留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模拟混凝土孔隙溶液中氯离子和硫酸根离子对钢筋锈蚀的影响

李嘉伦 刘国建 佘伟 刘志勇 张宇 张云升

李嘉伦, 刘国建, 佘伟, 等. 模拟混凝土孔隙溶液中氯离子和硫酸根离子对钢筋锈蚀的影响[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 李嘉伦, 刘国建, 佘伟, 等. 模拟混凝土孔隙溶液中氯离子和硫酸根离子对钢筋锈蚀的影响[J]. 复合材料学报, 2024, 42(0): 1-13.
LI Jialun, LIU Guojian, SHE Wei, et al. Influence of chloride and sulfate on steel corrosion in simulated concrete pore solutions[J]. Acta Materiae Compositae Sinica.
Citation: LI Jialun, LIU Guojian, SHE Wei, et al. Influence of chloride and sulfate on steel corrosion in simulated concrete pore solutions[J]. Acta Materiae Compositae Sinica.

模拟混凝土孔隙溶液中氯离子和硫酸根离子对钢筋锈蚀的影响

基金项目: 国家自然科学基金 (52008284)
详细信息
    通讯作者:

    刘国建,博士,副教授,硕士生导师,研究方向为严酷环境下钢筋混凝土锈蚀 E-mail: liuguojian@usts.edu.com

  • 中图分类号: TB302

Influence of chloride and sulfate on steel corrosion in simulated concrete pore solutions

Funds: National Natural Science Foundation of China (52008284)
  • 摘要: 通过电化学测试、XRD测试和DFT计算,本研究探讨了在不同pH值(12.4、12.9和13.5)的模拟混凝土孔隙溶液中Cl和\text{SO}_{\text{4}}^{{2-}}单独及共同作用对钢筋锈蚀行为的影响及其机制。结果表明,在pH值较低的CH溶液中,当Cl浓度仅达到0.02mol/L时,开路电位(OCP)即由−375mV急剧下降至−575 mV,表明Cl在低浓度情况下就会显著加速腐蚀;而在pH值较高的ST溶液中,随着腐蚀离子浓度从0.01 mol/L逐步增加至0.4 mol/L,钢筋的极化电阻(Rp)从约100 kΩ·cm2稳定下降至5 kΩ·cm2,但整体耐腐蚀性明显优于其他pH值的情况,显示了高pH值对腐蚀的有效抑制作用。此外,当Cl和$\text{SO}_{\text{4}}^{{2-}} $共存时,由于竞争吸附机制的作用,整体腐蚀速率介于两者单独存在时之间,$\text{SO}_{\text{4}}^{{2-}} $的存在一定程度上减缓了Cl引发的腐蚀。本研究基于上述结果提出了一个竞争吸附-催化腐蚀的两阶段反应模型,详细揭示了二者共同作用下的腐蚀行为,Cl通过破坏钝化膜加速腐蚀进程,$\text{SO}_{\text{4}}^{{2-}} $则通过影响腐蚀产物的稳定性和分布参与腐蚀过程。

     

  • 图  1  不同模拟液中腐蚀阶段钢试样的腐蚀电位($ {E}_{\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}} $)曲线:(a)第一种模拟液(CH)中;(b)第二种模拟液(LC)中;(c)第三种模拟液(ST)中

    Figure  1.  Corrosion potential ($ {E}_{\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}} $) curves of steel specimens in corrosion stage of SCPSs: (a) in the first simulated solution (CH); (b) in the second simulated solution (LC); (c) in the third simulated solution (ST)

    图  2  不同模拟液中腐蚀阶段钢试样的极化电阻($ {R}_{\mathrm{p}} $)曲线:(a)第一种模拟液(CH)中;(b)第二种模拟液(LC)中;(c)第三种模拟液(ST)中

    Figure  2.  Polarization resistance ($ {R}_{\mathrm{p}} $) curves of steel specimens in corrosion stage of SCPSs: (a) in the first simulated solution (CH); (b) in the second simulated solution (LC); (c) in the third simulated solution (ST)

