Bio-based conductive hydrogels and their application to flexible electronic devices
-
摘要: 生物基导电水凝胶是将生物质材料和导电介质引入水凝胶中制备而成的导电材料,因其具有良好的生物相容性和亲肤性等优势,被广泛应用在柔性电子器件领域。本综述按照生物基体类别,分别介绍蛋白质基、多糖基、核酸基三类常见的生物基导电水凝胶,分析了不同生物基材料的导电机制以及各自特有的功能,并介绍了生物基导电水凝胶在柔性传感器、柔性电化学储能器件、摩擦纳米发电机、仿生柔性电子设备等柔性电子器件中的应用,最后对生物基导电水凝胶的发展趋势进行了总结与展望。Abstract: Bio-based conductive hydrogel is a conductive material prepared by introducing biomass material and conductive medium into hydrogel, which is widely used in the field of flexible electronic devices due to its advantages such as good biocompatibility and skin friendliness. This review introduces three common types of bio-based conductive hydrogels, namely, protein-based, polysaccharide-based, and nucleic acid-based, according to the categories of bio-matrix, analyzes the conductive mechanisms of different bio-based materials and their respective unique functions, and introduces the applications of bio-based conductive hydrogels in flexible electronic devices, such as flexible sensors, flexible electrochemical energy storage devices, friction nano-generators, and biomimetic flexible electronic devices, etc., and finally provides a comprehensive overview of the development trend of bio-based conductive hydrogels. Finally, the development trend of bio-based conductive hydrogels is summarised and outlooked.
-
图 2 (a) GMOHx有机水凝胶的制备示意图[29];(b)复合生物基凝胶聚合物电解质(c-GPE)骨架材料的制备过程示意图[31];(c) LMO 阴极抑制锂枝晶的机制示意图[31]
Figure 2. (a) Schematic illustration of the preparation of GMOHx organohydrogels[29]; (b) A schematic diagram for the fabrication process of skeleton materials of composite biobased gel polymer electrolyte(c-GPE)[31]; (c) Schematics showing the mechanism for the Li dendrites suppressing [31]
图 3 (a) SPGL 复合水凝胶制备过程示意图[35];(b) PBH 中三种成分的分子结构[37];(c) 抗膨胀水凝胶快速凝胶化及其 UCST 行为示意图[39];(d) 水凝胶形成示意图[40]
Figure 3. (a) Schematic illustration of the preparation process of SPGL composite hydrogel[35]; (b) Molecular structures of three components in the PBH[37];(c) Schematic illustration of the rapid gelation of the anti-swelling hydrogel and its UCST behavior[39]; (d) schematic illustration for the formation of hydrogels[40]
图 6 (a) SA-PAM-Fe水凝胶的结构图[71];(b)温度传感器在火灾下的实时响应曲线[71];(c) PVA-Gelatin-Fe3+水凝胶交联机制图[72];(d)湿度传感器在40%–70%湿度下的循环响应[72]
Figure 6. (a) Structural diagram of SA-PAM-Fe hydrogel[71]; (b) Real-time response curve of temperature sensor under fire[71]; (c) Diagram of cross-linking mechanism of PVA-Gelatin-Fe3+ hydrogel[72]; and (d) Cyclic response of humidity sensor at 40%-70% humidity[72]
图 7 (a)PAM-HPC水凝胶的制备工艺;(b)基于PAM-HPC水凝胶电解质的超级电容器组件的示意图;(c)PAM-HPC-0.4水凝胶电解质基柔性超级电容器在200 mV/s的不同折叠角下的CV曲线和在200 mV/s下不同压力的CV曲线[76]
Figure 7. (a) Preparation process of PAM-HPC hydrogel; (b) Schematic diagram of supercapacitor assembly based on PAM-HPC hydrogel electrolyte; (c) CV curves of PAM-HPC-0.4 hydrogel electrolyte-based flexible supercapacitor at different folding angles at 200 mV/s and CV curves at different pressures at 200 mV/s[76]
-
[1] LIN R, LEI M, DING S, et al. Applications of flexible electronics related to cardiocerebral vascular system[J]. Materials Today Bio, 2023, 23: 100787. doi: 10.1016/j.mtbio.2023.100787 [2] SASMAL A, AROCKIARAJAN A. Recent progress in flexible magnetoelectric composites and devices for next generation wearable electronics[J]. Nano Energy, 2023, 115: 108733. doi: 10.1016/j.nanoen.2023.108733 [3] SUN Y, Li Y-Z, YUAN M. Requirements, challenges, and novel ideas for wearables on power supply and energy harvesting[J]. Nano Energy, 2023, 115: 108715. doi: 10.1016/j.nanoen.2023.108715 [4] MMERCANTE L A, ANDRE R S, FACURE M H M, et al. Recent progress