Electromagnetic absorption properties of TiC/Fe@nitrogen-doped carbon nanohorn composites
-
摘要: Fe/C复合材料因其优异的微波吸收性能而备受关注,但其阻抗匹配和匹配厚度有待进一步优化。本文通过高温等离子放电法在制备包覆Fe纳米颗粒的氮掺杂碳纳米角(Fe@NCNHs)的基础上引入了TiC,成功合成包覆TiC和Fe纳米颗粒的N掺杂碳纳米角(TiC/Fe@NCNHs)复合材料。这种复合材料具有良好的阻抗匹配,同时具备介电损耗、磁损耗、反射损耗等多种损耗机制,展现出良好的电磁波衰减性能。实验结果表明,当Fe和TiC纳米颗粒的负载量分别为9wt%和7wt%时,吸波性能最优。在频率为17.66 GHz处,其匹配厚度为1.4 mm,最小反射损耗达到−41.66 dB,有效吸收带宽为4.85 GHz(13.15-18 GHz)。本研究解决了Fe/C复合材料阻抗匹配差的问题,并且进一步优化了其电磁波衰减性能,获得了“薄、轻、宽、强”的TiC/Fe@NCNHs 吸波材料。Abstract: Fe/C composites have attracted much attention due to their excellent microwave absorption properties, but their impedance matching and matched thickness need to be further optimised. In this paper, TiC was introduced on the basis of the preparation of nitrogen-doped carbon nanohorns (Fe@NCNHs) encapsulating Fe nanoparticles by high-temperature plasma discharge method, and N-doped carbon nanohorns (TiC/Fe@NCNHs) composites encapsulating TiC and Fe nanoparticles were successfully synthesised. This composite material has good impedance matching and various loss mechanisms such as dielectric loss, magnetic loss, reflection loss, etc., and exhibits good electromagnetic wave attenuation performance. The experimental results show that the optimum wave-absorbing performance is achieved when the loadings of Fe and TiC nanoparticles are 9 wt% and 7 wt%, respectively. At a frequency of 17.66 GHz with a matched thickness of 1.4 mm, the minimum reflection loss reaches -41.66 dB and the effective absorption bandwidth is 4.85 GHz (13.15-18 GHz). In this study, the problem of poor impedance matching of Fe/C composites is solved, and the electromagnetic wave attenuation performance is further optimised, and the TiC/Fe@NCNHs wave-absorbing materials are obtained as "thin, light, wide and strong".
-
Key words:
- microwave absorption /
- carbon nanohorn /
- TiC /
- impedance matching /
- reflection loss /
- dielectric loss
-
图 4 TiC/Fe@NCNHs 的电磁参数:(a)介电常数实部(ε'),(b)介电常数虚部(ε''),(c)介电常数正切(tanδε),(d)磁导率实部(μ'),(e)磁导率虚部(μ''),以及(f)磁导率正切(tanδμ)
Figure 4. Electromagnetic parameters of TiC/Fe@NCNHs: (a) real permittivity(ε'), (b) imaginary permittivity(ε''), (c) dielectric loss tangents(tanδε), (d) real permeability(μ'), (e) imaginary permeability(μ''), and (f) magnetic loss tangents(tanδμ).
图 7 (a1-a3)7wt%-TiC/9wt%-Fe @NCNHs 的 RL 值、三维 RL 和三维投影图(b1-b3)9wt%-TiC/7wt%-Fe @NCNHs 的 RL 值、三维 RL 和三维投影图(c1-c3)7wt%-TiC/9wt%-Fe @NCNHs 的 RL 值、三维 RL 和三维投影图
Figure 7. (a1-a3) The RL values, 3 D RL, and 3 D projection plots of 7wt%-TiC/9wt%-Fe @NCNHs (b1-b3) The RL values, 3 D RL, and 3 D projection plots of 9wt%-TiC/7wt%-Fe @NCNHs (c1-c3) The RL values, 3 D RL, and 3 D projection plots of 7wt%-TiC/9wt%-Fe @NCNHs
表 1 以往参考文献和本研究中不同Fe/C复合材料的电磁吸收特性
Table 1. EM absorption properties of different Fe/C composites in previous references and this work.