    图  3  不同模拟液中腐蚀阶段钢试样的腐蚀电流密度($ {I}_{\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}} $)曲线:(a)第一种模拟液(CH)中;(b)第二种模拟液(LC)中;(c)第三种模拟液(ST)中

    Figure  3.  Corrosion current density ($ {I}_{\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}} $) curves of steel specimens in corrosion stage of SCPSs: (a) in the first simulated solution (CH); (b) in the second simulated solution (LC); (c) in the third simulated solution (ST)

    图  4  第一种模拟液(CH)中不同腐蚀离子对普通低碳钢试样腐蚀过程的电化学阻抗谱(EIS)结果及等效电路拟合结果:(a) Nyquist图;(b) Bode和Phase图

    Figure  4.  Electrochemical impedance spectroscopy (EIS) results and equivalent electrical circuit fitting results for the corrosion process of low-carbon steel specimens by different corrosive ions in the first simulated solution (CH): (a) Nyquist diagram; (b) Bode and Phase diagram

    图  5  第二种模拟液(LC)中不同腐蚀离子对普通低碳钢试样腐蚀过程的电化学阻抗谱(EIS)结果及等效电路拟合结果:(a)Nyquist图;(b)Bode和Phase图

    Figure  5.  Electrochemical impedance spectroscopy (EIS) results and equivalent electrical circuit fitting results for the corrosion process of low-carbon steel specimens by different corrosive ions in the second simulated solution (LC): (a) Nyquist diagram; (b) Bode and Phase diagram

    图  6  第三种模拟液(ST)中不同腐蚀离子对普通低碳钢试样腐蚀过程的电化学阻抗谱(EIS)结果及等效电路拟合结果:(a)Nyquist图;(b)Bode和Phase图

    Figure  6.  Electrochemical impedance spectroscopy (EIS) results and fitting results for the corrosion process of low-carbon steel specimens by different corrosive ions in the third simulated solution (ST): (a) Nyquist diagram; (b) Bode and Phase diagram

    图  7  等效拟合电路ECC:R(Q(R(QR)))

    Figure  7.  Equivalent electrical circuit used: R(Q(R(QR)))

    图  8  腐蚀离子作用下钢筋腐蚀产物的XRD图谱

    Figure  8.  XRD patterns of corrosion products of steel reinforcement under the action of corrosive ions

    图  9  Cl和$\text{SO}_{\text{4}}^{{2-}} $在Fe(100)表面不同吸附位点的示意图

    Figure  9.  Schematic diagram of different adsorption sites of Cl and $\text{SO}_{\text{4}}^{{2-}} $ on Fe(100) surface

    图  10  Cl和$\text{SO}_{\text{4}}^{{2-}} $的竞争吸附及腐蚀过程的示意图

    Figure  10.  Schematic diagram of competitive adsorption of Cl and $\text{SO}_{\text{4}}^{{2-}} $ and corrosion process: (a) Initial state; (b) Competitive adsorption;(c) Catalytic corrosion

    表  1  不同模拟液中腐蚀电化学阻抗谱(EIS)数据的等效电路拟合结果

    Table  1.   Equivalent electrical circuit fitting results of electrochemical impedance spectroscopy (EIS) data in different simulated solutions

