留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子氧环氧化烯烃多相催化剂PCuMo11/富氮类共价有机骨架材料的制备及应用

高文秀 吕杰琼 邢树宇 谢晖 高永平 娄大伟

高文秀, 吕杰琼, 邢树宇, 等. 分子氧环氧化烯烃多相催化剂PCuMo11/富氮类共价有机骨架材料的制备及应用[J]. 复合材料学报, 2022, 39(10): 4701-4708. doi: 10.13801/j.cnki.fhclxb.20211108.003
引用本文: 高文秀, 吕杰琼, 邢树宇, 等. 分子氧环氧化烯烃多相催化剂PCuMo11/富氮类共价有机骨架材料的制备及应用[J]. 复合材料学报, 2022, 39(10): 4701-4708. doi: 10.13801/j.cnki.fhclxb.20211108.003
GAO Wenxiu, LV Jieqiong, XING Shuyu, et al. Preparation and application of heterogeneous catalyst PCuMo11/ nitrogen rich covalent organic framework material for olefin epoxidation with molecular oxygen oxidant[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4701-4708. doi: 10.13801/j.cnki.fhclxb.20211108.003
Citation: GAO Wenxiu, LV Jieqiong, XING Shuyu, et al. Preparation and application of heterogeneous catalyst PCuMo11/ nitrogen rich covalent organic framework material for olefin epoxidation with molecular oxygen oxidant[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4701-4708. doi: 10.13801/j.cnki.fhclxb.20211108.003

分子氧环氧化烯烃多相催化剂PCuMo11/富氮类共价有机骨架材料的制备及应用

doi: 10.13801/j.cnki.fhclxb.20211108.003
基金项目: 吉林省科技发展计划项目(2020122373JC);吉林省产业技术研究与开发项目(No.2020C028-1);吉林省教育厅科研规划项目(JJKH20200240KJ);吉林市科技局杰出青年人才培养项目(201831757);吉林省精细化工重点实验室(20140622023JC)
详细信息
    通讯作者:

    高文秀,博士,副教授,硕士生导师,研究方向为多相催化 E-mail:gaowenxiu-0922@163.com

  • 中图分类号: O643.36

Preparation and application of heterogeneous catalyst PCuMo11/ nitrogen rich covalent organic framework material for olefin epoxidation with molecular oxygen oxidant

  • 摘要: 环氧化合物是一类重要的有机合成中间体和化工原料,主要通过烯烃环氧化反应获得。制备在分子氧环境下高效、稳定、可重复使用的烯烃环氧化反应新型催化剂是一项十分有意义的工作。以富氮类共价有机骨架材料(PC)为载体,多金属氧酸盐PCuMo11为活性物质,制备了复合材料PCuMo11/PC。通过FT-IR、N2吸附脱附、XPS、TEM及EDS等测试对材料进行了表征,并将PCuMo11/PC应用于多相催化分子氧气氛下的烯烃(苯乙烯、1-辛烯、环辛烯和环十二烯)环氧化反应中,取得了较高的催化活性和选择性,循环使用5次以上催化活性没有明显下降。实验结果显示,二维层状富氮类共价有机骨架材料的高表面积及骨架中丰富的氮元素含量,有利于均匀地分散催化活性物质多金属氧酸盐,并与其建立相对稳定的化学链接,提高复合材料的催化活性及稳定性。

     

  • 图  1  PMo12、富氮类共价有机骨架材料(PC)、PCuMo11和PCuMo11/PC的FTIR图谱

    Figure  1.  FTIR spectra of PMo12, nitrogen rich covalent organic framework material (PC), PCuMo11 and PCuMo11/PC

    图  2  PC和PCuMo11/PC的N2吸附-脱附等温线(a)和孔径分布曲线(b)

    Figure  2.  N2 adsorption-desorption isotherm (a) and pore size distribution curves (b) of PC and PCuMo11/PC

    STP—Standard temperature and pressure

    图  3  PCuMo11/PC (a)、Mo3d (b)、Cu2p (c) 和N1s (d)的XPS能谱

    Figure  3.  XPS spectra of PCuMo11/PC composite (a), Mo3d (b), Cu2p (c) , N1s (d)

    图  4  PCuMo11/PC的TEM图像和EDS面扫图像

    Figure  4.  TEM and EDS images of PCuMo11/PC

    图  5  PCuMo11/PC催化苯乙烯 (a)、环辛烯 (b)、环十二烯 (c) 和1-辛烯 (d) 环氧化反应的循环实验

    Figure  5.  Recycling experiments of styrene (a), cyclooctene (b), cyclododecene (c) and 1-octene (d) epoxidation over PCuMo11/PC

