留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiC/Fe@氮掺杂碳纳米角复合材料的电磁吸波性能

许莉 朱启程 张育斌 南艳丽 乔明涛

许莉, 朱启程, 张育斌, 等. TiC/Fe@氮掺杂碳纳米角复合材料的电磁吸波性能[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 许莉, 朱启程, 张育斌, 等. TiC/Fe@氮掺杂碳纳米角复合材料的电磁吸波性能[J]. 复合材料学报, 2024, 42(0): 1-13.
XU Li, ZHU Qicheng, ZHANG Yubin, et al. Electromagnetic absorption properties of TiC/Fe@nitrogen-doped carbon nanohorn composites[J]. Acta Materiae Compositae Sinica.
Citation: XU Li, ZHU Qicheng, ZHANG Yubin, et al. Electromagnetic absorption properties of TiC/Fe@nitrogen-doped carbon nanohorn composites[J]. Acta Materiae Compositae Sinica.

TiC/Fe@氮掺杂碳纳米角复合材料的电磁吸波性能

基金项目: 陕西省自然科学基金(2024JC-YBQN-0526);浙江省自然科学基金(LQ21E010004);宁波市科技计划项目(2021S022)
详细信息
    通讯作者:

    南艳丽,博士,副教授,硕士生导师,研究方向为新型碳材料 E-mail: nanyl@xauat.edu.cn

  • 中图分类号: TB333

Electromagnetic absorption properties of TiC/Fe@nitrogen-doped carbon nanohorn composites

Funds: Shaanxi Provincial Natural Science Foundation (2024JC-YBQN-0526); Zhejiang Provincial Natural Science Foundation (LQ21E010004); Ningbo Municipal Science and Technology Programme Project (2021S022)
  • 摘要: Fe/C复合材料因其优异的微波吸收性能而备受关注,但其阻抗匹配和匹配厚度有待进一步优化。本文通过高温等离子放电法在制备包覆Fe纳米颗粒的氮掺杂碳纳米角(Fe@NCNHs)的基础上引入了TiC,成功合成包覆TiC和Fe纳米颗粒的N掺杂碳纳米角(TiC/Fe@NCNHs)复合材料。这种复合材料具有良好的阻抗匹配,同时具备介电损耗、磁损耗、反射损耗等多种损耗机制,展现出良好的电磁波衰减性能。实验结果表明,当Fe和TiC纳米颗粒的负载量分别为9wt%和7wt%时,吸波性能最优。在频率为17.66 GHz处,其匹配厚度为1.4 mm,最小反射损耗达到−41.66 dB,有效吸收带宽为4.85 GHz(13.15-18 GHz)。本研究解决了Fe/C复合材料阻抗匹配差的问题,并且进一步优化了其电磁波衰减性能,获得了“薄、轻、宽、强”的TiC/Fe@NCNHs 吸波材料。

     

  • 图  1  TiC/Fe@氮掺杂碳纳米角(TiC/Fe@NCNHs)复合材料的制备示意图

    Figure  1.  Schematic Illustration of the Fabrication of TiC/Fe@nitrogen-doped carbon nanohorn (TiC/Fe@NCNHs) composite

    图  2  (a) 9wt%-TiC/7wt%-Fe@NCNHs的TEM图像(插图a1为 CNHs尖端的HRTEEM图像、插图a2为电子衍射花样)(b-c)9wt%-TiC/7wt%-Fe@NCNHs的HRTEM图像

    Figure  2.  (a) TEM image of 9wt%-TiC/7wt%-Fe@NCNHs (a1 inset of HRTEEM image of the tip of the CNHs, a2 inset of theSAED pattern). (b-c) HRTEM images of 9wt%-TiC/7wt%-Fe@NCNHs

    图  3  (a) Fe/TiC@NCNHs的XRD图;(b) TiC/Fe@NCNHs的拉曼光谱;(c) 7wt%-TiC/7wt%-Fe@NCNHs的XPS光谱;(c1-c4)C、N、Ti 和 Fe 峰的高分辨率光谱

    Figure  3.  (a) XRD patterns of Fe/TiC@NCNHs. (b) Raman spectra of TiC/Fe@NCNHs. (c) Wide XPS spectra of 7wt%-TiC/7wt%-Fe@NCNHs. c1-c4) The high-resolution spectrum of C, N, Ti and Fe peaks

    图  4  TiC/Fe@NCNHs 的电磁参数:(a)介电常数实部(ε'),(b)介电常数虚部(ε''),(c)介电常数正切(tanδε),(d)磁导率实部(μ'),(e)磁导率虚部(μ''),以及(f)磁导率正切(tanδμ)

    Figure  4.  Electromagnetic parameters of TiC/Fe@NCNHs: (a) real permittivity(ε'), (b) imaginary permittivity(ε''), (c) dielectric loss tangents(tanδε), (d) real permeability(μ'), (e) imaginary permeability(μ''), and (f) magnetic loss tangents(tanδμ).