    Content/
    (mol·L−1)
    $ {R}_{\mathrm{S}} $/
    (Ω·cm2)
    CPE1, Q/
    (S·sn·cm−2)
    CPE1,$ a $
    [0<$ a $<1]
    $ {R}_{1} $ /(Ω·cm2) CPE2, Q/
    (S·sn·cm−2)
    CPE2,$ a $
    [0<$ a $<1]
    $ {R}_{\mathrm{c}\mathrm{t}} $/
    (Ω·cm2)
    Chi-squared
    CH-Cl 0.01 65.42 0.0000917 0.8863 4164 0.0000714 0.4761 41280 5.62×10−4
    0.02 40.35 0.0001129 0.8703 2597 0.0002508 0.4036 6510 1.85×10−3
    0.03 42.19 0.0001079 0.8758 2195 0.0002016 0.3551 9236 7.96×10−4
    0.05 33.03 0.0001247 0.8633 802.3 0.0004566 0.2367 19660 7.51×10−4
    0.07 28 0.0001379 0.8521 752.2 0.0010090 0.3267 13790 6.27×10−4
    0.1 23.6 0.0001617 0.83 298.7 0.0015650 0.3055 1665 6.81×10−4
    CH-$\text{SO}_{\text{4}}^{{2-}} $ 0.01 41.22 0.0001062 0.8848 4059 0.0000951 0.6181 16650 1.05×10−3
    0.02 35.17 0.0001150 0.8848 1883 0.0002298 0.5316 6555 6.93×10−4
    0.03 30.32 0.0001140 0.8887 1317 0.0002200 0.5174 5769 2.09×10−3
    0.05 24.24 0.0001285 0.8705 1027 0.0003002 0.5019 6891 8.19×10−4
    0.07 18.98 0.0001310 0.8709 605.9 0.0004202 0.4764 7953 3.39×10−3
    0.1 16.46 0.0001365 0.8598 335.3 0.0005371 0.4666 8298 6.53×10−3
    CH
    Cl+$\text{SO}_{\text{4}}^{{2-}} $
    0.01 26.53 0.0001563 0.8879 4824 0.0000884 0.8907 26730 1.29×10−3
    0.02 20.73 0.0001161 0.8732 1628 0.0001767 0.4851 5558 3.03×10−3
    0.03 15.74 0.0001152 0.8735 1646 0.0002093 0.4884 6707 1.83×10−3
    0.05 12.29 0.0001198 0.8693 1362 0.0002904 0.4951 7037 8.45×10−4
    0.07 13.03 0.0001175 0.8771 565.2 0.0003434 0.4542 7912 1.83×10−3
    0.1 11.07 0.0001478 0.8374 235 0.0005624 0.453 9741 4.18×10−3
    LC-Cl 0.01 32.04 0.0001148 0.8847 8330 0.0000563 0.6299 73860 3.93×10−4
    0.02 25.3 0.0001290 0.8744 2978 0.0001182 0.6136 20830 5.60×10−4
    0.03 24.19 0.0001079 0.8758 2195 0.0002016 0.3551 9236 7.96×10−4
    0.05 23.1 0.0001176 0.8458 719.1 0.0002957 0.4679 12410 3.83×10−3
    0.07 20.43 0.0001043 0.8391 379.3 0.0004010 0.4495 27850 3.01×10−3
    0.1 18.96 0.0001411 0.7874 338.4 0.0004679 0.3499 9680 3.23×10−3
    LC-$\text{SO}_{\text{4}}^{{2-}} $ 0.01 30.1 0.0001085 0.8736 12400 0.0001089 0.4981 89150 6.82×10−4
    0.02 25.22 0.0001202 0.8592 1608 0.0001916 0.4244 13390 9.59×10−4
    0.03 23.07 0.0001673 0.8145 1621 0.0000909 0.4929 12360 2.51×10−3
    0.05 20.76 0.0001310 0.8047 1110 0.0002258 0.4652 20660 8.88×10−4
    0.07 19.5 0.0002658 0.7727 2373 0.0004917 0.4257 40920 1.52×10−3
    0.1 14.82 0.0001614 0.7415 7872 0.0005338 0.3576 18148 1.16×10−3
    LC
    Cl+$\text{SO}_{\text{4}}^{{2-}} $
