留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化锆陶瓷气泡缺陷对其断裂韧度的影响

兰一笑 刘问 李楠 韩建民

兰一笑, 刘问, 李楠, 等. 氧化锆陶瓷气泡缺陷对其断裂韧度的影响[J]. 复合材料学报, 2023, 40(12): 6809-6818. doi: 10.13801/j.cnki.fhclxb.20230227.001
引用本文: 兰一笑, 刘问, 李楠, 等. 氧化锆陶瓷气泡缺陷对其断裂韧度的影响[J]. 复合材料学报, 2023, 40(12): 6809-6818. doi: 10.13801/j.cnki.fhclxb.20230227.001
LAN Yixiao, LIU Wen, LI Nan, et al. Effect of bubble defects on fracture toughness of zirconia ceramics[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6809-6818. doi: 10.13801/j.cnki.fhclxb.20230227.001
Citation: LAN Yixiao, LIU Wen, LI Nan, et al. Effect of bubble defects on fracture toughness of zirconia ceramics[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6809-6818. doi: 10.13801/j.cnki.fhclxb.20230227.001

氧化锆陶瓷气泡缺陷对其断裂韧度的影响

doi: 10.13801/j.cnki.fhclxb.20230227.001
基金项目: 国家重点研发计划政府间国际科技创新合作重点专项支持项目(2019YFE0101100)
详细信息
    通讯作者:

    刘问,博士,副教授,硕士生导师,研究方向为竹木结构、低碳混凝土 E-mail: liuwen@bjfu.edu.cn

  • 中图分类号: TB332

Effect of bubble defects on fracture toughness of zirconia ceramics

Funds: Key Special Support Projects for Intergovernmental International Scientific and Technological Innovation Cooperation under the National Key Research and Development Plan (2019YFE0101100)
  • 摘要: 为研究氧化钇稳定氧化锆陶瓷(Y-TZP)气泡缺陷在烧结前后的遗传性及气泡缺陷对材料断裂韧度的影响,采用X射线显微镜对3mol%氧化钇稳定四方多晶氧化锆陶瓷(3Y-TZP)烧结前后的气泡缺陷进行观测,得到缺陷变化规律,然后分别测试了天然缺陷和人为引入体缺陷状态下,不同氧化钇掺量的3Y-TZP、4Y-TZP、5Y-TZP陶瓷的弯曲强度,并计算威布尔模量和断裂韧度,在SEM下观察各组的破坏模式。研究结果表明:烧结作用可修复氧化锆陶瓷的气泡缺陷,修复率约为74.12%,当直径小于10 μm时,修复率高达97.22%,当直径大于40 μm时,修复率仅为20%,烧结后80%以上的气泡缺陷直径不超过20 μm;氧化锆陶瓷的弯曲强度随氧化钇掺量的增加而降低,引入体缺陷显著降低了氧化锆陶瓷的弯曲强度,其中4Y-TZP陶瓷稳定性最佳,强度仅降低8.64%,5Y-TZP陶瓷对缺陷最敏感,强度降低22.58%;断裂韧度随氧化钇掺量的增加而降低,引入体缺陷的深度(a)和半宽度(c)会影响氧化锆陶瓷的断裂韧度,断裂韧度随a/c的增大,先增大后减小,在a/c≈1.5时达到峰值。

     

  • 图  1  试样尺寸示意图

    Figure  1.  Sample size diagram

    图  2  三点弯曲测试

    Figure  2.  Three point bending test

    图  3  试验组缺陷表面

    Figure  3.  Test group defect surface

    图  4  烧结前后试样A气泡缺陷全貌图

    Figure  4.  Overall view of bubble defects of sample A before and after sintering

    图  5  烧结前后试样A气泡缺陷横截面图

    Figure  5.  Cross section of bubble defects of sample A before and after sintering

    图  6  氧化锆陶瓷气泡缺陷直径-体积-数量分布关系图

    Figure  6.  Diameter-volume-number distribution diagram of zirconia ceramic bubble defects

    图  7  氧化锆陶瓷气泡缺陷r2/r1值分布概率图

    Figure  7.  Distribution probability diagram of r2/r1 value of zirconia ceramic bubble defects

    μgr1/r2 values at cumulative quantity peak point; q0—Peak point cumulative quantity value; d90r1/r2 values at a cumulative distribution of 90%;d50r1/r2 values at a cumulative distribution of 50%; r1—Ellipsoid long axis;r2—Ellipsoid short axis

    图  8  Y-TZP陶瓷弯曲强度威布尔分布图

    Figure  8.  Weibull distribution of bending strength of Y-TZP ceramics

    m—Weibull modulus; σ0—Characteristic strength

    图  9  对照组试样断口及临界缺陷尺寸c0

    Figure  9.  Fracture surface and critical defect size c0 of control group sample

    DPC—Crack propagation; CC—Compression crimping; O—Fracture origin; a—Defect height; c—Defect half-width; c0—Size of fracture origin