Material Thickness Effective absorption bandwidth Minimum reflection loss (Frequency) Refs Fe/C porous nanofibers 4.29 mm 1.7 GHz −56.6 dB (4.96 GHz) [11] Fe@C 3 mm 7.5 GHz −37.7 dB (13.4 GHz) [42] MCNTs@Fe/C 2.4 mm 2 GHz −44.26 dB (8.32 GHz) [43] leaf-like Fe/C 3.05 mm 6.0 GHz −59.7 dB (6 GHz) [44] Fe2C/Fe3O4/C 2.8 mm 3.8 GHz −60 dB (10.8 GHz) [45] ripple-like Fe/C 2.5 mm 6.3 GHz −22 dB (17.78 GHz) [46] Fe3O4@Fe@C 1.85 mm 5.36 GHz −59.1 dB (13.36 GHz) [47] Fe@NCNHs 1.6 mm 3.23 GHz −44.52 dB(10.86 GHz) [13] 7wt%-TiC/7wt%-Fe@NCNHs 3.6 mm 3.99 GHz −43.52 dB (7.03 GHz) Herein 9wt%-TiC/7wt%-Fe@NCNHs 2.2 mm 4.76 GHz −43.63 dB (11.37 GHz) Herein 7wt%-TiC/9wt%-Fe@NCNHs 1.4 mm 4.85 GHz −41.62 dB (17.66 GHz) Herein Note: MCNTs—Multiwalled carbon nanotubes. -
[1] SONG Y, YIN F, ZHANG C, et al. Inverse-opal-based carbon composite monoliths for microwave absorption applications[J]. Carbon, 2020, 166: 328-338. doi: 10.1016/j.carbon.2020.05.020 [2] CHENG Y, ZHAO H, LV H, et al. Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications[J]. Advanced Electronic Materials, 2020, 6(1): 1900796. doi: 10.1002/aelm.201900796 [3] DING D, WANG Y, LI X, et al. Rational design of core-shell Co@ C microspheres for high-performance microwave absorption[J]. carbon, 2017, 111: 722-732. doi: 10.1016/j.carbon.2016.10.059 [4] WANG Z, BI H, WANG P, et al. Magnetic and microwave absorption properties of self-assemblies composed of core–shell cobalt–cobalt oxide nanocrystals[J]. Physical Chemistry Chemical Physics, 2015, 17(5): 3796-3801. doi: 10.1039/C4CP04985C [5] HANTANASIRISAKUL K, GOGOTSI Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)[J]. Advanced materials, 2018, 30(52): 1804779. doi: 10.1002/adma.201804779 [6] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 1-17. [7] MENG X, LIU Y, HAN G, et al. Three-dimensional (Fe3O4/ZnO) @C Double-core@shell porous nanocomposites with enhanced broadband microwave absorption[J]. Carbon, 2020, 162: 356-364. doi: 10.1016/j.carbon.2020.02.035 [8] ZHANG X J, WANG G S, CAO W Q, et al. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride[J]. ACS applied materials & interfaces, 2014, 6(10): 7471-7478. [9] LIU Q, CAO Q, BI H, et al. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption[J]. Advanced Materials (Deerfield Beach, Fla. ), 2015, 28(3): 486-490. [10] YAN L, LIU J, ZHAO S, et al. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions[J]. Nano Research, 2017, 10: 1595-1607. doi: 10.1007/s12274-016-1302-8 [11] WANG F, SUN Y, LI D, et al. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning[J]. Carbon, 2018, 134: 264-273. doi: 10.1016/j.carbon.2018.03.081 [12] LI X P, DENG Z, LI Y, et al. Controllable synthesis of hollow microspheres with Fe@Carbon dual-shells for broad bandwidth microwave absorption[J]. Carbon, 2019, 147: 172-181. doi: 10.1016/j.carbon.2019.02.073 [13] ZHANG Z, ZHANG G, LEI L, et al. One-step synthesis of Fe nanoparticles wrapped in N-doped carbon nanohorn microspheres as high-performance electromagnetic wave absorber[J]. Ceramics International, 2022, 48(13): 18338-18347. doi: 10.1016/j.ceramint.2022.03.093 [14] ZHONG Y, XIA X, SHI F, et al. Transition metal carbides and nitrides in energy storage and conversion[J]. Advanced science, 2016, 3(5): 1500286. doi: 10.1002/advs.201500286 [15] WANG D X, JAVID M, SALEEM M F, et al. A nanocomposite of dual-phase Fe/TiCN wrapped in nitrogen-doped carbon with magnetic and dielectric characters for superior microwave absorption[J]. Ceramics International, 2023, 49: 12240-12250. doi: 10.1016/j.ceramint.2022.12.076 [16] ZHOU Y L, MUHAMMAD J, ZHANG X F, et al. Novel nanocapsules with Co-TiC