留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP面板-功能梯度蜂窝夹层板的抗低速冲击性能

付珊珊 陈栋 时建纬 李成

付珊珊, 陈栋, 时建纬, 等. CFRP面板-功能梯度蜂窝夹层板的抗低速冲击性能[J]. 复合材料学报, 2023, 40(7): 4226-4236. doi: 10.13801/j.cnki.fhclxb.20221014.007
引用本文: 付珊珊, 陈栋, 时建纬, 等. CFRP面板-功能梯度蜂窝夹层板的抗低速冲击性能[J]. 复合材料学报, 2023, 40(7): 4226-4236. doi: 10.13801/j.cnki.fhclxb.20221014.007
FU Shanshan, CHEN Dong, SHI Jianwei, et al. Low-velocity impact of functional gradient honeycomb sandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4226-4236. doi: 10.13801/j.cnki.fhclxb.20221014.007
Citation: FU Shanshan, CHEN Dong, SHI Jianwei, et al. Low-velocity impact of functional gradient honeycomb sandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4226-4236. doi: 10.13801/j.cnki.fhclxb.20221014.007

CFRP面板-功能梯度蜂窝夹层板的抗低速冲击性能

doi: 10.13801/j.cnki.fhclxb.20221014.007
基金项目: 国家自然科学基金(52175153);中国博士后科学基金(2021 M692912);河南省高等学校重点科研项目(22 A610013)
详细信息
    通讯作者:

    李成,博士,教授,博士生导师,研究方向为复合材料损伤分析和复合材料损伤检查 E-mail: chengli@zzu.edu.cn

  • 中图分类号: TB332

Low-velocity impact of functional gradient honeycomb sandwich plate with CFRP face sheets

Funds: National Natural Science Foundation of China (52175153); China Postdoctoral Science Foundation (2021 M692912); Key Scientific Research Projects of Colleges and Universities in Henan Province (22 A610013)
  • 摘要: 针对蜂窝结构抗冲击性能进行有限元仿真,验证模型与实验结果的一致性,主要研究了碳纤维增强树脂基复合材 料(CFRP)面板-功能梯度蜂窝夹层板在低速冲击下的防护特性。通过改变壁厚在传统蜂窝结构中引入密度梯度,针对不同冲击能量和不同梯度系数α,对比研究了功能梯度夹层板和传统夹层板的吸能特性。结果表明,冲击能量较小时α>1的蜂窝夹层板具有更好的吸能特性,随着冲击能量的增大,具有吸能优越性的芯层从α>1逐渐向α<1转变,当冲击能量足够击穿整个夹层板时,α<1的夹层板具有更好的吸能特性。在20 J、50 J和100 J冲击能量下,同等质量下的功能梯度夹层板比传统夹层板吸能分别提升7.54%、5.33%和8.65%。

     

  • 图  1  梯度夹层板几何模型

    Figure  1.  Geometric model of gradient honeycomb sandwich plate

    h—Height of honeycomb cell; l—Length of honeycomb wall; t—Thickness of honeycomb wall; θ—Honeycomb cell wall angle; α—Gradient coefficient

    图  2  碳纤维增强树脂基复合材料(CFRP)面板-丙烯腈-丁二烯-苯乙烯共聚(ASB)蜂窝夹层板冲击有限元模型(FEM)

    Figure  2.  Finite element model (FEM) of sandwich plate with acrylonitrile butadiene styrene (ABS) honeycombsandwich plate and carbon fiber reinforced polymer (CFRP) face sheets under impact

    图  3  不同网格尺寸接触力历程曲线

    Figure  3.  Contact force history curves of different mesh sizes

    图  4  不同冲击能量Ek下CFRP面板-ABS蜂窝夹层板的接触力与吸能

    Figure  4.  Contact force and energy of sandwich plate with ABS core and CFRP face sheets under different impact energies Ek

    Cf—Contact force; En—Energy

    图  5  不同Ek下CFRP面板-ABS蜂窝夹层板的试验与仿真损伤对比图

    Figure  5.  Comparison diagram of experimental and simulation damage of sandwich plate with ABS core and CFRP face sheets under different Ek

    U—Displacement; LE—True strain

    图  6  不同Ek下CFRP面板-功能梯度蜂窝夹层板芯层变形及应变图

    Figure  6.  Deformation and strain diagram of cores of functional gradient honeycomb sandwich plate with CFRP face sheets under different Ek

