留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP面板-功能梯度蜂窝夹层板的抗低速冲击性能

付珊珊 陈栋 时建纬 李成

付珊珊, 陈栋, 时建纬, 等. CFRP面板-功能梯度蜂窝夹层板的抗低速冲击性能[J]. 复合材料学报, 2023, 40(7): 4223-4233
引用本文: 付珊珊, 陈栋, 时建纬, 等. CFRP面板-功能梯度蜂窝夹层板的抗低速冲击性能[J]. 复合材料学报, 2023, 40(7): 4223-4233
FU Shanshan, CHEN Dong, SHI Jianwei, LI Cheng. Low-velocity impact of functional gradient honeycomb sandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4223-4233.
Citation: FU Shanshan, CHEN Dong, SHI Jianwei, LI Cheng. Low-velocity impact of functional gradient honeycomb sandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4223-4233.

CFRP面板-功能梯度蜂窝夹层板的抗低速冲击性能

基金项目: 国家自然科学基金(52175153);中国博士后科学基金(2021 M692912);河南省高等学校重点科研项目(22 A610013)
详细信息
    通讯作者:

    李成,博士,教授,博士生导师,研究方向为复合材料损伤分析和复合材料损伤检查 E-mail:chengli@zzu.edu.cn

  • 中图分类号: TB332

Low-velocity impact of functional gradient honeycomb sandwich plate with CFRP face sheets

Funds: National Natural Science Foundation of China(52175153);China Postdoctoral Science Foundation(2021 M692912);Key Scientific Research Projects of Colleges and Universities in Henan Province(22 A610013)
  • 摘要: 为了提高蜂窝夹层板的抗低速冲击性能,使能量吸收过程以一种和缓的形式进行,创新型蜂窝结构作为一种高效的能量吸收装置成为工程师们关注的热点领域。功能梯度多孔材料与传统多孔材料相比对冲击波有更好地衰减作用,在不改变质量的前提下能够更好地发挥多孔材料的吸能特性。所以本文通过改变壁厚,在传统蜂窝结构中引入密度梯度,通过有限元分析的方法,在不同冲击能量下,对比研究了不同梯度系数形式的夹层板的吸能特性。结果表明,在20J,50J和100J的冲击能量下,随着冲击能量的增加,具有吸能优越性的芯层从梯度系数α>1逐渐向梯度系数α<1转变,且在这三种冲击能量下,具有吸能优势的芯层梯度形式别为α>1,α>1和α<1,同等质量下的功能梯度夹层板比传统夹层板吸能分别提升7.54%,5.33%和8.65%。梯度芯层夹层板几何模型抗冲击性能综合对比
    Impact energy /JαPeak contact force /NTotal energy /JCore energy /JTotal energy percentage increase (%)
    200.73033.8715.779.74-6.14
    13670.4516.8511.76——
    1.44265.7418.1213.527.54
    500.74420.2540.6330.11-4.22
    14496.3042.4232.66——
    1.44781.4344.6836.035.33
    1000.74100.7991.5861.768.65
    14700.0384.2953.88——
    1.44570.8888.6358.785.15

     

  • 图  1  梯度夹层板几何模型

    Figure  1.  Geometric model of functional gradient honeycomb sandwich plate

    图  2  CFRP面板-ASB蜂窝夹层板冲击有限元模型

    Figure  2.  FEM model of sandwich plate with ABS core and CFRP facesheets under impact

    图  3  改变网格尺寸接触力历程曲线

    Figure  3.  Contact force history curves of different mesh sizes

    图  4  不同冲击能量Ek下CFRP面板-ABS蜂窝夹层板的接触力与吸能

    Figure  4.  History curves of contact force and energy of sandwich plate with ABS core and CFRP facesheets under different impact energies Ek

    图  5  不同冲击能量Ek下CFRP面板-ABS蜂窝夹层板的试验与仿真损伤对比图

    Figure  5.  Comparison diagram of experimental and simulation damage of sandwich plate with ABS core and CFRP facesheets under different impact energies Ek

    图  6  不同冲击能量Ek下CFRP面板-功能梯度蜂窝夹层板芯层变形及应变图

    Figure  6.  Deformation and strain diagram of cores of functional gradient honeycomb sandwich plate with CFRP face sheets under different impact energies Ek

    图  7  不同冲击能量Ek下CFRP面板-功能梯度蜂窝夹层板的接触力历程

    Figure  7.  Contact force history curves of functional gradient honeycomb sandwich plate with CFRP face sheets under different impact energies Ek