in conductive electrospun materials for flexible electronics: Energy, sensing, and electromagnetic shielding applications[J]. Chemical Engineering Journal, 2023, 465: 142847. doi: 10.1016/j.cej.2023.142847 [5] YUE C, WANG J, WANG Z, et al. Flexible printed electronics and their applications in food quality monitoring and intelligent food packaging: Recent advances[J]. Food Control, 2023, 154: 109983. doi: 10.1016/j.foodcont.2023.109983 [6] WANG P, HU M, WANG H, et al. The evolution of flexible electronics: from nature, beyond nature, and to nature[J]. Advanced Science, 2020, 7(20): 2001116. doi: 10.1002/advs.202001116 [7] MA N, LI X, DING Z, et al. A polyacrylic acid/polyacrylamide-based hydrogel electrolyte containing gelatin for efficient electrochromic device with outstanding cycling stability and flexible compatibility[J]. European Polymer Journal, 2023, 190: 112024. doi: 10.1016/j.eurpolymj.2023.112024 [8] WANG L, DONG Y, WANG L, et al. Elucidating the effect of the Hofmeister effect on formation and rheological properties of soy protein/κ-carrageenan hydrogels[J]. Food Hydrocolloids, 2023, 143: 108905. doi: 10.1016/j.foodhyd.2023.108905 [9] MO F, LU Y, CUI M, et al. A self-healable silk fibroin-based hydrogel electrolyte for silver-zinc batteries with high stability[J]. Journal of Electroanalytical Chemistry, 2023, 938: 117466. doi: 10.1016/j.jelechem.2023.117466 [10] LI C, LIU G, WANG S, et al. Polyvinyl alcohol/quaternary ammonium chitosan hydrogel electrolyte for sensing supercapacitors with excellent performance[J]. Journal of Energy Storage, 2022, 46: 103918. doi: 10.1016/j.est.2021.103918 [11] ZHENG C, LU K, LU Y, et al. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion[J]. Carbohydrate Polymers, 2020, 250: 116905. doi: 10.1016/j.carbpol.2020.116905 [12] LUO P, LIU L, XU W, et al. Preparation and characterization of aminated hyaluronic acid/oxidized hydroxyethyl cellulose hydrogel[J]. Carbohydrate Polymers, 2018, 199: 170-177. doi: 10.1016/j.carbpol.2018.06.065 [13] ZHANG R, WU C, YANG W, et al. Design of delignified wood-based high-performance composite hydrogel electrolyte with double crosslinking of sodium alginate and PAM for flexible supercapacitors[J]. Industrial Crops and Products, 2024, 210: 118187. doi: 10.1016/j.indcrop.2024.118187 [14] HE X, SUN N, JIA H, et al. Antifouling electrochemical biosensor based on conductive hydrogel of DNA scaffold for ultrasensitive detection of ATP[J]. ACS Applied Materials & Interfaces, 2022, 14(36): 40624-40632. [15] LEI H, FAN D. A combination therapy using electrical stimulation and adaptive, conductive hydrogels loaded with self-assembled nanogels incorporating short interfering RNA promotes the repair of diabetic chronic wounds[J]. Advanced Science, 2022, 9(30): 2201425. doi: 10.1002/advs.202201425 [16] DONG B, YU D, LU P, et al. TEMPO bacterial cellulose and MXene nanosheets synergistically promote tough hydrogels for intelligent wearable human-machine interaction[J]. Carbohydrate Polymers, 2024, 326: 121621. doi: 10.1016/j.carbpol.2023.121621 [17] WANG B, DAI L, Hunter L A, et al. A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications[J]. Carbohydrate Polymers, 2021, 268: 118210. doi: 10.1016/j.carbpol.2021.118210 [18] HOU B, LI X, YAN M, et al. High strength and toughness poly (vinyl alcohol)/gelatin double network hydrogel fabricated via Hofmeister effect for polymer electrolyte[J]. European Polymer Journal, 2023, 185: 111826. doi: 10.1016/j.eurpolymj.2023.111826 [19] WANG Y, XIE Y. Sandwich-structured polypyrrole layer/KCl-polyacrylamide-gelatin hydrogel/polypyrrole layer as all-in-one polymer