    图  7  不同Ek下CFRP面板-功能梯度蜂窝夹层板的接触力历程

    Figure  7.  Contact force history curves of functional gradient honeycomb sandwich plate with CFRP face sheets under different Ek

    图  8  不同Ek下CFRP面板-功能梯度蜂窝夹层板的吸能历程

    Figure  8.  Energy absorption history curves of functional gradient honeycomb sandwich plate with CFRP face sheets under different Ek

    图  9  不同Ek下CFRP面板-功能梯度蜂窝夹层板的中节点位移历程

    Figure  9.  Displacement history of intermediate point in functional gradient honeycomb sandwich plate with CFRP face sheets under different Ek

    图  10  不同密度梯度CFRP面板-功能梯度蜂窝夹层板的能量吸收特性

    Figure  10.  Energy absorption characteristics of functional gradient honeycomb sandwich plate with CFRP face sheets with different density gradients

    图  11  不同梯度形式下CFRP面板-功能梯度蜂窝夹层板吸能分布对比

    Figure  11.  Comparison of energy absorption distribution of functional gradient honeycomb sandwich plate with CFRP face sheets under different gradient forms

    图  12  不同梯度数值下CFRP面板-功能梯度蜂窝夹层板吸能分布对比

    Figure  12.  Comparison of energy absorption distribution of functional gradient honeycomb sandwich plate with CFRP face sheets under different gradient values

    表  5  抗冲击性能综合对比

    Impact energy /JαPeak contact force /NTotal energy /JCore energy /JTotal energy percentage increase (%)
    200.73033.8715.779.74-6.14
    13670.4516.8511.76——
    1.44265.7418.1213.527.54
    500.74420.2540.6330.11-4.22
    14496.3042.4232.66——
    1.44781.4344.6836.035.33
    1000.74100.7991.5861.768.65
    14700.0384.2953.88——
    1.44570.8888.6358.785.15
    下载: 导出CSV

    表  1  CFRP材料参数

    Table  1.   Material properties of CFRP

    PropertyValue
    Longitudinal stiffness E1/GPa55.92
    Transverse stiffness E2/GPa54.40
    Shear modulus G12/GPa4.199
    Poisson's ratio ν210.043
    Longitudinal tensile strength Xt/MPa910.1
    Longitudinal compressive strength Xc/MPa710.2
    Transverse tensile strength Yt/MPa772.2
    Transverse compressive strength Yc/MPa703.2
    Shear strength Sc/MPa131.0
    下载: 导出CSV

    表  2  ABS材料参数

    Table  2.   Material properties of ABS

    Density/
    (kg·m−3)
    Young's modulus/
    MPa
    Poisson's ratioYield strength/MPaEffective failure strain
    110017410.35390.015
    下载: 导出CSV

    表  3  网格收敛性分析

    Table  3.   Analysis of mesh convergence

    Mesh size/mmPeak force/NExperimental difference/%FEM relative difference%
    1.05374.0936.45
    0.84489.1013.9816.48
    0.54103.61 4.19 8.59
    下载: 导出CSV

    表  4  不同Ek下CFRP面板-ABS蜂窝夹层板的接触力峰值和吸能及其相对误差

    Table  4.   Contact force peak and energy absorption and their relative errors of sandwich plate with ABS core and CFRP face sheets under different Ek

    Ek/JContact force/NEnergy/J
    Cf-experiment[20]/NCf-simulation/NError/%En-experiment[20]/JEn-simulation/JRelative error/%
    203938.594103.614.1917.1516.54−3.56
    404346.524641.756.7938.3336.46−4.88
    703745.374014.127.1868.2765.51−4.04
    下载: 导出CSV

    表  5  CFRP面板-功能梯度蜂窝夹层板壁厚与梯度值

    Table  5.   Wall thickness and gradient values of functional gradient honeycomb sandwich plate with CFRP face sheets

    Gradient coefficient αWall thickness/mm
    Layer 1Layer 2Layer 3
    11.501.501.50
    1.21.941.621.35
    1.32.131.641.26
    1.42.291.641.17
    1.52.431.621.08
    1.62.561.601.00
    0.71.171.642.29
    下载: 导出CSV

    表  6  CFRP面板-功能梯度蜂窝夹层板抗冲击性能综合对比

    Table  6.   Comprehensive comparison of impact resistance of functional gradient honeycomb sandwich plate with CFRP face sheets