    图  5  (a-c) 7wt%-TiC/7wt%-Fe、9wt%-TiC/7wt%-Fe、7wt%-TiC/9wt%-Fe@NCNHs 的Cole-Cole半圆

    Figure  5.  (a-c) Cole-Cole semicircles of 7wt%-TiC/7wt%-Fe, 9wt%-TiC/7wt%-Fe, 7wt%-TiC/9wt%-Fe@NCNHs

    图  6  7wt%-TiC/7wt%-Fe @NCNHs、9wt%-TiC/7wt%-Fe @NCNHs 和7wt%-TiC/9wt%-Fe @NCNHs的涡流损耗

    Figure  6.  Frequency dependences of C0 for 7wt%-TiC/7wt%-Fe @NCNHs, 9wt%-TiC/7wt%-Fe @NCNHs and 7wt%-TiC/9wt%-Fe@NCNHs

    图  7  (a1-a3)7wt%-TiC/9wt%-Fe @NCNHs 的 RL 值、三维 RL 和三维投影图(b1-b3)9wt%-TiC/7wt%-Fe @NCNHs 的 RL 值、三维 RL 和三维投影图(c1-c3)7wt%-TiC/9wt%-Fe @NCNHs 的 RL 值、三维 RL 和三维投影图

    Figure  7.  (a1-a3) The RL values, 3 D RL, and 3 D projection plots of 7wt%-TiC/9wt%-Fe @NCNHs (b1-b3) The RL values, 3 D RL, and 3 D projection plots of 9wt%-TiC/7wt%-Fe @NCNHs (c1-c3) The RL values, 3 D RL, and 3 D projection plots of 7wt%-TiC/9wt%-Fe @NCNHs

    图  8  7wt%-TiC/7wt%-Fe@NCNHs 、9wt%-TiC/7wt%-Fe@NCNHs 和 7wt%-TiC/9wt%-Fe@NCNHs 的衰减常数α

    Figure  8.  Attenuation constant α of 7wt%-TiC/7wt%-Fe@NCNHs, 9wt%-TiC/7wt%-Fe @NCNHs and 7wt%-TiC/9wt%-Fe @NCNHs

    图  9  (a-c) 7wt%-TiC/7wt%-Fe@ NCNHs、9wt%-TiC/7wt%-Fe@ NCNHs和7wt%-TiC/9wt%-Fe@ NCNHs的阻抗匹配 Z 曲线。

    Figure  9.  (a-c) Impedance matching Z curves of 7wt%-TiC/7wt%-Fe@ NCNHs, 9wt%-TiC/7wt%-Fe@ NCNHs and 7wt%-TiC/9wt%-Fe@NCNHs

    图  10  TiC/Fe@NCNHs可能的电磁波吸收机制示意图

    Figure  10.  Schematic illustration of the possible EMW absorption mechanism for the TiC/Fe@NCNHs

    表  1  以往参考文献和本研究中不同Fe/C复合材料的电磁吸收特性

    Table  1.   EM absorption properties of different Fe/C composites in previous references and this work.