self-healing supercapacitor[J]. Electrochimica Acta, 2022, 435: 141371. doi: 10.1016/j.electacta.2022.141371 [20] DENG Z, LIN B, WANG W, et al. Stretchable, rapid self-healing guar gum-poly(acrylic acid) hydrogels as wearable strain sensors for human motion detection based on Janus graphene oxide[J]. International Journal of Biological Macromolecules, 2021, 191: 627-636. doi: 10.1016/j.ijbiomac.2021.09.051 [21] ZHANG J, LI Y, PAN J, et al. Silk fibroin enhanced double-network hydrogels with extreme stretchability, self-adhesive and biocompatibility for ultrasensitive strain sensors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 684: 133035. doi: 10.1016/j.colsurfa.2023.133035 [22] SUN W, XUE B, FAN Q, et al. Molecular engineering of metal coordination interactions for strong, tough, and fast-recovery hydrogels[J]. Science advances, 2020, 6(16): eaaz9531. doi: 10.1126/sciadv.aaz9531 [23] LIU C, MORIMOTO N, JIANG L, et al. Tough hydrogels with rapid self-reinforcement[J]. Science, 2021, 372(6546): 1078-1081. doi: 10.1126/science.aaz6694 [24] LI Y, XUE B, CAO Y. 100th anniversary of macromolecular science viewpoint: synthetic protein hydrogels[J]. ACS Macro Letters, 2020, 9(4): 512-524. doi: 10.1021/acsmacrolett.0c00109 [25] HUANG B, XU Y, HU X, et al. A backbone-centred energy function of neural networks for protein design[J]. Nature, 2022, 602(7897): 523-528. doi: 10.1038/s41586-021-04383-5 [26] WANG J, GAO C, HOU P, et al. All-bio-based, adhesive and low-temperature resistant hydrogel electrolytes for flexible supercapacitors[J]. Chemical Engineering Journal, 2023, 455: 140952. doi: 10.1016/j.cej.2022.140952 [27] KUANG S, HUANG Z, HUANG Y, et al. A double cross-linked hydrogel electrolyte with high mechanical strength and excellent electrochemical performance for flexible supercapacitor and zinc ion capacitor[J]. Journal of Alloys and Compounds, 2022, 918: 165688. doi: 10.1016/j.jallcom.2022.165688 [28] LIN D, LU W, KELLY A L, et al. Interactions of vegetable proteins with other polymers: Structure-function relationships and applications in the food industry[J]. Trends in Food Science & Technology, 2017, 68: 130-144. [29] XU H, JIANG X, YANG K, et al. Conductive and eco-friendly gluten/MXene composite organohydrogels for flexible, adhesive, and low-temperature tolerant epidermal strain sensors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128182. doi: 10.1016/j.colsurfa.2021.128182 [30] SERRA J P, URANGA J, GONCALVES R, et al. Sustainable lithium-ion battery separators based on cellulose and soy protein membranes[J]. Electrochimica Acta, 2023, 462: 142746. doi: 10.1016/j.electacta.2023.142746 [31] ZHU M, WU J, ZHONG W H, et al. A biobased composite gel polymer electrolyte with functions of lithium dendrites suppressing and manganese Ions trapping[J]. Advanced Energy Materials, 2018, 8(11): 1702561. doi: 10.1002/aenm.201702561 [32] ZHENG B-D, GAN L, TIAN L-Y, et al. Protein/polysaccharide-based hydrogels loaded probiotic-mediated therapeutic systems: A review[J]. International Journal of Biological Macromolecules, 2023, 253: 126841. doi: 10.1016/j.ijbiomac.2023.126841 [33] WEN D-L, SUN D-H, HUANG P, et al. Recent progress in silk fibroin-based flexible electronics[J]. Microsystems & Nanoengineering, 2021, 7(1): 35. [34] CHEN F, LU S, ZHU L, et al. Conductive regenerated silk-fibroin-based hydrogels with integrated high mechanical performances[J]. Journal of Materials Chemistry B, 2019, 7(10): 1708-1715. doi: 10.1039/C8TB02445F [35] TAO X Y, ZHU K H, CHEN H M, et al. Recyclable, anti-freezing and anti-drying silk fibroin-based hydrogels for ultrasensitive strain