    0.01 23.06 0.0001348 0.8229 6727 0.0000550 0.5558 60790 4.27×10−3
    0.02 22.16 0.0001216 0.8733 7205 0.0001543 0.5928 12610 2.06×10−3
    0.03 18.79 0.0001121 0.8835 841 0.0001819 0.5644 11890 4.18×10−3
    0.05 12.29 0.0001198 0.8693 1362 0.0002904 0.4951 7037 8.45×10−4
    0.07 11.43 0.0001043 0.8391 379.3 0.0004010 0.4495 27850 3.01×10−3
    0.1 10.37 0.0001018 0.8181 2699 0.0006246 0.4161 11730 4.13×10−3
    ST-Cl 0.01 5.391 0.0000566 0.9609 18140 0.0001331 0.6403 323900 5.83×10−3
    0.04 5.112 0.0000465 0.9876 19410 0.0001591 0.6505 216900 7.50×10−3
    0.07 4.982 0.0000389 0.982 9934 0.0001715 0.6763 141800 5.65×10−3
    0.10 4.486 0.0001388 0.9657 1653 0.0002079 0.6374 193900 7.77×10−3
    0.19 4.112 0.0001461 0.9329 1604 0.0001977 0.6628 173000 2.59×10−2
    0.22 4.658 0.0001180 0.9443 2733 0.0004016 0.5089 16170 2.00×10−2
    0.31 3.681 0.0001627 0.9025 2393 0.0004476 0.444 29290 2.54×10−2
    0.40 4.152 0.0001806 0.9225 1345 0.0007194 0.5227 8297 2.98×10−2
    ST-$\text{SO}_{\text{4}}^{{2-}} $ 0.01 5.761 0.0000489 0.9533 45472 0.0002232 0.6262 898000 3.12×10−2
    0.04 4.793 0.0000472 0.9437 32150 0.0002417 0.6331 840400 2.02×10−2
    0.07 3.71 0.0000440 0.9333 12270 0.0002724 0.6245 314900 1.92×10−2
    0.10 4.133 0.0000433 0.9126 11170 0.0002714 0.6367 339800 1.72×10−2
    0.19 3.825 0.0002788 0.9491 1614 0.0000467 0.5169 445500 8.33×10−3
    0.22 5.145 0.0002587 0.8349 2539 0.0005471 0.5214 17930 2.91×10−3
    0.31 3.417 0.0000819 0.9798 836 0.0006337 0.5135 32580 1.98×10−2
    0.40 3.221 0.0000762 0.9458 1027 0.0009938 0.4746 12670 3.14×10−2
    ST
    Cl+$\text{SO}_{\text{4}}^{{2-}} $
    0.01 5.634 0.0000442 0.9522 89602 0.0000362 0.6685 262700 1.72×10−2
    0.04 4.987 0.0000429 0.9726 16280 0.0002398 0.6297 267200 1.04×10−2
    0.07 5.009 0.0000435 0.9695 13440 0.0002551 0.6265 15990 4.26×10−3
    0.10 4.637 0.0000544 0.9868 1703 0.0003090 0.6111 26560 7.15×10−3
    0.19 4.223 0.0001823 0.8697 3961 0.0003349 0.551 21510 2.00×10−3
    0.22 3.682 0.0006716 0.9053 1201 0.0009439 0.514 34670 1.32×10−2
    0.31 3.418 0.0007192 0.9147 913 0.0011370 0.5202 16320 1.36×10−2
    0.40 3.547 0.0009536 0.9461 906 0.0010946 0.5018 8690 2.43×10−2
    Notes: $ {R}_{s} $ is the electrolyte resistance; $ {R}_{1} $ is the passivation film resistance; $ {R}_{\mathrm{c}\mathrm{t}} $ is the charge transfer resistance; $ Q $ and $ a $ are parameters in the constant phase angle elements CPE1 and CPE2; Chi-squared is the chi-squared test result.
    下载: 导出CSV