    Material Thickness Effective absorption bandwidth Minimum reflection loss (Frequency) Refs
    Fe/C porous nanofibers 4.29 mm 1.7 GHz −56.6 dB (4.96 GHz) [11]
    Fe@C 3 mm 7.5 GHz −37.7 dB (13.4 GHz) [42]
    MCNTs@Fe/C 2.4 mm 2 GHz −44.26 dB (8.32 GHz) [43]
    leaf-like Fe/C 3.05 mm 6.0 GHz −59.7 dB (6 GHz) [44]
    Fe2C/Fe3O4/C 2.8 mm 3.8 GHz −60 dB (10.8 GHz) [45]
    ripple-like Fe/C 2.5 mm 6.3 GHz −22 dB (17.78 GHz) [46]
    Fe3O4@Fe@C 1.85 mm 5.36 GHz −59.1 dB (13.36 GHz) [47]
    Fe@NCNHs 1.6 mm 3.23 GHz −44.52 dB(10.86 GHz) [13]
    7wt%-TiC/7wt%-Fe@NCNHs 3.6 mm 3.99 GHz −43.52 dB (7.03 GHz) Herein
    9wt%-TiC/7wt%-Fe@NCNHs 2.2 mm 4.76 GHz −43.63 dB (11.37 GHz) Herein
    7wt%-TiC/9wt%-Fe@NCNHs 1.4 mm 4.85 GHz −41.62 dB (17.66 GHz) Herein
    Note: MCNTs—Multiwalled carbon nanotubes.
    下载: 导出CSV
  • [1] SONG Y, YIN F, ZHANG C, et al. Inverse-opal-based carbon composite monoliths for microwave absorption applications[J]. Carbon, 2020, 166: 328-338. doi: 10.1016/j.carbon.2020.05.020
    [2] CHENG Y, ZHAO H, LV H, et al. Lightweight and flexible cotton aerogel composites for electromagnetic absorption and shielding applications[J]. Advanced Electronic Materials, 2020, 6(1): 1900796. doi: 10.1002/aelm.201900796
    [3] DING D, WANG Y, LI X, et al. Rational design of core-shell Co@ C microspheres for high-performance microwave absorption[J]. carbon, 2017, 111: 722-732. doi: 10.1016/j.carbon.2016.10.059
    [4] WANG Z, BI H, WANG P, et al. Magnetic and microwave absorption properties of self-assemblies composed of core–shell cobalt–cobalt oxide nanocrystals[J]. Physical Chemistry Chemical Physics, 2015, 17(5): 3796-3801. doi: 10.1039/C4CP04985C
    [5] HANTANASIRISAKUL K, GOGOTSI Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)[J]. Advanced materials, 2018, 30(52): 1804779. doi: 10.1002/adma.201804779
    [6] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 1-17.
    [7] MENG X, LIU Y, HAN G, et al. Three-dimensional (Fe3O4/ZnO) @C Double-core@shell porous nanocomposites with enhanced broadband microwave absorption[J]. Carbon, 2020, 162: 356-364. doi: 10.1016/j.carbon.2020.02.035
    [8] ZHANG X J, WANG G S, CAO W Q, et al. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride[J]. ACS applied materials & interfaces, 2014, 6(10): 7471-7478.
    [9] LIU Q, CAO Q, BI H, et al. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption[J]. Advanced Materials (Deerfield Beach, Fla. ), 2015, 28(3): 486-490.
    [10] YAN L, LIU J, ZHAO S, et al. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions[J]. Nano Research, 2017, 10: 1595-1607. doi: 10.1007/s12274-016-1302-8
    [11] WANG F, SUN Y, LI D, et al. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning[J]. Carbon, 2018, 134: 264-273. doi: 10.1016/j.carbon.2018.03.081
    [12] LI X P, DENG Z, LI Y, et al. Controllable synthesis of hollow microspheres with Fe@Carbon dual-shells for broad bandwidth microwave absorption[J]. Carbon, 2019, 147: 172-181. doi: 10.1016/j.carbon.2019.02.073
    [13] ZHANG Z, ZHANG G, LEI L, et al. One-step synthesis of Fe nanoparticles wrapped in N-doped carbon nanohorn microspheres as high-performance electromagnetic wave absorber[J]. Ceramics International, 2022, 48(13): 18338-18347. doi: 10.1016/j.ceramint.2022.03.093
    [14] ZHONG Y, XIA X, SHI F, et al. Transition metal carbides and nitrides in energy storage and conversion[J]. Advanced science, 2016, 3(5): 1500286. doi: 10.1002/advs.201500286
    [15] WANG D X, JAVID M, SALEEM M F, et al. A nanocomposite of dual-phase Fe/TiCN wrapped in nitrogen-doped carbon with magnetic and dielectric characters for superior microwave absorption[J]. Ceramics International, 2023, 49: 12240-12250. doi: 10.1016/j.ceramint.2022.12.076