    α—Gradient coefficient which defined as the ratio of the volume fraction of two adjacent layers of honeycomb

    图  8  不同冲击能量Ek下CFRP面板-功能梯度蜂窝夹层板的吸能历程

    Figure  8.  Energy absorption history curves of functional gradient honeycomb sandwich plate with CFRP face sheets under different impact energies Ek

    图  9  不同冲击能量Ek下CFRP面板-功能梯度蜂窝夹层板 的中节点位移历程

    Figure  9.  Displacement history of intermediate point in functional gradient honeycomb sandwich plate with CFRP face sheets under different impact energies Ek

    图  10  不同密度梯度CFRP面板-功能梯度蜂窝夹层板的能量吸收特性

    Figure  10.  Energy absorption characteristics of functional gradient honeycomb sandwich plate with CFRP face sheets with different density gradients

    图  11  不同梯度形式下CFRP面板-功能梯度蜂窝夹层板吸能分布对比

    Figure  11.  Comparison of energy absorption distribution of functional gradient honeycomb sandwich plate with CFRP face sheets under different gradient forms

    图  12  不同梯度数值下CFRP面板-功能梯度蜂窝夹层板吸能分布对比

    Figure  12.  Comparison of energy absorption distribution of functional gradient honeycomb sandwich plate with CFRP face sheets under different gradient values

    5  抗冲击性能综合对比

    Impact energy /JαPeak contact force /NTotal energy /JCore energy /JTotal energy percentage increase (%)
    200.73033.8715.779.74-6.14
    13670.4516.8511.76——
    1.44265.7418.1213.527.54
    500.74420.2540.6330.11-4.22
    14496.3042.4232.66——
    1.44781.4344.6836.035.33
    1000.74100.7991.5861.768.65
    14700.0384.2953.88——
    1.44570.8888.6358.785.15
    下载: 导出CSV

    表  1  CFRP材料参数

    Table  1.   Material properties of CFRP

    PropertyValue
    Longitudinal stiffness E1 /GPa55.92
    Transverse stiffness E2 /GPa54.40
    Shear modulus G12 /GPa4.199
    Poisson’s ratio v210.043
    Longitudinal tensile strength Xt /MPa910.1
    Longitudinal compressive strength Xc/MPa710.2
    Transverse tensile strength Yt/MPa772.2
    Transverse compressive strength Yc/MPa703.2
    Shear strength Sc/MPa131.0
    下载: 导出CSV

    表  2  ABS材料参数

    Table  2.   Material properties of ABS

    Density/
    (kg/m3)
    Young’s modulus/
    MPa
    Poisson’s ratioYield
    Strength/MPa
    Effective failure
    strain
    110017410.35390.015
    下载: 导出CSV

    表  3  网格收敛性分析

    Table  3.   Analysis of mesh convergence

    Mesh size/mmPeak forceExperimental difference/%FEM relative difference%
    15374.0936.45-
    0.84489.1013.9816.48
    0.54103.614.19%8.59
    下载: 导出CSV

    表  4  不同冲击能量Ek下CFRP面板-ABS蜂窝夹层板的接触力峰值和吸能及其相对误差

    Table  4.   Contact force peak and energy absorption and their relative errors of sandwich plate with ABS core and CFRP facesheets under different impact energies Ek

    Impact energy/JContact force/NEnergy/J
    Cf-Experiment[19]/NCf-Simulation/NError/%En-Experiment[19]/JEn-Simulation/JRelative error/%
    203938.594103.614.1917.1516.54−3.56
    404346.524641.756.7938.3336.46−4.88
    703745.374014.127.1868.2765.51−4.04
    Notes:Cf-Experiment—Contact force of experiment;Cf-Simulation—Contact force of simulation;En-Experiment—Energy of experiment;En-Simulation—Energy of simulation.
    下载: 导出CSV

    表  5  CFRP面板-功能梯度蜂窝夹层板壁厚与梯度值

    Table  5.   Wall thickness and gradient values of functional gradient honeycomb sandwich plate with CFRP face sheets

    Gradient coefficient αWall thickness/mm
    Layer1Layer2Layer3
    11.501.501.50
    1.21.941.621.35
    1.32.131.641.26
    1.42.291.641.17
    1.52.431.621.08
    1.62.561.601.00
    0.71.171.642.29
    下载: 导出CSV

    表  6  CFRP面板-功能梯度蜂窝夹层板抗冲击性能综合对比

    Table  6.   Comprehensive comparison of impact resistance of functional gradient honeycomb sandwich plate with CFRP face sheets