twin cores and regulable graphitic shells for superior electromagnetic wave absorption[J]. RAC Advances, 2018, 8: 6397-6405. [17] ZHOU Y L, MUHAMMAD J, ZHOU T H, et al. Incorporation of magnetic component to construct (TiC/Ni) @C ternary composite with heterogeneous interface for enhanced microwave absorption[J]. Journal of Alloys and Compounds, 2019, 778: 779-786. doi: 10.1016/j.jallcom.2018.11.237 [18] IKEDA M, TAKIKAWA H, TAHARA T, et al. Preparation of carbon nanohorn aggregates by cavity arc jet in open air[J]. Japanese Journal of Applied Physics, 2002, 41: L852-L854. doi: 10.1143/JJAP.41.L852 [19] TAKIKAWA H, IKEDA M, HIRAHATRA K, et al. Fabrication of single-walled carbon nanotubes and nanohorns by means of a torch arc in open air[J]. Physical B: Condensed Matter, 2002, 323(1-4): 277-279. doi: 10.1016/S0921-4526(02)00998-5 [20] JUNG H J, KIM Y J, HAN J H, et al. Thermal-treatment-induced enhancement in effective surface area of single-walled carbon nanohorns for supercapacitor application[J]. The Journal of Physical Chemistry C, 2013, 117(49): 25877-25883. doi: 10.1021/jp405839z [21] NI Z, WANG Y Y, YU T, et al. Raman spectroscopy and imaging of graphene, Nano Res[J]. 2008. [22] YU J, YU H, GAO J, et al. Synthesis and electrochemical activities of TiC/C core-shell nanocrystals[J]. Journal of Alloys and Compounds, 2017, 693: 500-509. doi: 10.1016/j.jallcom.2016.09.232 [23] MI P, HE J, QIN Y, et al. Nanostructure reactive plasma sprayed TiCN coating[J]. Surface and Coatings Technology, 2017, 309: 1-5. doi: 10.1016/j.surfcoat.2016.11.033 [24] WEI Z H, REN Y Q, ZHAO H, et al. Controllable preparation and synergistically improved catalytic performance of TiC/C hybrid nanofibers via electrospinning for the oxygen reduction reaction[J]. Ceramics International, 2020, 46: 25313-25319. doi: 10.1016/j.ceramint.2020.06.325 [25] NAN Y, ZHANG Z, HE Y, et al. Optimized nanopores opened on N-doped carbon nanohorns filled with Fe/Fe2O3 nanoparticles as advanced electrocatalysts for the oxygen evolution reaction[J]. Inorganic Chemistry, 2021, 60(21): 16529-16537. doi: 10.1021/acs.inorgchem.1c02416 [26] HOU T, WANG B, MA M, et al. Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties[J]. Composites Part B: Engineering, 2020, 180: 107577. doi: 10.1016/j.compositesb.2019.107577 [27] WANG W, GUMFEKAR S P, JIAO Q, et al. Ferrite-grafted polyaniline nanofibers as electromagnetic shielding materials[J]. Journal of Materials Chemistry C, 2013, 1(16): 2851-2859. doi: 10.1039/c3tc00757j [28] PHANG S W, HINO T, ABDULLAH M H, et al. Applications of polyaniline doubly doped with p-toluene sulphonic acid and dichloroacetic acid as microwave absorbing and shielding materials[J]. Materials Chemistry and Physics, 2007, 104(2-3): 327-335. doi: 10.1016/j.matchemphys.2007.03.031 [29] LI W, SHU R, WU Y, et al. Metal organic frameworks-derived iron carbide/ferroferric oxide/carbon/reduced graphene oxide nanocomposite with excellent electromagnetic wave absorption properties[J]. Composites Communications, 2021, 23: 100576. doi: 10.1016/j.coco.2020.100576 [30] LI N, HUANG G W, LI Y Q, et al. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure[J]. ACS applied materials & interfaces, 2017, 9(3): 2973-2983. [31] GAO S, ZHANG Y, XING H, et al. Controlled reduction synthesis of yolk-shell magnetic@ void@ C for electromagnetic wave absorption[J]. Chemical Engineering Journal, 2020, 387: 124149. doi: 10.1016/j.cej.2020.124149 [32] JIAN X, TIAN W, LI J, et al. High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption[J]. ACS applied materials & interfaces, 2019, 11(17): 15869-15880. [33] QIAO M, WEI D, HE X, et al. Novel yolk–shell Fe3O4@void@SiO2@PPy nanochains toward microwave absorption application[J]. Journal of Materials Science, 2021, 56: 1312-1327. doi: 10.1007/s10853-020-05313-y [34] SHU R, ZHANG G, WANG X, et al. Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers[J]. Chemical Engineering Journal, 2018, 337: 242-255. doi: 10.1016/j.cej.2017.12.106 [35] SHU R, LI W, WU Y, et al. Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X-band[J]. Chemical Engineering Journal, 2019, 362: 513-524. doi: 10.1016/j.cej.2019.01.090 [36] YIN L, CHEN T, LIU S, et al. Preparation and microwave-absorbing property of BaFe12O19 nanoparticles and BaFe12O19/Fe3C/CNTs composites[J]. RSC Advances, 2015, 5(111): 91665-91669. doi: 10.1039/C5RA16310B [37] LIU W, PAN J, JI G, et al. Switching the electromagnetic properties of multicomponent porous carbon materials derived from bimetallic metal–organic frameworks: effect of composition[J]. Dalton Transactions, 2017, 46(11): 3700-3709. doi: 10.1039/C7DT00156H [38] TIAN X, MENG F, MENG F, et al. Synergistic enhancement of microwave absorption using hybridized polyaniline@ helical CNTs with dual chirality[J]. ACS applied materials & interfaces, 2017, 9(18): 15711-15718. [39] XIE P, LI H, HE B, et al. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption[J]. Journal of Materials Chemistry C, 2018, 6(32): 8812-8822. doi: 10.1039/C8TC02127A [40] WU Z C, CHENG H W, JIN C, et al. , Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), e2107538 (2022). [41] PAN P, CAI L, SHI Y Y, DONG Y Y, et al. , Heterointerface engineering of beta-chitin/carbon nano-onions/Ni-P composites with boosted maxwell-wagner-sillars effect for highly efficient electromagnetic wave response and thermal management. Nano-Micro Lett. 14(1), 85 (2022). [42] DENG Z, LI Y, ZHANG H B, et al. Lightweight Fe@ C hollow microspheres with tunable cavity for broadband microwave absorption[J]. Composites Part B: Engineering, 2019, 177: 107346. doi: 10.1016/j.compositesb.2019.107346 [43] LI Y, CHEN X, WEI Q, et al. Oxygen-sulfur Co-substitutional Fe@ C nanocapsules for improving microwave absorption properties[J]. Science bulletin, 2020, 65(8): 623-630. doi: 10.1016/j.scib.2020.01.009 [44] LI X, DONG W, ZHANG C, et al. Leaf-like Fe/C composite assembled by iron veins interpenetrated into amorphous carbon lamina for high-performance microwave absorption[J]. Composites Part A: Applied Science and Manufacturing, 2021, 140: 106202. doi: 10.1016/j.compositesa.2020.106202 [45] LI W, SHU R, WU Y, et al. Metal organic frameworks-derived iron carbide/ferroferric oxide/carbon/reduced graphene oxide nanocomposite with excellent electromagnetic wave absorption properties[J]. Composites Communications, 2021, 23: 100576. doi: 10.1016/j.coco.2020.100576 [46] CHEN Y, QIANG R, SHAO Y, et al. Biomass-derived Fe/C composites for broadband electromagnetic wave response[J]. Journal of Alloys and Compounds, 2023, 968: 171952. doi: 10.1016/j.jallcom.2023.171952 [47] ZHU Z, ZHANG L, LIU P, et al. MOF-derived multicore-shell Fe3O4@Fe@ C composite: An ultrastrong electromagnetic wave absorber[J]. Carbon, 2023, 215: 118477. doi: 10.1016/j.carbon.2023.118477 [48] XU H, YIN X, FAN X, et al. Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance[J]. Carbon, 2019, 148: 421-429. doi: 10.1016/j.carbon.2019.03.091 [49] LIU W, LIU L, JI G, et al. Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7961-7971. [50] HOU T, JIA Z, WANG B, et al. Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers[J]. Chemical Engineering Journal, 2021, 422: 130079. doi: 10.1016/j.cej.2021.130079
计量
- 文章访问数: 93
- HTML全文浏览量: 40
- 被引次数: 0