    表  1  PC和PCuMo11/PC的物理性质

    Table  1.   Physical performance of PC and PCuMo11/PC

    SampleSBET /(m2·g−1)Mode pore size/nmPore volume/
    (cm3·g−1)
    PC 216 1.30 0.6
    PCuMo11/PC 60 1.43 0.2
    Notes: SBET—Specific surface area.
    下载: 导出CSV

    表  2  PCuMo11/PC催化不同烯烃环氧化反应的催化性能

    Table  2.   Catalytic performance of PCuMo11/PC in different olefins epoxidation

    SubstrateTime/hConversion/%Epoxide selectivity/%Yield/%
    Styrene 1 98 84 82
    Cyclooctene 1 98 ≥99 98
    Cyclododecene 1 95 ≥99 95
    1-octene 6 99 ≥99 99
    Note: Substrate olefin 2 mmol, catalyst PCuMo11/PC 20 mg, solvent CH3CN 10 mL, IBA 6 mmol, O2 10 mL/min, temperature 60℃, unless otherwise mentioned.
    下载: 导出CSV

    表  3  PCuMo11/PC与同类催化剂催化烯烃环氧化反应性能比较

    Table  3.   Catalytic performance comparison of PCuMo11/PC with other reported catalysts for olefins epoxidation

    EntryCatalystSubstrateOxidantTime
    /h
    Conversion
    /%
    Epoxide selectivity/%TOF/(10− 3 mol·g− 1·h− 1)Ref.
    1 PCuMo11/PC Styrene O2 1 98 84 98 This work
    2 PMo11Co/SBA Styrene Air 1 89 7 89 [25]
    3 POSS-OIM8-PW Styrene H2O2 6 72 66 12 [26]
    4 CoPMA/POP-II Styrene H2O2 9 67 14 8 [27]
    5 PCuMo11/PC Cyclooctene O2 1 98 ≥ 99 98 This work
    6 POSS-OIM8-PW Cyclooctene H2O2 2 100 100 50 [26]
    7 PMo11Co/SBA Cyclooctene Air 3 98 ≥ 99 33 [25]
    8 PMA@COF-300 Cyclooctene TBHP 3 91 ≥ 99 30 [18]
    9 Fe/PMA@CIN− 1 Cyclooctene H2O2 9 88 ≥ 99 10 [28]
    10 CoPMA/POP-II Cyclooctene H2O2 9 80 ≥ 99 9 [27]
    11 PCuMo11/PC Cyclododecene O2 1 95 ≥ 99 95 This work
    12 PMA@COF-300 Cyclododecene TBHP 3 34 ≥ 99 11 [18]
    13 Fe/PMA@CIN− 1 Cyclododecene H2O2 9 58 ≥ 99 6 [28]
    14 PCuMo11/PC 1-octene O2 6 99 ≥ 99 17 This work
    15 POSS-OIM8-PW 1-octene H2O2 6 51 99 9 [26]
    16 PMA@COF-300 1-octene TBHP 9 77 ≥ 99 9 [18]
    Notes: TBHP—Tert-butyl hydroperoxide; SBA—SBA-15 (Santa barbara amorphous-15); POSS-OIM8-PW—POSS-derived mesoporous ionic copolymer-polyoxometalate (POSS—Polyhedral oligomeric silsesquioxanes, OIM8—[3-Octyl-1-vinylimidazolium]Br, PW—Phospho-tungstic acid); CoPMA/POP-II—Triphenylamine-based porous organic polymers supporting cobalt phosphomolybdate (CoPMA—Cobalt phosphomolybdate, POP-II—Triphenylamine-based porous organic polymers); PMA@COF-300—Heteropolyacid-based hybrid composite (PMA—Phosphomolybdic acid, COF-300—Covalent organic framework material); CIN—Covalent imine network; Turnover frequency
    $\left(\mathrm{T}\mathrm{O}\mathrm{F}\right)\;\;=\dfrac{\mathrm{M}\mathrm{o}\mathrm{l}\mathrm{e}\;\;\mathrm{o}\mathrm{f}\;\;\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{e}\mathrm{d}\;\;\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}}{\mathrm{C}\mathrm{a}\mathrm{t}\mathrm{a}\mathrm{l}\mathrm{y}\mathrm{s}\mathrm{t}\left(\mathrm{g}\right)\times\mathrm{R}\mathrm{e}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\;\;\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\left(\mathrm{h}\right)} $
    下载: 导出CSV
  • [1] 周浩然, 毛珊珊. 纳米SiO2-端羧基丁腈橡胶改性水性环氧树脂复合材料的制备及性能[J]. 复合材料学报, 2018, 35(6):1395-1401.