    [16] ZHOU Y L, MUHAMMAD J, ZHANG X F, et al. Novel nanocapsules with Co-TiC twin cores and regulable graphitic shells for superior electromagnetic wave absorption[J]. RAC Advances, 2018, 8: 6397-6405.
    [17] ZHOU Y L, MUHAMMAD J, ZHOU T H, et al. Incorporation of magnetic component to construct (TiC/Ni) @C ternary composite with heterogeneous interface for enhanced microwave absorption[J]. Journal of Alloys and Compounds, 2019, 778: 779-786. doi: 10.1016/j.jallcom.2018.11.237
    [18] IKEDA M, TAKIKAWA H, TAHARA T, et al. Preparation of carbon nanohorn aggregates by cavity arc jet in open air[J]. Japanese Journal of Applied Physics, 2002, 41: L852-L854. doi: 10.1143/JJAP.41.L852
    [19] TAKIKAWA H, IKEDA M, HIRAHATRA K, et al. Fabrication of single-walled carbon nanotubes and nanohorns by means of a torch arc in open air[J]. Physical B: Condensed Matter, 2002, 323(1-4): 277-279. doi: 10.1016/S0921-4526(02)00998-5
    [20] JUNG H J, KIM Y J, HAN J H, et al. Thermal-treatment-induced enhancement in effective surface area of single-walled carbon nanohorns for supercapacitor application[J]. The Journal of Physical Chemistry C, 2013, 117(49): 25877-25883. doi: 10.1021/jp405839z
    [21] NI Z, WANG Y Y, YU T, et al. Raman spectroscopy and imaging of graphene, Nano Res[J]. 2008.
    [22] YU J, YU H, GAO J, et al. Synthesis and electrochemical activities of TiC/C core-shell nanocrystals[J]. Journal of Alloys and Compounds, 2017, 693: 500-509. doi: 10.1016/j.jallcom.2016.09.232
    [23] MI P, HE J, QIN Y, et al. Nanostructure reactive plasma sprayed TiCN coating[J]. Surface and Coatings Technology, 2017, 309: 1-5. doi: 10.1016/j.surfcoat.2016.11.033
    [24] WEI Z H, REN Y Q, ZHAO H, et al. Controllable preparation and synergistically improved catalytic performance of TiC/C hybrid nanofibers via electrospinning for the oxygen reduction reaction[J]. Ceramics International, 2020, 46: 25313-25319. doi: 10.1016/j.ceramint.2020.06.325
    [25] NAN Y, ZHANG Z, HE Y, et al. Optimized nanopores opened on N-doped carbon nanohorns filled with Fe/Fe2O3 nanoparticles as advanced electrocatalysts for the oxygen evolution reaction[J]. Inorganic Chemistry, 2021, 60(21): 16529-16537. doi: 10.1021/acs.inorgchem.1c02416
    [26] HOU T, WANG B, MA M, et al. Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties[J]. Composites Part B: Engineering, 2020, 180: 107577. doi: 10.1016/j.compositesb.2019.107577
    [27] WANG W, GUMFEKAR S P, JIAO Q, et al. Ferrite-grafted polyaniline nanofibers as electromagnetic shielding materials[J]. Journal of Materials Chemistry C, 2013, 1(16): 2851-2859. doi: 10.1039/c3tc00757j
    [28] PHANG S W, HINO T, ABDULLAH M H, et al. Applications of polyaniline doubly doped with p-toluene sulphonic acid and dichloroacetic acid as microwave absorbing and shielding materials[J]. Materials Chemistry and Physics, 2007, 104(2-3): 327-335. doi: 10.1016/j.matchemphys.2007.03.031
    [29] LI W, SHU R, WU Y, et al. Metal organic frameworks-derived iron carbide/ferroferric oxide/carbon/reduced graphene oxide nanocomposite with excellent electromagnetic wave absorption properties[J]. Composites Communications, 2021, 23: 100576. doi: 10.1016/j.coco.2020.100576
    [30] LI N, HUANG G W, LI Y Q, et al. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure[J]. ACS applied materials & interfaces, 2017, 9(3): 2973-2983.
    [31] GAO S, ZHANG Y, XING H, et al. Controlled reduction synthesis of yolk-shell magnetic@ void@ C for electromagnetic wave absorption[J]. Chemical Engineering Journal, 2020, 387: 124149. doi: 10.1016/j.cej.2020.124149
    [32] JIAN X, TIAN W, LI J, et al. High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption[J]. ACS applied materials & interfaces, 2019, 11(17): 15869-15880.