    Ek/JαPeak contact
    force/
    N
    Total
    energy/
    J
    Core
    energy/
    J
    Total energy
    percentage
    increase/%
    200.73033.8715.779.74−6.14
    13670.4516.8511.76
    1.44265.7418.1213.527.54
    500.74420.2540.6330.11−4.22
    14496.3042.4232.66
    1.44781.4344.6836.035.33
    1000.74100.7991.5861.768.65
    14700.0384.2953.88
    1.44570.8888.6358.785.15
    下载: 导出CSV

    表  7  不同Ek下CFRP面板-功能梯度蜂窝夹层板吸能对比

    Table  7.   Comparison of energy absorption characteristics of functional gradient honeycomb sandwich plate with CFRP face sheets under different Ek

    Ek/JOptimal αTotal energy/JTotal energy
    percentage increase/%
    201.618.5610.15
    501.645.196.53
    1000.792.619.87
    下载: 导出CSV
  • [1] FARSHIDI A, BERGGREEN C, SCHAUBLE R. Numerical fracture analysis and model validation for disbonded honeycomb core sandwich composites[J]. Composite Structures,2019,210:231-238. doi: 10.1016/j.compstruct.2018.11.052
    [2] GUNES R, ARSLAN K. Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures[J]. Journal of Sandwich Structures & Materials,2016,18(1):95-112.
    [3] ZHANG X, XU F, ZANG Y, et al. Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact[J]. Composite Structures,2020,236:111882. doi: 10.1016/j.compstruct.2020.111882
    [4] USTA F, TURKMEN H S, SCARPA F. Low-velocity impact resistance of composite sandwich panels with various types of auxetic and non-auxetic core structures[J]. Thin-Walled Structures,2021,163:107738. doi: 10.1016/j.tws.2021.107738
    [5] 齐佳旗, 段玥晨, 铁瑛, 等. 结构参数对CFRP蒙皮-铝蜂窝夹层板低速冲击性能的影响[J]. 复合材料学报, 2020, 37(6):1352-1363. doi: 10.13801/j.cnki.fhclxb.20190815.001

    QI Jiaqi, DUAN Yuechen, TIE Ying, et al. Effect of structural parameters on the low-velocity impact performance of aluminum honeycombsandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica,2020,37(6):1352-1363(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190815.001
    [6] WANG Z. Recent advances in novel metallic honeycomb structure[J]. Composites Part B: Engineering,2019,166:731-741. doi: 10.1016/j.compositesb.2019.02.011
    [7] XING Y, YANG X, YANG J, et al. A theoretical model of honeycomb material arresting system for aircrafts[J]. Applied Mathematical Modelling,2017,48:316-337. doi: 10.1016/j.apm.2017.04.006
    [8] QI C, SUN Y, YANG S. A comparative study on empty and foam-filled hybrid material double-hat beams under lateral impact[J]. Thin-Walled Structures,2018,129:327-341. doi: 10.1016/j.tws.2018.04.018
    [9] AJDARI A, BABAEE S, VAZIRI A. Mechanical properties and energy absorption of heterogeneous and functionally graded cellular structures[J]. Procedia Engineering,2011,10:219-223. doi: 10.1016/j.proeng.2011.04.039
    [10] 刘颖, 何章权, 吴鹤翔, 等. 分层递变梯度蜂窝材料的面内冲击性能[J]. 爆炸与冲击, 2011, 31(3):225-231.

    LIU Ying, HE Zhangquan, WU Hexiang, et al. In-plane dynamic crushing of functionally layered metal honeycombs[J]. Explosion and Shock Waves,2011,31(3):225-231(in Chinese).
    [11] 张新春, 刘颖. 密度梯度蜂窝材料动力学性能研究[J]. 工程力学, 2012, 29(8):372-377.

    ZHANG Xinchun, LIU Ying. Research on the dynamic crushing of honeycombs with density gradient[J]. Engineering Mechanics,2012,29(8):372-377(in Chinese).
    [12] LIU Y, WU H, WANG B. Gradient design of metal hollew sphere (MHS) foams with density gradients[J]. Composites Part B: Engineering,2012,43(3):1346-1352. doi: 10.1016/j.compositesb.2011.11.057
    [13] 吴鹤翔, 刘颖. 梯度变化对密度梯度蜂窝材料力学性能的影响[J]. 爆炸与冲击, 2013, 32(2):163-167.

