留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印可定制热塑性聚氨酯/聚已内酯共混物食管支架的生物力学性能

韦归鸿 武贵林 曾帅 黄圣华 张麒麟 冯军 曾博 于鹏

韦归鸿, 武贵林, 曾帅, 等. 3D打印可定制热塑性聚氨酯/聚已内酯共混物食管支架的生物力学性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 韦归鸿, 武贵林, 曾帅, 等. 3D打印可定制热塑性聚氨酯/聚已内酯共混物食管支架的生物力学性能[J]. 复合材料学报, 2024, 42(0): 1-10.
WEI Guihong, WU Guilin, ZENG Shuai, et al. Biomechanical properties of a customizable thermoplastic polyurethane/ polycaprolactone blended esophageal stent fabricated by 3D printing[J]. Acta Materiae Compositae Sinica.
Citation: WEI Guihong, WU Guilin, ZENG Shuai, et al. Biomechanical properties of a customizable thermoplastic polyurethane/ polycaprolactone blended esophageal stent fabricated by 3D printing[J]. Acta Materiae Compositae Sinica.

3D打印可定制热塑性聚氨酯/聚已内酯共混物食管支架的生物力学性能

基金项目: 广西南宁市技术创新引导专项项目(20204122);广西高校引进海外高层次人才“百人计划”项目
详细信息
    通讯作者:

    于鹏,博士,副教授,硕士生导师,研究方向为材料力学、结构抗冲击力学 E-mail: py@gxu.edu.cn

  • 中图分类号: R318.01;TB324;TB332

Biomechanical properties of a customizable thermoplastic polyurethane/ polycaprolactone blended esophageal stent fabricated by 3D printing

Funds: Guangxi Nanning Technology Innovation Guidance Project (20204122); Guangxi universities to introduce overseas high-level talents "100 people plan" project
  • 摘要: 食管支架在食管疾病的临床治疗中有广泛的应用。但商业食管支架尺寸固定,无法根据患者食管的几何形状进行个性化定制。通过熔融共混结合3D打印技术的方式制备了一种热塑性聚氨酯(TPU)/聚己内酯(PCL)共混物食管支架,并基于对TPU/PCL组分比例的调节,实现了对支架力学性能的调控。通过差示扫描量热、热重分析、力学试验、体外降解试验和细胞毒性检测研究了TPU/PCL共混物的理化特性及支架的各项关键指标。结果表明,TPU/PCL共混物具有良好的材料相容性和力学性能,且细胞活性为72.9%,对细胞无潜在毒性。经过为期8周的体外降解试验,支架的重量损失均小于2%,且力学性能无明显变化。3D打印TPU/PCL共混物支架优越的力学和生物学性能证明了其在食管狭窄的临床个性化治疗中具有潜在应用前景。

     

  • 图  1  双螺杆挤出机和3D打印制备热塑性聚氨酯(TPU)/聚已内酯(PCL)共混物食管支架的示意图

    Figure  1.  Schematic illustration of thermoplastic polyurethane (TPU)/polycaprolactone (PCL) blends preparation using a twin-screw extruder and 3D printing for esophageal stent

    图  2  3D打印TPU/PCL共混物食管支架试验

    Figure  2.  3D printed TPU/PCL blended esophageal stent test

    图  3  食管支架结构

    Figure  3.  Esophageal stent structure

    图  4  5种不同组分比的TPU/PCL共混物支架(从左到右依次为:PCL;60TPU/40PCL;70TPU/30PCL;80TPU/20PCL;TPU)

    Figure  4.  Five kinds of TPU/PCL blended stents with different component ratios (From left to right: PCL, 60TPU/40PCL, 70TPU/30PCL, 80TPU/20PCL, TPU)

    图  5  不同组分比TPU/PCL共混物的热重分析法(TGA)热图

    Figure  5.  Thermogravimetric analysis (TGA) thermograms of TPU/PCL blends with different component ratios

    图  6  不同组分比TPU/PCL共混物的差示扫描量热测试(DSC)曲线

    Figure  6.  Differential scanning calorimetry (DSC) curves of TPU/PCL blends with different component ratios