    Impact
    energy/
    J
    αPeak contact
    force/
    N
    Total
    energy/
    J
    Core
    energy/
    J
    Total energy
    percentage
    increase /%
    200.73033.8715.779.74−6.14
    13670.4516.8511.76
    1.44265.7418.1213.527.54
    500.74420.2540.6330.11−4.22
    14496.3042.4232.66
    1.44781.4344.6836.035.33
    1000.74100.7991.5861.768.65
    14700.0384.2953.88
    1.44570.8888.6358.785.15
    下载: 导出CSV

    表  7  不同冲击能量下CFRP面板-功能梯度蜂窝夹层板吸能特性对比

    Table  7.   Comparison of energy absorption characteristics of functional gradient honeycomb sandwich plate with CFRP face sheets under different impact energies Ek

    Impact energy /JOptimal αTotal energy/JTotal energy percentage increase /%
    201.618.5610.15
    501.645.196.53
    1000.792.619.87
    下载: 导出CSV
  • [1] FARSHIDI A, BERGGREEN C, SCHAUBLE R. Numerical fracture analysis and model validation for disbonded honeycomb core sandwich composites[J]. Composite Structures,2019,210:231-238. doi: 10.1016/j.compstruct.2018.11.052
    [2] GUNES R, ARSLAN K. Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures[J]. Journal of Sandwich Structures & Materials,2016,18(1):95-112.
    [3] ZHANG X, XU F, ZANG Y, et al. Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact[J]. Composite Structures,2020,236:111882. doi: 10.1016/j.compstruct.2020.111882
    [4] USTA F, TURKMEN H S, SCARPA F. Low-velocity impact resistance of composite sandwich panels with various types of auxetic and non-auxetic core structures[J]. Thin-Walled Structures,2021,163:107738. doi: 10.1016/j.tws.2021.107738
    [5] 齐佳旗, 段玥晨, 铁瑛, 等. 结构参数对CFRP蒙皮-铝蜂窝夹层板低速冲击性能的影响[J]. 复合材料学报, 2020, 37(6):1352-1363. doi: 10.13801/j.cnki.fhclxb.20190815.001

    QI Jiaqi, DUAN Yuechen, TIE Ying, et al. Effect of structural parameters on the low-velocity impact performance of aluminum honeycombsandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica,2020,37(6):1352-1363(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190815.001
    [6] WANG Z. Recent advances in novel metallic honeycomb structure[J]. Composites Part B,2019,166:731-741. doi: 10.1016/j.compositesb.2019.02.011
    [7] XING Y, YANG X, YANG J, et al. A theoretical model of honeycomb material arresting system for aircrafts[J]. Applied Mathematical Modelling,2017,48:316-337. doi: 10.1016/j.apm.2017.04.006
    [8] QI C, SUN Y, YANG S. A comparative study on empty and foam-filled hybrid material double-hat beams under lateral impact[J]. Thin-Walled Structures,2018,129:327-341. doi: 10.1016/j.tws.2018.04.018
    [9] AJDARI A, BABAEE S, VAZIRI A. Mechanical properties and energy absorption of heterogeneous and functionally graded cellular structures[J]. Procedia Engineering,2011,10:219-223. doi: 10.1016/j.proeng.2011.04.039
    [10] 刘颖, 何章权, 吴鹤翔, 等. 分层递变梯度蜂窝材料的面内冲击性能[J]. 爆炸与冲击, 2011, 31(3):225-231.

    LIU Ying, HE Quanzhang, WU Hexiang, et al. In-plane Dynamic Crushing of Functionally Layered Metal Honeycombs[J]. EXPLOSION AND SHOCK WAVES,2011,31(3):225-231(in Chinese).
    [11] 张新春, 刘颖. 密度梯度蜂窝材料动力学性能研究[J]. 工程力学, 2012, 29(8):372-377.

    ZHANG Xinchun, LIU Ying. Research on The Dynamic Crushing of Honeycombs with Density Gradient[J]. ENGINEERING MECHANICS,2012,29(8):372-377(in Chinese).
    [12] LIU Y, WU H, WANG B. Gradient design of metal hollew sphere (MHS) foams with density gradients[J]. Composites:Part B,2012,43(3):1346-1352. doi: 10.1016/j.compositesb.2011.11.057
    [13] 吴鹤翔, 刘颖. 梯度变化对密度梯度蜂窝材料力学性能的影响[J]. 爆炸与冲击, 2013, 32(2):163-167.