    图  10  引入体缺陷SEM图像:(a) 短而宽的V型体缺陷;(b) 窄而尖的V型体缺陷;(c) 裂纹尖端半径ρ;(d) 微裂纹

    Figure  10.  SEM images of introduced volume defects: (a) Short and wide V-shaped volume defect; (b) Narrow and sharp V-shaped volume defect; (c) Crack tip radius ρ; (d) Microcrack

    图  11  Y-TZP陶瓷a/c值与断裂韧度相关性

    Figure  11.  Correlation diagram of a/c value and fracture toughness of Y-TZP ceramics

    R2—Correlation coefficient

    表  1  氧化钇稳定氧化锆陶瓷(Y-TZP)组成成分

    Table  1.   Yttria-stabilized tetragonal zir-conia (Y-TZP) ceramic composition

    MaterialManufacturerY2O3/mol%Y2O3/wt%
    3Y-TZPUPCERA35.60±0.20
    4Y-TZP47.55±0.25
    5Y-TZP59.45±0.30
    Note: UPCERA—Zirconia ceramic sample manufacturer: Shenzhen Altran Dental Technology CO., LTD.
    下载: 导出CSV

    表  2  试样A烧结前后不同直径区间内气泡缺陷数量分布情况

    Table  2.   Quantity of the number of bubble defects in different diameters of sample A before and after sintering

    d/μmA-1A-2A-3A-4A-5
    BeforeAfterBeforeAfterBeforeAfterBeforeAfterBeforeAfter
    0-10 5 4 5 3 13 6 6 2 7 0
    10-20 2 1 11 1 10 0 5 0 7 1
    20-30 1 0 0 1 0 0 2 2 2 0
    30-40 0 1 1 0 2 0 1 0 0 0
    40-50 3 0 1 0 1 0 0 0 0 0
    Total 11 6 18 5 26 6 14 4 16 1
    Notes: d—Defect diameter; Before—Before sintering; After—After sintering.
    下载: 导出CSV

    表  3  试样F弯曲强度和断裂韧度

    Table  3.   Bending strength and fracture toughness of sample F

    GroupGrain size/nmσf/MPaKIc/(MPa·m1/2)E/GPa
    FC-3Y 494.22±39.73 1405.56±201.15
    FE-3Y 1129.04±157.82 11.29±2.23 123.39±3.44
    FC-4Y 506.76±13.11 1012.50±81.18
    FE-4Y 925.01±162.36 8.95±2.08 115.91±5.19
    FC-5Y 610.61±9.51 748.06±117.66
    FE-5Y 579.13±233.15 5.13±0.86 109.72±6.61
    Notes: σf—Bending strength; KIc—Fracture toughness; E—Modulus of elasticity.
    下载: 导出CSV
  • [1] 马晴, 施丽燕, 黄思雪, 等. 氧化锆陶瓷在牙体修复领域的研究现状及展望[J]. 中国组织工程研究, 2021, 25(22):3597-3602.

    MA Qing, SHI Liyan, HUANG Sixue, et al. Research status and prospect of zirconia ceramics in dental prosthesis[J]. Chinese Journal of Tissue Engineering Research,2021,25(22):3597-3602(in Chinese).
    [2] RAGHAVENDRA S S, JADHAV G R, GATHANI K M I, et al. Bioceramics in endodontics-A review[J]. Journal of Istanbul University Faculty of Dentistry,2017,51:S128-S137.
    [3] 俎明杰, 穆森, 张瑞敏. 氧化锆在口腔种植修复中临床应用效果研究进展[J]. 口腔医学, 2022, 42(10):956-960. doi: 10.13591/j.cnki.kqyx.2022.10.018

    ZU Mingjie, MU Sen, ZHANG Ruimin. Research progress of clinical application efficacy of zirconia in oral implant restoration[J]. Stomatology,2022,42(10):956-960(in Chinese). doi: 10.13591/j.cnki.kqyx.2022.10.018
    [4] 李皓鹏, 李宁, 颜家振, 等. 多层陶瓷结构Al2O3-Fe2O3/3Y-TZP梯度复合陶瓷的制备及性能[J]. 复合材料学报, 2019, 36(3):685-692.

    LI Haopeng, LI Ning, YAN Jiazhen, et al. Preparation and properties of Al2O3-Fe2O3/3Y-TZP gradient composite ceramics with multilayer ceramic structure[J]. Acta Materiae Compositae Sinica,2019,36(3):685-692(in Chinese).
    [5] 韩耀. 高性能结构陶瓷的振荡压力烧结与机理研究[D]. 北京: 清华大学, 2018.