    [33] QIAO M, WEI D, HE X, et al. Novel yolk–shell Fe3O4@void@SiO2@PPy nanochains toward microwave absorption application[J]. Journal of Materials Science, 2021, 56: 1312-1327. doi: 10.1007/s10853-020-05313-y
    [34] SHU R, ZHANG G, WANG X, et al. Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers[J]. Chemical Engineering Journal, 2018, 337: 242-255. doi: 10.1016/j.cej.2017.12.106
    [35] SHU R, LI W, WU Y, et al. Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X-band[J]. Chemical Engineering Journal, 2019, 362: 513-524. doi: 10.1016/j.cej.2019.01.090
    [36] YIN L, CHEN T, LIU S, et al. Preparation and microwave-absorbing property of BaFe12O19 nanoparticles and BaFe12O19/Fe3C/CNTs composites[J]. RSC Advances, 2015, 5(111): 91665-91669. doi: 10.1039/C5RA16310B
    [37] LIU W, PAN J, JI G, et al. Switching the electromagnetic properties of multicomponent porous carbon materials derived from bimetallic metal–organic frameworks: effect of composition[J]. Dalton Transactions, 2017, 46(11): 3700-3709. doi: 10.1039/C7DT00156H
    [38] TIAN X, MENG F, MENG F, et al. Synergistic enhancement of microwave absorption using hybridized polyaniline@ helical CNTs with dual chirality[J]. ACS applied materials & interfaces, 2017, 9(18): 15711-15718.
    [39] XIE P, LI H, HE B, et al. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption[J]. Journal of Materials Chemistry C, 2018, 6(32): 8812-8822. doi: 10.1039/C8TC02127A
    [40] WU Z C, CHENG H W, JIN C, et al. , Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), e2107538 (2022).
    [41] PAN P, CAI L, SHI Y Y, DONG Y Y, et al. , Heterointerface engineering of beta-chitin/carbon nano-onions/Ni-P composites with boosted maxwell-wagner-sillars effect for highly efficient electromagnetic wave response and thermal management. Nano-Micro Lett. 14(1), 85 (2022).
    [42] DENG Z, LI Y, ZHANG H B, et al. Lightweight Fe@ C hollow microspheres with tunable cavity for broadband microwave absorption[J]. Composites Part B: Engineering, 2019, 177: 107346. doi: 10.1016/j.compositesb.2019.107346
    [43] LI Y, CHEN X, WEI Q, et al. Oxygen-sulfur Co-substitutional Fe@ C nanocapsules for improving microwave absorption properties[J]. Science bulletin, 2020, 65(8): 623-630. doi: 10.1016/j.scib.2020.01.009
    [44] LI X, DONG W, ZHANG C, et al. Leaf-like Fe/C composite assembled by iron veins interpenetrated into amorphous carbon lamina for high-performance microwave absorption[J]. Composites Part A: Applied Science and Manufacturing, 2021, 140: 106202. doi: 10.1016/j.compositesa.2020.106202
    [45] LI W, SHU R, WU Y, et al. Metal organic frameworks-derived iron carbide/ferroferric oxide/carbon/reduced graphene oxide nanocomposite with excellent electromagnetic wave absorption properties[J]. Composites Communications, 2021, 23: 100576. doi: 10.1016/j.coco.2020.100576
    [46] CHEN Y, QIANG R, SHAO Y, et al. Biomass-derived Fe/C composites for broadband electromagnetic wave response[J]. Journal of Alloys and Compounds, 2023, 968: 171952. doi: 10.1016/j.jallcom.2023.171952
    [47] ZHU Z, ZHANG L, LIU P, et al. MOF-derived multicore-shell Fe3O4@Fe@ C composite: An ultrastrong electromagnetic wave absorber[J]. Carbon, 2023, 215: 118477. doi: 10.1016/j.carbon.2023.118477
    [48] XU H, YIN X, FAN X, et al. Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance[J]. Carbon, 2019, 148: 421-429. doi: 10.1016/j.carbon.2019.03.091
    [49] LIU W, LIU L, JI G, et al. Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7961-7971.
    [50] HOU T, JIA Z, WANG B, et al. Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers[J]. Chemical Engineering Journal, 2021, 422: 130079. doi: 10.1016/j.cej.2021.130079
  • 加载中
计量
  • 文章访问数:  59
  • HTML全文浏览量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 修回日期:  2024-03-19
  • 录用日期:  2024-04-01
  • 网络出版日期:  2024-05-18

目录

    /

    返回文章
    返回