sensors and all-hydrogel-state super-capacitors[J]. Materials Today Chemistry, 2023, 32: 101624. doi: 10.1016/j.mtchem.2023.101624 [36] LIU D, ZHAO S, JIANG Y, et al. Biocompatible dual network bovine serum albumin-loaded hydrogel-accelerates wound healing[J]. European Polymer Journal, 2023, 185: 111820. doi: 10.1016/j.eurpolymj.2023.111820 [37] LENG Z, ZHU P, WANG X, et al. Sebum-membrane-inspired protein-based bioprotonic hydrogel for artificial skin and human-machine merging interface[J]. Advanced Functional Materials, 2023, 33(13): 2211056. doi: 10.1002/adfm.202211056 [38] WANG S, LEI J, YI X, et al. Fabrication of polypyrrole-grafted gelatin-based hydrogel with conductive, self-healing, and injectable properties[J]. ACS Applied Polymer Materials, 2020, 2(7): 3016-3023. doi: 10.1021/acsapm.0c00468 [39] PI M, QIN S, WEN S, et al. Rapid gelation of tough and anti-swelling hydrogels under mild conditions for underwater communication[J]. Advanced Functional Materials, 2022, 33(1): 2210188. [40] HAN K, BAI Q, WU W, et al. Gelatin-based adhesive hydrogel with self-healing, hemostasis, and electrical conductivity[J]. International Journal of Biological Macromolecules, 2021, 183: 2142-2151. doi: 10.1016/j.ijbiomac.2021.05.147 [41] LU J, HAN X, DAI L, et al. Conductive cellulose nanofibrils-reinforced hydrogels with synergetic strength, toughness, self-adhesion, flexibility and adjustable strain responsiveness[J]. Carbohydrate Polymers, 2020, 250: 117010. doi: 10.1016/j.carbpol.2020.117010 [42] HU H, XU F-J. Rational design and latest advances of polysaccharide-based hydrogels for wound healing[J]. Biomaterials Science, 2020, 8(8): 2084-2101. doi: 10.1039/D0BM00055H [43] WAN H, CHEN Y, TAO Y, et al. MXene-mediated cellulose conductive hydrogel with ultrastretchability and self-healing ability[J]. ACS Nano, 2023, 17(20): 20699-20710. doi: 10.1021/acsnano.3c08859 [44] LV S, ZHANG S, ZUO J, et al. Progress in preparation and properties of chitosan-based hydrogels[J]. International Journal of Biological Macromolecules, 2023, 242: 124915. doi: 10.1016/j.ijbiomac.2023.124915 [45] CONG J, FAN Z, PAN S, et al. Polyacrylamide/chitosan-based conductive double network hydrogels with outstanding electrical and mechanical performance at low temperatures[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34942-34953. [46] CHEN N, TAO L, LU X, et al. An adhesive cellulose nanocrystal-reinforced nanocomposite hydrogel electrolyte for supercapacitor applications[J]. Giant, 2024, 17: 100230. doi: 10.1016/j.giant.2023.100230 [47] ZHANG M, CHEN S, SHENG N, et al. Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior[J]. Nanoscale, 2021, 13(17): 8126-8136. doi: 10.1039/D1NR00867F [48] YE Y, JIANG F. Highly stretchable, durable, and transient conductive hydrogel for multi-functional sensor and signal transmission applications[J]. Nano Energy, 2022, 99: 107374. doi: 10.1016/j.nanoen.2022.107374 [49] LIU P, MA C, LI Y, et al. Facile preparation of eco-friendly, flexible starchbased materials with ionic conductivity and strainresponsiveness[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(51): 19117-19128. [50] LU J, GU J, HU O, et al. Highly tough, freezing-tolerant, healable and thermoplastic starch/poly(vinyl alcohol) organohydrogels for flexible electronic devices[J]. Journal of Materials Chemistry A, 2021, 9(34): 18406-18420. doi: 10.1039/D1TA04336F [51] FAN X, ZHANG R, SUI S, et al. Starch-based superabsorbent hydrogel with high electrolyte retention capability and synergistic interface engineering for long-lifespan flexible zinc−air batteries[J]. Angewandte Chemie International Edition, 2023, 62(22): e202302640. doi: 10.1002/anie.202302640 [52] TRINGIDES C M, VACHICOURAS N, DE Lázaro I, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues[J]. Nature Nanotechnology, 2021, 16(9): 1019-1029. doi: 10.1038/s41565-021-00926-z [53] JI D, PARK J M, OH M S, et al. Superstrong, superstiff, and conductive alginate hydrogels[J]. Nature Communications, 2022, 13(1): 3019. doi: 10.1038/s41467-022-30691-z [54] OHM Y, PAN C, FORD M J, et al. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics[J]. Nature Electronics, 2021, 4(3): 185-192. doi: 10.1038/s41928-021-00545-5 [55] GRACA M F P, MIGUEL S P, CABRAL C S D, et al. Hyaluronic acid—Based wound dressings: A review[J]. Carbohydrate Polymers, 2020, 241: 116364. doi: 10.1016/j.carbpol.2020.116364 [56] XUAN H, WU S, JIN Y, et al. A bioinspired self-healing conductive hydrogel promoting peripheral nerve regeneration[J]. Advanced Science, 2023, 10(28): 2302519. doi: 10.1002/advs.202302519 [57] JIN S, CHOI H, SEONG D, et al. Injectable tissue prosthesis for instantaneous closed-loop rehabilitation[J]. Nature, 2023, 623(7985): 58-65. doi: 10.1038/s41586-023-06628-x [58] DING H, ZHONG M, KIM Y J, et al. Biologically derived soft conducting hydrogels using heparin-doped polymer networks[J]. ACS nano, 2014, 8(5): 4348-4357. doi: 10.1021/nn406019m [59] DOU Y, ZHANG Y, ZHANG S, et al. Multi-functional conductive hydrogels based on heparin–polydopamine complex reduced graphene oxide for epidermal sensing and chronic wound healing[J]. Journal of Nanobiotechnology, 2023, 21(1): 343. doi: 10.1186/s12951-023-02113-9 [60] ZHANG Y, GUO D, SHEN X, et al. Recoverable and degradable carboxymethyl chitosan polyelectrolyte hydrogel film for ultra stable encapsulation of curcumin[J]. International Journal of Biological Macromolecules, 2024, 268: 131616. doi: 10.1016/j.ijbiomac.2024.131616 [61] QIN X, ZHAO Z, DENG J, et al. Tough, conductive hydrogels based on gelatin and oxidized sodium carboxymethyl cellulose as flexible sensors[J]. Carbohydrate Polymers, 2024, 335: 121920. doi: 10.1016/j.carbpol.2024.121920 [62] LI X, WU X. The microspheres/hydrogels scaffolds based on the proteins, nucleic acids, or polysaccharides composite as carriers for tissue repair: A review[J]. International Journal of Biological Macromolecules, 2023, 253: 126611. doi: 10.1016/j.ijbiomac.2023.126611 [63] LI F, TANG J, GENG J, et al. Polymeric DNA hydrogel: design, synthesis and applications[J]. Progress in Polymer Science, 2019, 98: 101163. doi: 10.1016/j.progpolymsci.2019.101163 [64] TANG L, WU S, XU Y, et al. Design of a DNA-Based double network hydrogel for electronic skin applications[J]. Advanced Materials Technologies, 2022, 7(10): 2200066. doi: 10.1002/admt.202200066 [65] ZHONG R, TALEBIAN S, MENDES B B, et al. Hydrogels for RNA delivery[J]. Nature Materials, 2023, 22(7): 818-831. doi: 10.1038/s41563-023-01472-w [66] ZHANG Q, LIU X, REN X, et al. Nucleotide-regulated tough and rapidly self-recoverable hydrogels for highly sensitive and durable pressure and strain sensors[J]. Chemistry of Materials, 2019, 31(15): 5881-5889. doi: 10.1021/acs.chemmater.9b02039 [67] MA J, ZHONG J, SUN F, et al. Hydrogel sensors for biomedical electronics[J]. Chemical Engineering Journal, 2024, 481: 148317. doi: 10.1016/j.cej.2023.148317 [68] FU H, WANG B, LI J, et al. A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe3+hydrogel based on multi-dynamic interactions for a multifunctional strain sensor[J]. Materials Horizons, 2022, 9(5): 1412-1421. doi: 10.1039/D2MH00028H [69] XIE Y, ZHENG Y, FAN J, et al. Novel electronic–ionic hybrid conductive composites for multifunctional