    表  2  Cl和$\text{SO}_{\text{4}}^{{2-}} $在Fe(100)表面的吸附能

    Table  2.   Adsorption energy of chloride and $\text{SO}_{\text{4}}^{{2-}} $ adsorption on Fe (100) surface

    Adsorption energy on Fe(100) /(kJ·mol−1) Top Bridge Hollow
    Chloride −449.896 −458.134 −363.154
    $\text{SO}_{\text{4}}^{{2-}} $ −674.245 −691.32 −739.124
    下载: 导出CSV
  • [1] 姚燕. 中国混凝土材料耐久性研究的新进展[J]. 中国水泥, 2002, 12: 39-42. doi: 10.3969/j.issn.1671-8321.2002.02.019

    YAO Yan. New progress of concrete material durability research in china[J]. China Cement, 2002, 12: 39-42(in Chinese). doi: 10.3969/j.issn.1671-8321.2002.02.019
    [2] CARNOT A, FRATEUR I, MARCUS P, et al. Corrosion mechanisms of steel concrete moulds in the presence of a demoulding agent[J]. Journal of Applied Electrochemistry, 2002, 32: 865-869. doi: 10.1023/A:1020510506504
    [3] 张伟平, 张誉, 刘亚芹. 混凝土中钢筋锈蚀的电化学检测方法[J]. 工业建筑, 1998, 28(12): 21-16.

    ZHANG Weiping, ZHANG Yu, LIU Yaqin. Electrochemical detection of corrosion of steel reinforcement in concrete[J]. Industrial Construction, 1998, 28(12): 21-16(in Chinese).
    [4] DEHWAH H A F, AUSTIN S A, MASLEHUDDIN M. Chloride-induced reinforcement corrosion in blended cement concrete exposed to chloride-sulphate environments[J]. Magazine of Concrete Research, 2002, 54(4): 355-364.
    [5] ALNPADU K O, TORII K. Chloride ingress and steel corrosion in cement mortars incorporating low-quality fly ashes[J]. Cement and Concrete Research, 2002, 32(6): 893-901. doi: 10.1016/S0008-8846(02)00721-4
    [6] LIU G J, SHEN F M, ZHANG Y S, et al. Reactive molecular dynamics study on carbon steel corrosion induced by chloride: Effects of applied potential and temperature[J]. Construction and Building Materials, 2024, 411: 134250. doi: 10.1016/j.conbuildmat.2023.134250
    [7] 刘国建, 张云升, 刘诚, 等. 模拟混凝土孔溶液中钢筋腐蚀与等效电路选取[J]. 材料导报, 2021, 35(14): 14072-14078. doi: 10.11896/cldb.20040138