    图  7  不同组分比TPU/PCL共混物的拉伸性能

    Figure  7.  Tensile properties of TPU/PCL blends with different component ratios

    图  8  不同组分比TPU/PCL共混物的极限拉伸强度和拉伸模量

    Figure  8.  Ultimate tensile strength and modulus of TPU/PCL blends with different component ratios

    图  9  不同组分比TPU/PCL共混物支架和商业食管支架的径向力-位移曲线

    Figure  9.  Radial force-distance curves of stents with different component ratios of TPU/PCL blends and commercial esophageal stents

    图  10  不同组分比TPU/PCL共混物支架的抗迁移力

    Figure  10.  Migration resistance force of TPU/PCL blended stents

    图  11  不同组分比TPU/PCL共混物支架在模拟胃液(SGF)和磷酸盐缓冲液(PBS)中降解8周后的重量和径向力变化

    Figure  11.  Weight and radial force changes of TPU/PCL blended stents with different component ratios after 8 weeks of degradation in Simulated gastric fluid (SGF) and Phosphate buffer saline (PBS)

    图  12  显微镜下各组的L-929细胞的细胞形态

    Figure  12.  Cell morphology of L-929 cells in each group under the microscope

    表  1  不同组分比TPU/PCL共混物的打印参数

    Table  1.   Printing parameters of TPU/PCL blends with different component ratios

    Sample Nozzle
    temperature/℃
    Build plate
    temperature /℃
    TPU 210 50
    80TPU/20PCL 210 35
    70TPU/30PCL 210 35
    60TPU/40PCL 210 35
    PCL 100 35
    Notes: Printing speed: 20 mm/s. Layer height: 0.1 mm.
    下载: 导出CSV

    表  2  不同组分比TPU/PCL共混物的弯曲力学性能

    Table  2.   Flexural mechanical properties of TPU/PCL blends with different component ratios

    Sample Flexural modulus/MPa Flexural strength/MPa Maximal force/N
    TPU 9.0±0.27 0.8±0.01 1.2±0.03
    80TPU/20PCL 23.7±0.47 1.6±0.05 3.1±0.22
    70TPU/30PCL 42.0±0.00 2.3±0.04 3.8±0.06
    60TPU/40PCL 62.0±4.08 3.0±0.04 5.0±0.07
    PCL 416.7±4.72 13.9±0.03 23.1±0.05
    下载: 导出CSV
  • [1] YANG K, CAO J, YUAN T W, et al. Silicone-covered biodegradable magnesium stent for treating benign esophageal stricture in a rabbit model[J]. World Journal of Gastroenterology, 2019, 25(25): 3207-3217. doi: 10.3748/wjg.v25.i25.3207
    [2] 贺迎, 崔永. 食管支架的研究进展[J]. 中国胸心血管外科临床杂志, 2018, 25(2): 164-170.

    HE Ying, CUI Yong. Advance in research of esophageal stent[J]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2018, 25(2): 164-170(in Chinese).
    [3] MANGIAVILLANO B, PAGANO N, ARENA M, et al. Role of stenting in gastrointestinal benign and malignant diseases[J]. World Journal of Gastrointestinal Endoscopy, 2015, 7(5): 460-480. doi: 10.4253/wjge.v7.i5.460
    [4] DIDDEN P, SPAANDER M C W, BRUNO M J, et al. Esophageal Stents in malignant and benign disorders[J]. Current Gastroenterology Reports, 2013, 15(4): 319. doi: 10.1007/s11894-013-0319-3
    [5] 徐元丰, 黄优华, 沈涛, 等. 金属覆膜支架在食管癌术后食管-气管瘘的临床应用[J]. 中国卫生产业, 2014, 11(29): 133-134.