    WU Hexiang, LIU Ying. Influences of Density Gradient Variation on Mechanical Performances of Density Gradient Honeycomb Materials[J]. EXPLOSION AND SHOCK WAVES,2013,32(2):163-167(in Chinese).
    [14] YU B, HAN B, SU P, et al. Graded square honeycomb as sandwich core for enhanced mechanical performance[J]. Materials and Design,2016,89:642-652. doi: 10.1016/j.matdes.2015.09.154
    [15] SUN G, WANG E, WANG H, et al. Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores[J]. Materials & Design,2018,160:1117-1136.
    [16] 乔及森, 孔海勇, 苗红丽, 等. 梯度铝蜂窝夹芯板的力学行为[J]. 材料工程, 2021, 49(3):167-174.

    QIAO Jisen, KONG Haiyong, MIAO Hongli, et al. Mechanical Behavior of Gradient Aluminum Honeycomb Sandwich Panels[J]. Journal of Materials Engineering,2021,49(3):167-174(in Chinese).
    [17] 王闯, 刘荣强, 邓宗全, 等. 铝蜂窝结构的冲击动力学性能的实验及数值研究[J]. 振动与冲击, 2008, 27(11):56-61. doi: 10.3969/j.issn.1000-3835.2008.11.012

    WANG Chuang, LIU Rongqiang, DENG Zongquan, et al. Experimental and Numerical Studies on Aluminum Honeycomb Structure With Various Cell Specifications under Impact Loading[J]. JOURNAL OF VIBRATION AND SHOCK,2008,27(11):56-61(in Chinese). doi: 10.3969/j.issn.1000-3835.2008.11.012
    [18] MASTERS I G, EVANS K E. Models for the elastic deformation of honeycombs[J]. Composite Structures,1997,35:403-422.
    [19] GEDIKLI H, ASLAN M. Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores[J]. Thin-Walled Structures,2020,156:106989. doi: 10.1016/j.tws.2020.106989
    [20] 杜冰, 刘后常, 潘鑫, 等. 热塑性复合材料夹芯结构熔融连接研究进展[J]. 复合材料学报, 2022, 39(7):3044-3058.

    DU Bing, LIU Houchang, PAN Xin, et al. Progress in fusion bonding of thermoplastic composite sandwich structures[J]. Acta MateriaCompositae Sinica,2022,39(7):3044-3058(in Chinese).
    [21] TIE Y, HOU Y, LI C, et al. Optimization for maximizing the impact-resistance of patch repaired CFRP laminates using a surrogate-based model[J]. International Journal of Mechanical Sciences,2020,172:105407. doi: 10.1016/j.ijmecsci.2019.105407
    [22] 胡春幸, 侯玉亮, 铁瑛, 等. 基于遗传算法的CFRP层合板单搭胶接结构的多目标优化[J]. 复合材料学报, 2021, 38(6):1847-1858.

    HU Chunxing, HOU Yuliang, TIE Ying, et al. Multi-objective optimization of adhesively bonded single-lap joints of carbon fiber reinforced olymer laminates based on genetic algorithm[J]. Acta Materiae Compositae Sinica,2021,38(6):1847-1858(in Chinese).
    [23] 孙振辉, 铁瑛, 侯玉亮, 等. 相对冲击位置和补片层数对胶接修理CFRP复合材料层合板抗冲击性能的影响[J]. 复合材料学报, 2019, 36(5):1114-1123.

    SUN Zhenhui, TIE Ying, HOU Yuliang, et al. Effect of relative impact location and patch layer number on impact resistance of adhesive repaired CFRP composite laminaets[J]. Acta Materiae Compositae Sinica,2019,36(5):1114-1123(in Chinese).
    [24] TAO Y, DUAN S, WEN W, et al. Enhanced out-of-plane crushing strength and energy absorption of in- plane graded honeycombs[J]. Composites Part B,2017,118:33-40. doi: 10.1016/j.compositesb.2017.03.002
    [25] 杨晶晶, 李成, 铁瑛. 铝褶皱夹层板的抗低速冲击性能研究. 中国机械工程, https://kns.cnki.net/kcms/detail/42.1294.TH.20210713.1458.004.html .

    YANG Jingjing, LI Cheng, TIE Ying. Low-velocity Impact on Sandwich Plate with Aluminum Folded Core[J]. https://kns.cnki.net/kcms/detail/42.1294.TH.20210713.1458.004.html(in Chinese).
  • 加载中
图(12) / 表(8)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  219
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-29
  • 修回日期:  2022-09-23
  • 录用日期:  2022-10-01
  • 网络出版日期:  2022-10-20
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回