    LIU Guojian, ZHANG Yunsheng, LIU Cheng, et al. Simulation of rebar corrosion in concrete pore solutions and equivalent circuit selection[J]. Materials Reports, 2021, 35(14): 14072-14078(in Chinese). doi: 10.11896/cldb.20040138
    [8] JIN Z Q, SUN W, ZHANG Y S, et al. Interaction between sulfate and chloride solution attack of concretes with and without fly ash[J]. Cement and Concrete Research, 2007, 37: 1223-1232. doi: 10.1016/j.cemconres.2007.02.016
    [9] TAMIMI A K, ABDALLA J A, SAKKA Z I. Prediction of long term chloride diffusion of concrete in harsh environment[J]. Construction and Building Materials, 2008, 22(5): 829-836. doi: 10.1016/j.conbuildmat.2007.01.001
    [10] EI-HAWARY M, AL-KHAIAT H, FEREIG S. Performance of epoxy-repaired concrete in a marine environment[J]. Cement and Concrete Research, 2000, 30(2): 259-266. doi: 10.1016/S0008-8846(99)00242-2
    [11] YU H F, DA B, MA H Y, et al. Durability of concrete structures in tropical Atoll environment[J]. Ocean Engineering, 2017, 135: 1-10. doi: 10.1016/j.oceaneng.2017.02.020
    [12] YUE Y F, WANG J J, BASHEER P A M, et al. Raman spectroscopic investigation of Friedel's salt[J]. Cement and Concrete Composites, 2018, 86: 306-314. doi: 10.1016/j.cemconcomp.2017.11.023
    [13] HALEEM S M A E, WANEES S A E, BAHGAT A. Environmental factors affecting the corrosion behaviour of reinforcing steel. V. Role of chloride and sulphate ions in the corrosion of reinforcing steel in saturated Ca(OH)2 solutions[J]. Corrosion Science, 2013, 75: 1-15. doi: 10.1016/j.corsci.2013.04.049
    [14] HALEEM S M A E, WANEES S A E, AAL E E A E, et al. Environmental factors affecting the corrosion behavior of reinforcing steel II. Role of some anions in the initiation and inhibition of pitting corrosion of steel in Ca(OH)2 solutions[J]. Corrosion Science, 2010, 52(2): 292-302. doi: 10.1016/j.corsci.2009.09.004
    [15] MAES M, BELIE N D. Resistance of concrete and mortar against combined attack of chloride and sodium sulphate[J]. Cement and Concrete Composites, 2014, 53: 59-72. doi: 10.1016/j.cemconcomp.2014.06.013
    [16] XU Y Z, HE L M, YANG L J, et al. Electrochemical study of steel corrosion in saturated calcium hydroxide solution with chloride ions and sulfate ions[J]. Corrosion Science Section, 2018, 74(10): 1063-1082.
    [17] CAO Z L, HIBINO M, GODA H. Effect of nitrite ions on steel corrosion induced by chloride or sulfate ions[J]. International Journal of Corrosion, 2013: 853730.
    [18] YANG L J, XU Y Z, ZHU Y S, et al. Evaluation of interaction effect of sulfate and chloride ions on reinforcements in simulated marine environment using electrochemical methods[J]. International Journal of Electrochemical Science, 2016, 11: 6943-6958. doi: 10.20964/2016.08.51
    [19] STROH J, MENG B, EMMERLING F. Deterioration of hardened cement paste under combined sulphate-chloride attack investigated by synchrotron XRD[J]. Solid State Sciences, 2016, 56: 29-44. doi: 10.1016/j.solidstatesciences.2016.04.002
    [20] DONG Q, ZHENG H R, ZHANG L J, et al. Numerical simulation on diffusion-reaction behavior of concrete under sulfate-chloride coupled attack[J]. Construction and Building Materials, 2023, 405: 133237. doi: 10.1016/j.conbuildmat.2023.133237
    [21] DEHWAH H A F, MASLEHUDDIN M, AUSTIN S A. Long-term effect of sulfate ions and associated cation type on chloride-induced reinforcement corrosion in Portland cement concretes[J]. Cement and Concrete Composites, 2002, 24: 17-25. doi: 10.1016/S0958-9465(01)00023-3
    [22] TUMIDAJSKI P, CHAN G W. Effect of sulfate and carbon dioxide on chloride diffusivity[J]. Cement and Concrete Research, 1996, 26: 551-556. doi: 10.1016/0008-8846(96)00019-1
    [23] 宋立康, 王曙光, 徐锋, 等. 硫酸根离子对带裂缝混凝土中氯离子扩散性能的影响研究[J]. 混凝土, 2015, (8): 26-30. doi: 10.3969/j.issn.1002-3550.2015.08.007

    SONG Likang, WANG Shuguang, XU Feng, et al. Study on the effect of sulfate ions on the diffusion properties of chloride ions in concrete with cracks[J]. Concrete, 2015, (8): 26-30(in Chinese). doi: 10.3969/j.issn.1002-3550.2015.08.007
    [24] 左晓宝, 邱林峰, 汤玉娟, 等. 氯盐和硫酸盐侵蚀下水泥浆体中钢筋锈蚀过程[J]. 建筑材料学报, 2017, 20(3): 352-358+372. doi: 10.3969/j.issn.1007-9629.2017.03.006

    ZUO Xiaobao, QIU Linfeng, Tang Yujuan, et al. Corrosion processes of steel reinforcement in cement paste under chloride and sulfate attack[J]. Journal of Building Materials, 2017, 20(3): 352-358+372(in Chinese). doi: 10.3969/j.issn.1007-9629.2017.03.006
    [25] 刘国建, 朱航, 张云升, 等. 混凝土孔溶液中不同侵蚀离子对钢筋的腐蚀行为[J]. 硅酸盐学报, 2022, 50(2): 413-419.