flexible bioelectrode based on in situ synthesis of poly(dopamine) on bacterial cellulose[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22692-22702. [70] SUN S, MAIMAITIYIMING X. Silver nanowire/polyacrylamide/gelatin flexible stress, strain and temperature sensor[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2023, 675: 131919. doi: 10.1016/j.colsurfa.2023.131919 [71] ZHANG L, WANG Z, HUANG Y, et al. Highly water retention, flexible and self-extinguished temperature sensors based on double network hydrogel for early fire warning[J]. Composites Part B: Engineering, 2023, 260: 110753. doi: 10.1016/j.compositesb.2023.110753 [72] SUN S, XU Y, MAIMAITIYIMING X. Tough polyvinyl alcohol-gelatin biological macromolecules ionic hydrogel temperature, humidity, stress and strain, sensors[J]. International Journal of Biological Macromolecules, 2023, 249: 125978. doi: 10.1016/j.ijbiomac.2023.125978 [73] JI G, HU R, WANG Y, et al. High energy density, flexible, low temperature resistant and self-healing Zn-ion hybrid capacitors based on hydrogel electrolyte[J]. Journal of Energy Storage, 2022, 46: 103858. doi: 10.1016/j.est.2021.103858 [74] YUE L, XIE Y, ZHENG Y, et al. Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte[J]. Composites Science and Technology, 2017, 145: 122-131. doi: 10.1016/j.compscitech.2017.04.002 [75] WANG J, WANG C, WANG W, et al. Carboxymethylated nanocellulose-based gel polymer electrolyte with a high lithium ion transfer number for flexible lithium-ion batteries application[J]. Chemical Engineering Journal, 2022, 428: 132604. doi: 10.1016/j.cej.2021.132604 [76] QU M, LEI D, ZHANG H, et al. One-pot method for in situ synthesis of triple cross-linked hydrogel electrolytes for flexible supercapacitors with high mechanical and electrochemical properties[J]. Journal of Energy Storage, 2023, 72: 108644. doi: 10.1016/j.est.2023.108644 [77] SHANG Z, ZHANG H, QU M, et al. High adhesion hydrogel electrolytes enhanced by multifunctional group polymer enable high performance of flexible zinc-air batteries in wide temperature range[J]. Chemical Engineering Journal, 2023, 468: 143836. doi: 10.1016/j.cej.2023.143836 [78] CAO L, QIU X, JIAO Q, et al. Polysaccharides and proteins-based nanogenerator for energy harvesting and sensing: A review[J]. International Journal of Biological Macromolecules, 2021, 173: 225-243. doi: 10.1016/j.ijbiomac.2021.01.109 [79] SUN W, LIU X, HUA W, et al. Self-strengthening and conductive cellulose composite hydrogel for high sensitivity strain sensor and flexible triboelectric nanogenerator[J]. International Journal of Biological Macromolecules, 2023, 248: 125900. doi: 10.1016/j.ijbiomac.2023.125900 [80] QIN C, LU A. Flexible, anti-freezing self-charging power system composed of cellulose based supercapacitor and triboelectric nanogenerator[J]. Carbohydrate Polymers, 2021, 274: 118667. doi: 10.1016/j.carbpol.2021.118667 [81] ZHU H, CHENG Y, LI S, et al. Stretchable and recyclable gelatin Ionogel based ionic skin with extensive temperature tolerant, self-healing, UV-shielding, and sensing capabilities[J]. International Journal of Biological Macromolecules, 2023, 244: 125417. doi: 10.1016/j.ijbiomac.2023.125417 [82] ZHAO L, REN Z, LIU X, et al. A multifunctional, self-healing, self-adhesive, and conductive sodium alginate/poly(vinyl alcohol) composite hydrogel as a flexible strain sensor[J]. ACS Applied Materials & Interfaces, 2021, 13(9): 11344-11355. [83] BAUMGARTNER M, HARTMANN F, DRACK M, et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics[J]. Nature Materials, 2020, 19(10): 1102-1109. doi: 10.1038/s41563-020-0699-3