    WU Hexiang, LIU Ying. Influences of density gradient variation on mechanical performances of density gradient honeycomb materials[J]. Explosion and Shock Waves,2013,32(2):163-167(in Chinese).
    [14] YU B, HAN B, SU P, et al. Graded square honeycomb as sandwich core for enhanced mechanical performance[J]. Materials and Design,2016,89:642-652. doi: 10.1016/j.matdes.2015.09.154
    [15] SUN G, WANG E, WANG H, et al. Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores[J]. Materials & Design,2018,160:1117-1136.
    [16] 乔及森, 孔海勇, 苗红丽, 等. 梯度铝蜂窝夹芯板的力学行为[J]. 材料工程, 2021, 49(3):167-174.

    QIAO Jisen, KONG Haiyong, MIAO Hongli, et al. Mechanical behavior of gradient aluminum honeycomb sandwich panels[J]. Journal of Materials Engineering,2021,49(3):167-174(in Chinese).
    [17] 王闯, 刘荣强, 邓宗全, 等. 铝蜂窝结构的冲击动力学性能的实验及数值研究[J]. 振动与冲击, 2008, 27(11):56-61. doi: 10.3969/j.issn.1000-3835.2008.11.012

    WANG Chuang, LIU Rongqiang, DENG Zongquan, et al. Experimental and numerical studies on aluminum honeycomb structure with various cell specifications under impact loading[J]. Journal of Vibration and Shock,2008,27(11):56-61(in Chinese). doi: 10.3969/j.issn.1000-3835.2008.11.012
    [18] MASTERS I G, EVANS K E. Models for the elastic deformation of honeycombs[J]. Composite Structures,1997,35:403-422.
    [19] 杜冰, 刘后常, 潘鑫, 等. 热塑性复合材料夹芯结构熔融连接研究进展[J]. 复合材料学报, 2022, 39(7):3044-3058.

    DU Bing, LIU Houchang, PAN Xin, et al. Progress in fusion bonding of thermoplastic composite sandwich structures[J]. Acta Materiae Compositae Sinica,2022,39(7):3044-3058(in Chinese).
    [20] GEDIKLI H, ASLAN M. Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores[J]. Thin-Walled Structures,2020,156:106989. doi: 10.1016/j.tws.2020.106989
    [21] ASTM. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M—15[S]. West Conshohocken: ASTM, 2015.
    [22] TIE Y, HOU Y, LI C, et al. Optimization for maximizing the impact-resistance of patch repaired CFRP laminates using a surrogate-based model[J]. International Journal of Mechanical Sciences,2020,172:105407. doi: 10.1016/j.ijmecsci.2019.105407
    [23] 胡春幸, 侯玉亮, 铁瑛, 等. 基于遗传算法的CFRP层合板单搭胶接结构的多目标优化[J]. 复合材料学报, 2021, 38(6):1847-1858.

    HU Chunxing, HOU Yuliang, TIE Ying, et al. Multi-objective optimization of adhesively bonded single-lap joints of carbon fiber reinforced olymer laminates based on genetic algorithm[J]. Acta Materiae Compositae Sinica,2021,38(6):1847-1858(in Chinese).
    [24] 孙振辉, 铁瑛, 侯玉亮, 等. 相对冲击位置和补片层数对胶接修理CFRP复合材料层合板抗冲击性能的影响[J]. 复合材料学报, 2019, 36(5):1114-1123.

    SUN Zhenhui, TIE Ying, HOU Yuliang, et al. Effect of relative impact location and patch layer number on impact resistance of adhesive repaired CFRP composite laminates[J]. Acta Materiae Compositae Sinica,2019,36(5):1114-1123(in Chinese).
    [25] TAO Y, DUAN S, WEN W, et al. Enhanced out-of-plane crushing strength and energy absorption of in-plane graded honeycombs[J]. Composites Part B: Engineering,2017,118:33-40. doi: 10.1016/j.compositesb.2017.03.002
    [26] 杨晶晶, 李成, 铁瑛. 铝褶皱夹层板的抗低速冲击性能[J]. 中国机械工程, 2022, 33(13): 1629-1637.

    YANG Jingjing, LI Cheng, TIE Ying. Low-velocity impact on sandwich plate with aluminum folded core[J]. China Mechanical Engineering, 2022, 33(13): 1629-1637(in Chinese).
  • 加载中
图(12) / 表(8)
计量
  • 文章访问数:  652
  • HTML全文浏览量:  404
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-29
  • 修回日期:  2022-09-23
  • 录用日期:  2022-10-01
  • 网络出版日期:  2022-10-17
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回