    LIU Guojian, ZHU Hang, ZHANG Yunsheng, et al. Corrosion behavior of steel reinforcement by different aggressive ions in concrete pore solutions[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 413-419(in Chinese).
    [26] LIU G J, LI M H, YANG L, et al. Electrochemical dielectric response of steel corrosion induced by chloride in simulated concrete pore solution[J]. Journal of Sustainable Cement-Based Materials, 2024, 13(6): 854-864. doi: 10.1080/21650373.2024.2333257
    [27] SHEN F M, LIU G J, LIU C, et al. Corrosion and oxidation on iron surfaces in chloride contaminated electrolytes: Insights from ReaxFF molecular dynamic simulations[J]. Journal of Materials Research and Technology, 2024, 29: 1305-1312. doi: 10.1016/j.jmrt.2024.01.194
    [28] LI W X, GUAN X D, SHI J J. Electrochemical behavior of zinc in alkali-activated fly ash solution[J]. Cement and Concrete Composites, 2024, 146: 105395. doi: 10.1016/j.cemconcomp.2023.105395
    [29] LI Z D, CHEN R N, GAO Y G, et al. Function of Cu-Sb or Al microalloying on the corrosion resistance of 9Cr steel exposed to simulated concrete pore solution[J]. Corrosion Science, 2024, 231: 111983 doi: 10.1016/j.corsci.2024.111983
    [30] MONTEMOR M F, CUNHA M F. Corrosion behavior of rebar in fly ash mortar exposed to carbon dioxide and chlorides[J]. Cement and Concrete Composites, 2002, 24(8): 45-53.
    [31] 唐方苗, 徐晖, 陈雯, 等. 模拟混凝土孔隙液中钢筋电化学腐蚀行为及pH值的影响作用[J]. 功能材料, 2011, 42(2): 291-293+297.

    TANG Fangmiao, XU hui, CHEN Wen, et al. Simulation of electrochemical corrosion behavior of steel reinforcement in concrete pore fluids and the role of pH influence[J]. Journal of Functional Materials, 2011, 42(2): 291-293+297(in Chinese).
    [32] 翟海涛, 鲁道荣. 模拟混凝土孔隙液的pH值对钢筋腐蚀的Cl质量分数的影响[J]. 合肥工业大学学报(自然科学版), 2009, 32(2): 186-189.

    ZHAI Haitao, LU Daorong. Effect of pH of simulated concrete pore fluid on Cl mass fraction for rebar corrosion[J]. Journal of Hefei University of Technology(Natural Science), 2009, 32(2): 186-189(in Chinese).
    [33] SHIN D M, HUR N Y, KIM W B. Study on Increasing High Temperature pH(t) to Reduce Iron Corrosion Products[J]. Corrosion Science and Technology, 2011, 10(5): 175-179.
    [34] LIU L P, LI S L, GAO Z M, et al. Effects of Chloride and pH on Passivation Characteristics of Q235 Steel in Simulated Concrete Pore Solution[J]. International Journal of Electrochemical Science, 2022, 17(6): 220648. doi: 10.20964/2022.06.51
    [35] 钱如胜. 现代混凝土孔溶液离子演变规律及数值模拟[D]. 南京: 东南大学, 2018.

    QIAN Rusheng. Evolution law and numerical simulation of ionic evolution in modern concrete pore solution[D]. Nanjing: Southeast University, 2018(in Chinese).
    [36] PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Reviews of Modern Physics, 1992, 64: 1045-1097. doi: 10.1103/RevModPhys.64.1045
    [37] CHEVARY J A, VOSKO S H, JACKSON K A, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992, 46(11): 6671-6687. doi: 10.1103/PhysRevB.46.6671
    [38] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895. doi: 10.1103/PhysRevB.41.7892
    [39] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13: 5188-5192. doi: 10.1103/PhysRevB.13.5188
    [40] 宋诗哲. 腐蚀电化学研究方法[M]. 北京: 化学工业出版社, 1988.

    SONG Shizhe. Methods of corrosion electrochemical studies[M]. Beijing: Chemical Industry Press, 1988(in Chinese).
  • 加载中
计量
  • 文章访问数:  52
  • HTML全文浏览量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-21
  • 修回日期:  2024-06-25
  • 录用日期:  2024-07-12
  • 网络出版日期:  2024-07-30

目录

    /

    返回文章
    返回