧树脂阻燃中的应用[J]. 复合材料学报, 2019, 36(3):584-591. DOI: 10.13801/j.cnki.fhclxb.20180711.001

    HE Meng, ZHANG Chong, GUO Xiaodong, et al. Synthesis of sulfur containing polyphosphazene micro-nano sphere and its application in flame retarded epoxy resin[J]. Acta Materiae Compositae Sinica,2019,36(3):584-591(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20180711.001

    [36]

    HAJIBEYGI M, MALEKI M, SHABANIAN M, et al. New polyvinyl chloride (PVC) nanocomposite consisting of aromatic polyamide and chitosan modified ZnO nanoparticles with enhanced thermal stability, low heat release rate and improved mechanical properties[J]. Applied Surface Science,2018,439:1163-1179. DOI: 10.1016/j.apsusc.2018.01.255

  • 期刊类型引用(2)

    1. 何彩瑀,张伟,房美琦,李文浩,王科,王鹏鑫,张洪涛. 阻燃剂的研究及应用综述. 辽宁化工. 2024(07): 1114-1116+1140 . 百度学术
    2. 马殿普,郎丽君,袁英杰,覃德清,潘飞,符泽卫. 锡酸钙及其衍生物的制备方法及应用研究进展. 材料导报. 2024(S2): 38-46 . 百度学术

    其他类型引用(2)

图(9)  /  表(3)
计量
  • 文章访问数:  1276
  • HTML全文浏览量:  848
  • PDF下载量:  63
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-05-04
  • 修回日期:  2022-06-21
  • 录用日期:  2022-06-23
  • 网络出版日期:  2022-06-30
  • 刊出日期:  2023-05-14

目录

/

返回文章
返回