    XU Yuanfeng, HUANG Youhua, SHEN Tao, et al. Clinical application of metal-coated stents in postoperative esophageal-tracheal fistula after esophageal cancer surgery[J]. China Health Industry, 2014, 11(29): 133-134(in Chinese).
    [6] JAIN P. Self-expanding metallic esophageal stents: A long way to go before a particular stent can be recommended[J]. World Journal of Gastroenterology, 2011, 17(48): 5327-5328. doi: 10.3748/wjg.v17.i48.5327
    [7] FIORELLI A, ESPOSITO G, PEDICELLI I, et al. Large tracheobronchial fistula due to esophageal stent migration: Let it be![J]. Asian Cardiovascular & Thoracic Annals, 2015, 23(9): 1106-1109.
    [8] GROSS B C, ERKAL J L, LOCKWOOD S Y, et al. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences[J]. Analytical Chemistry, 2014, 86(7): 3240-3253. doi: 10.1021/ac403397r
    [9] CHIA H N, WU B M. Recent advances in 3D printing of biomaterials[J]. Journal of Biological Engineering, 2015, 9(1).
    [10] ZHU Yizhen, JORALMON D, SHAN W T, et al. 3D printing biomimetic materials and structures for biomedical applications[J]. Bio-Design and Manufacturing, 2021, 4(2): 405-428. doi: 10.1007/s42242-020-00117-0
    [11] 贾李涵, 李岩. 3D打印纳米纤维素增强聚乳酸血管支架的体外力学性能研究[J]. 复合材料科学与工程, 2021, 2021(5): 61-67.

    JIA Lihan, LI Yan. In vitro experimental study on the mechanical properties of vascular stents prepared by 3D printing nanocellulose/poly (lactic acid) nanocomposites[J]. Composites Science and Engineering, 2021, 2021(5): 61-67(in Chinese).
    [12] YANG Y, YANG S B, WANG Y G, et al. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan[J]. Acta Biomaterialia, 2016, 46: 112-128. doi: 10.1016/j.actbio.2016.09.035
    [13] WANG X, JIANG M, ZHOU Z W, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B, 2016, 110: 442-458.
    [14] JAYSWAL A, ADANUR S. Characterization of PLA/TPU composite filaments manufactured for 3D printing with FDM[J]. Journal of Thermoplastic Composite Materials, 2023, 36(4): 1450-1471. doi: 10.1177/08927057211062561
    [15] SIDDIQUI N, ASAWA S, BIRRU B, et al. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications[J]. Molecular Biotechnology, 2018, 60(7): 506-532. doi: 10.1007/s12033-018-0084-5
    [16] WANG Q F, MA Z Y, WANG Y, et al. Fabrication and characterization of 3D printed biocomposite scaffolds based on PCL and zirconia nanoparticles[J]. Bio-Design and Manufacturing, 2021, 4(1): 60-71. doi: 10.1007/s42242-020-00095-3
    [17] MALIKMAMMADOV E, TANIR T E, KIZILTAY A, et al. PCL and PCL-based materials in biomedical applications[J]. Journal of Biomaterials Science-Polymer Edition, 2018, 29(7-9): 863-893. doi: 10.1080/09205063.2017.1394711
    [18] FRYN P, JEWLOSZEWICZ B, BOGDANOWICZ A B, et al. Research of binary and ternary composites based on selected aliphatic or aliphatic–aromatic polymers, 5CB or SWCN toward biodegradable electrodes[J]. Materials, 2020, 13(11).
    [19] 曾娇, 汪艳, 何畯涛, 等. 3D打印具有形状记忆效应的TPU/PCL复合材料研究[J]. 工程塑料应用, 2021, 49(9): 77-81. doi: 10.3969/j.issn.1001-3539.2021.09.015

    ZENG Jia, WANG Yan, HE Juntao, et al. Research on 3D Printing TPU/PCL composite material with shape memory effect[J]. Engineering Plastics Application, 2021, 49(9): 77-81(in Chinese). doi: 10.3969/j.issn.1001-3539.2021.09.015
    [20] JING X, MI H Y, HUANG H X, et al. Shape memory thermoplastic polyurethane (TPU) /poly(ε-caprolactone) (PCL) blends as self-knotting sutures[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64: 94-103. doi: 10.1016/j.jmbbm.2016.07.023
    [21] SABAHI N, ROOHANI I, Wang C H, et al. Thermoplastic polyurethane-based shape memory polymers with potential biomedical application: The effect of TPU soft-segment on shape memory effect and cytocompatibility[J]. Polymer, 2023, 283: 126189. doi: 10.1016/j.polymer.2023.126189
    [22] 王慧. FDM型打印机打印骨软骨双层支架用于骨软骨损伤修复的研究[D]. 长春: 吉林大学, 2022.