    ZHOU Haoran, MAO Shanshan. Preparation and properties of nano SiO2-carboxyl carboxyl nitrile rubber modified water-based epoxy resin composite[J]. Acta Materiae Compositae Sinica,2018,35(6):1395-1401(in Chinese).
    [2] KAMATA K, KOTANI M, YAMAGUCHI K, et al. Olefin epoxidation with hydrogen peroxide catalyzed by lacunary polyoxometalate [γ-SiW10O34H2O2]4-[J]. Chemistry,2007,13(2):639-648. doi: 10.1002/chem.200600384
    [3] TIAN S, PENG C, DONG J, et al. High-loading single-atomic-site silver catalysts with an Ag1–C2N1 structure showing superior performance for epoxidation of styrene[J]. ACS Catalysis,2021,11(9):4946-4954. doi: 10.1021/acscatal.1c00455
    [4] GU Q, JIANG P, SHEN Y, et al. Lamellar porous mo-modified carbon nitride polymers photocatalytic epoxidation of olefins[J]. Molecular Catalysis,2021,504:111441. doi: 10.1016/j.mcat.2021.111441
    [5] 石斌, 章彬, 张学龙, 等. LaCoO3钙钛矿氧化物的环己烯环氧化性能[J]. 中国石油大学学报(自然科学版), 2021, 45(2):157-162.

    SHI Bin, ZHANG Bin, ZHANG Xuelong, et al. Epoxidation of cyclohexene on LaCoO3 perovskite oxides[J]. Journal of China University of Petroleum(Edition of Natural Science),2021,45(2):157-162(in Chinese).
    [6] ENGLER H, LANSING M, GORDON C P, et al. Olefin epoxidation catalyzed by titanium-salalen complexes: Synergistic H2O2 activation by dinuclear Ti sites, ligand H-bonding, and π-acidity[J]. ACS Catalysis,2021,11(6):3206-3217. doi: 10.1021/acscatal.0c05320
    [7] 王新国, 程庆彦, 彭文静, 等. 环己烯环氧化反应催化剂研究进展[J]. 高校化学工程学报, 2020, 34(3):563-571. doi: 10.3969/j.issn.1003-9015.2020.03.001

    WANG Xinguo, CHENG Qingyan, PENG Wenjing, et al. Progress on catalysts for cyclohexene epoxidation[J]. Journal of Chemical Engineering of Chinese Universities,2020,34(3):563-571(in Chinese). doi: 10.3969/j.issn.1003-9015.2020.03.001
    [8] TEBANDEKE E, COMAN C, GUILLOIS K, et al. Epoxidation of olefins with molecular oxygen as the oxidant using gold catalysts supported on polyoxometalates[J]. Green Chemistry,2014,16(3):1586-1593. doi: 10.1039/c3gc42198h
    [9] YUE Q, LU Y, ZHANG Z, et al. H5PV2Mo10O40 encapsulated into Cu3(BTC)2 as an efficient heterogeneous nanocrystalline catalyst for styrene epoxidation[J]. New Journal of Chemistry,2020,44(39):16913-16920. doi: 10.1039/D0NJ03473H
    [10] XIONG Y, LIAO Q, HUANG Z, et al. Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene[J]. Advanced Materials,2020,32(9):1907242. doi: 10.1002/adma.201907242
    [11] LI H, FENG X, SHAO P, et al. Synthesis of covalent organic frameworks via in situ salen skeleton formation for catalytic applications[J]. Journal of Materials Chemistry A,2019,7(10):5482-5492. doi: 10.1039/C8TA11058A
    [12] 王洋, 王思迪, 唐韶坤. 超临界二氧化碳中亚胺类共价有机骨架材料COF-LZU1的合成与表征[J]. 高等学校化学学报, 2020, 41(8):1792-1800. doi: 10.7503/cjcu20200185

    WANG Yang, WANG Sidi, TANG Shaokun. Synthesis and characterization of imine-based covalent organic framework(COF-LZU1)in supercritical carbon dioxide[J]. Jour-nal of Chemical Engineering of Chinese Universities,2020,41(8):1792-1800(in Chinese). doi: 10.7503/cjcu20200185
    [13] LIN C, ZHANG L, ZHAO Z, et al. Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production[J]. Advanced Materials,2017,29(17):1606635. doi: 10.1002/adma.201606635
    [14] 王珊, 冯霄, 王博. 共价有机框架材料的设计与制备[J]. 科学通报, 2018, 63(22):2229-2245. doi: 10.1360/N972018-00407

    WANG Shan, FENG Xiao, WANG Bo. Design and synthesis of covalent organic frameworks[J]. Chinese Science Bulletin,2018,63(22):2229-2245(in Chinese). doi: 10.1360/N972018-00407
    [15] DUAN K, WANG J, ZHANG Y, et al. Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation[J]. Journal of Membrane Science,2019,572:588-595. doi: 10.1016/j.memsci.2018.11.054
    [16] HU X, LONG Y, FAN M, et al. Two-dimensional covalent organic frameworks as self-template derived nitrogen-doped carbon nanosheets for eco-friendly metal-free catalysis[J]. Applied Catalysis B: Environmental,2019,244:25-35. doi: 10.1016/j.apcatb.2018.11.028
    [17] 王静. 咪唑功能化有机-无机杂化材料固载磷钼杂多化合物催化剂的制备及烯烃环氧化性能[D]. 长春: 吉林大学, 2014.