    WANG Hui. Research on repairing osteochondral injury with double-layer scaffolds printed by FDM printer[D]. Changchun: Jilin University, 2022(in Chinese).
    [23] 李颖, 左龙, 陈宝书. 热塑性聚氨酯/聚己内酯共混物的形状记忆和力学性能[J]. 高分子材料科学与工程, 2017, 33(10): 72-75.

    LI Ying, ZUO Long, CHEN Baoshu. Shape memory and mechanical properties of Polyurethane/Polycaprolactone blends[J]. Polymer Materials Science & Engineering, 2017, 33(10): 72-75(in Chinese).
    [24] International Organization for Standardization. Plastics-Determination of tensile properties-Part 2: Test conditions for moulding and extrusion plastics: ISO 527-2[S]. Switzerland, 2012.
    [25] International Organization for Standardization. Plastics—Determination of flexural properties: ISO 178-2019[S]. Switzerland, 2019.
    [26] LIN M H, FIROOZI N, TSAI C T, et al. 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies[J]. Acta Biomaterialia, 2019, 83: 119-129. doi: 10.1016/j.actbio.2018.10.035
    [27] International Organization for Standardization. Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity: ISO 10993-5: 2009[J]. Switzerland, 2009.
    [28] GARBEY M, SALMON R, FIKFAK V, et al. Esophageal stent migration: Testing few hypothesis with a simplified mathematical model[J]. Computers in Biology and Medicine, 2016, 79: 259-265. doi: 10.1016/j.compbiomed.2016.10.024
    [29] HINDY P, HONG J, LAM-TSAI Y, et al. A comprehensive review of esophageal stents[J]. Gastroenterology & Hepatology, 2012, 8(8): 526-34.
    [30] SINGH J, PANDEY P M, KAUR T, et al. A comparative analysis of solvent cast 3D printed carbonyl iron powder reinforced polycaprolactone polymeric stents for intravascular applications[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2021, 109(9): 1344-1359. doi: 10.1002/jbm.b.34795
    [31] SINGH J, SINGH G, PANDEY P M. Multi-objective optimization of solvent cast 3D printing process parameters for fabrication of biodegradable composite stents[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(11-12): 3945-3964. doi: 10.1007/s00170-021-07423-6
    [32] RINCON O N, MADRIGAL A H, RODRIGUEZ B M, et al. Esophageal obstruction due to a collapsed biodegradable esophageal stent[J]. Endoscopy, 2011, 43: E189-E190. doi: 10.1055/s-0030-1256324
    [33] YANG K, LING C, YUAN T W, et al. Polymeric biodegradable stent insertion in the esophagus[J]. Polymers, 2016, 8(5): 158. doi: 10.3390/polym8050158
    [34] PILES L, REIG M J, JESUS SEGUI V, et al. Reverse engineering applied to biomodelling and pathological bone manufacturing using FDM technology[J]. Procedia Manufacturing, 2019, 41: 739-746. doi: 10.1016/j.promfg.2019.09.065
    [35] 施伟, 罗飞. 基于CT数据的颌骨支架材料有限元分析及3D打印模型研究[J]. 基因组学与应用生物学, 2018, 37(10): 4553-4559.

    SHI Wei, LUO Fei. Research on finite element analysis of jaw bone scaffold materials and the 3D printing model based on CT datas[J]. Genomics and Applied Biology, 2018, 37(10): 4553-4559(in Chinese).
  • 加载中
计量
  • 文章访问数:  57
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-27
  • 修回日期:  2024-04-27
  • 录用日期:  2024-05-13
  • 网络出版日期:  2024-06-13

目录

    /

    返回文章
    返回