    WANG Jing. Immobilization of phosphomolybdates on imidazolium functionalized organic-inorganic hybrid materials for catalytic olefin epoxidation[D]. Changchun: Jilin University, 2014(in Chinese).
    [18] GAO W, SUN X, NIU H, et al. Phosphomolybdic acid functionalized covalent organic frameworks: Structure characterization and catalytic properties in olefin epoxidation[J]. Microporous and Mesoporous Materials,2015,213:59-67. doi: 10.1016/j.micromeso.2015.04.009
    [19] YUAN M, YANG R, WEI S, et al. Ultra-fine Pd nanoparticles confined in a porous organic polymer: A leaching-and-aggregation-resistant catalyst for the efficient reduction of nitroarenes by NaBH4[J]. Journal of Colloid and Interface Science,2019,538:720-730. doi: 10.1016/j.jcis.2018.11.065
    [20] ZHAO H, YU G, YUAN M, et al. Ultrafine and highly dispersed platinum nanoparticles confined in a triazinyl-containing porous organic polymer for catalytic applications[J]. Nanoscale,2018,10(45):21466-21474. doi: 10.1039/C8NR05756G
    [21] 谢远, 江罗明, 夏克坚. 功能化石墨烯多层膜载金催化剂的制备及其对肼的电催化氧化[J]. 复合材料学报, 2020, 37(7):1695-1702.

    XIE Yuan, JIANG Luoming, XIA Kejian. Preparation of functionalized graphene multilayer films supported Au catalyst and its electrooxidation for hydrazine[J]. Acta Materiae Compositae Sinica,2020,37(7):1695-1702(in Chinese).
    [22] 张素风, 赵东艳, 侯晨, 等. CuFe2O4/纳米纤维素磁性复合材料的制备及催化性能[J]. 复合材料学报, 2019, 36(1):213-221.

    ZAHNG Sufeng, ZHAO Dongyan, HOU Chen, et al. Synthesis and catalysis properties of magnetic CuFezO4/cellulose composites[J]. Acta Materiae Compositae Sinica,2019,36(1):213-221(in Chinese).
    [23] 胡金娟, 马春雨, 王佳琳, 等. Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J]. 复合材料学报, 2020, 37(6):1401-1410.

    HU Jinjuan, MA Chunyu, WANG Jialin, et al. Preparation and photocatalytic properties of Ag-Ag2O/TiO2-g-C3N4 nanocomposites[J]. Acta Materiae Compositae Sinica,2020,37(6):1401-1410(in Chinese).
    [24] 刘成宝, 唐飞, 朱晨, 等. WO3-Ag/石墨相C3N4 Z 型复合光催化剂的合成及其光催化性能[J]. 复合材料学报, 2021, 38(1):209-220.

    LIU Chengbao, TANG Fei, ZHU Chen, et al. Preparation and photocatalytic properties of WO3-Ag/graphitic C3N4 Z-scheme composite photocatalyst[J]. Acta Materiae Compositae Sinica,2021,38(1):209-220(in Chinese).
    [25] SONG X, ZHU W, LI K, et al. Epoxidation of olefins with oxygen/isobutyraldehyde over transition-metal-substituted phosphomolybdic acid on SBA-15[J]. Catalysis Today,2016,259(Part 1):59-65. doi: 10.1016/j.cattod.2015.04.042
    [26] ZHAO J, YAN L, JIANG P, et al. POSS-derived mesoporous ionic copolymer-polyoxometalate catalysts with surfactant function for epoxidation reactions[J]. New Journal of Chemistry,2016,40(2):1022-1028. doi: 10.1039/C5NJ01541C
    [27] SONG X, ZHU W, YAN Y, et al. Triphenylamine-based porous organic polymers: Synthesis and application for supporting phosphomolybdate to fabricate efficient olefin oxidation catalysts[J]. Microporous and Mesoporous Materials,2017,242:9-17. doi: 10.1016/j.micromeso.2017.01.003
    [28] YU D, GAO W, XING S, et al. Fe-doped H3PMo12O40 immobilized on covalent organic frameworks (Fe/PMA@COFs): A heterogeneous catalyst for the epoxidation of cyclooctene with H2O2[J]. RSC Advances,2019,9(9):4884-4891. doi: 10.1039/C8RA10388G
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1038
  • HTML全文浏览量:  371
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 修回日期:  2021-10-16
  • 录用日期:  2021-10-31
  • 网络出版日期:  2021-11-09
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回