    HAN Yao. Research on high quality structural ceramics fabricated by oscillatory pressure sintering and corresponding mechanisms[D]. Beijing: Tsinghua University, 2018(in Chinese).
    [6] RICHERSON D W, LEE W E. Modern ceramic engineering-properties, processing, and use in design[M]. Calabas: CRC Press, 2018: 647-676.
    [7] CESAR P F, YOSHIMURA H N, MIRANDA W G J, et al. Relationship between fracture toughness and flexural strength in dental porcelains[J]. Journal of Biomedical Materials Research-Part B: Applied Biomaterials,2006,78(2):265-273. doi: 10.1002/jbm.b.30482
    [8] 刘家臣, 杜海燕, 杨正方. 喷雾造粒粉制备ZTM陶瓷的结构缺陷与强度研究[J]. 硅酸盐学报, 2000, 28(3):219-222. doi: 10.14062/j.issn.0454-5648.2000.03.005

    LIU Jiachen, DU Haiyan, YANG Zhengfang. Structure defect and strength of ZTM ceramics made from spray-dried powder[J]. Journal of the Chinese Ceramic Society,2000,28(3):219-222(in Chinese). doi: 10.14062/j.issn.0454-5648.2000.03.005
    [9] ALFORD N M, BIRCHALL J D, KENDALL K. High-strength ceramics through colloidal control to remove defects[J]. Nature,1987,330(6143):51-53. doi: 10.1038/330051a0
    [10] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society A,1921,221:163-198.
    [11] LANGE F F, GUPTA T K. Crack healing by heat treatment[J]. Journal of the American Ceramic Society,1970,53(1):54-55. doi: 10.1111/j.1151-2916.1970.tb12002.x
    [12] HOUJOU K, ANDO K, TAKAHASHI K. Crack-healing behaviour of ZrO2/SiC composite ceramics[J]. International Journal of Structural Integrity,2010,1(1):73-84. doi: 10.1108/17579861011023810
    [13] KELLY J R, DENRY I. Stabilized zirconia as a structural ceramic: An overview[J]. Dental Materials,2008,24(3):289-298. doi: 10.1016/j.dental.2007.05.005
    [14] BELLI R, WENDLER M, ZORZIN J I, et al. Practical and theoretical considerations on the fracture toughness testing of dental restorative materials[J]. Dental Materials,2018,34(1):97-119. doi: 10.1016/j.dental.2017.11.016
    [15] DANZER R, LUBE T, SUPANCIC P, et al. Fracture of ceramics[J]. Advanced Engineering Materials,2008,10(4):275-298. doi: 10.1002/adem.200700347
    [16] GARCIA J C, SCOLFARO L M R, LINO A T, et al. Structural, electronic, and optical properties of ZrO2 from ab initio calculations[J]. Journal of Applied Physics,2006,100(10):104103. doi: 10.1063/1.2386967
    [17] ZHANG F, INOKOSHI M, BATUK M, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations[J]. Dental Materials,2016,32(12):327-337. doi: 10.1016/j.dental.2016.09.025
    [18] JERMAN E, LÜMKEMANN N, EICHBERGER M, et al. Evaluation of translucency, Marten’s hardness, biaxial flexural strength and fracture toughness of 3Y-TZP, 4Y-TZP and 5Y-TZP materials[J]. Dental Materials,2021,37(2):212-222. doi: 10.1016/j.dental.2020.11.007
    [19] JANSEN J U, LÜMKEMANN N, LETZ I, et al. Impact of high-speed sintering on translucency, phase content, grain sizes, and flexural strength of 3Y-TZP and 4Y-TZP zirconia materials[J]. The Journal of Prosthetic Dentistry,2019,122(4):396-403. doi: 10.1016/j.prosdent.2019.02.005
    [20] International Organization for Standardization. Dentistry—Ceramic materials: ISO/FDIS 6872—2015[S]. Switzerland: American National Standards Institution, 1989.
    [21] International Organization for Standardization. Fine ceramics (advanced ceramics, advanced technical ceramics)—Weibull statistic for strength data: ISO 20501—2019[S]. Switzerland: Japanese Industrial Standards Committee, 1992.
    [22] 艾云龙, 刘长虹, 李玲艳, 等. SiC-ZrO2纳米颗粒协同强韧化MOSi2陶瓷的组织与性能[J]. 复合材料学报, 2010, 27(4):31-37.

    AI Yunlong, LIU Changhong, LI Lingyan, te al. Microstructures and properties of nano-SiC-ZrO2 particles synergistically strengthening and toughening MOSi2 ceramics[J]. Acta Materiae Compositae Sinica,2010,27(4):31-37(in Chinese).
    [23] SCHERRER S S, LOHBAUER U, DELLA BONA A, et al. ADM guidance—Ceramics: Guidance to the use of fractography in failure analysis of brittle materials[J]. Dental Materials,2017,33(6):599-620. doi: 10.1016/j.dental.2017.03.004
    [24] RICE R W. Fractographic identification of strength-controlling flaws and microstructures[J]. Concepts, Flaws, and Fractography, 1974, 1: 323-345.
    [25] CARLTON H D, ELMER J W, FREEMAN D C, et al. Laser notching ceramics for reliable fracture toughness testing[J]. Journal of the European Ceramic Society,2016,36(1):227-234. doi: 10.1016/j.jeurceramsoc.2015.08.021
    [26] 龚江宏. 陶瓷材料脆性断裂的显微结构效应[J]. 现代技术陶瓷, 2021, 42(S2):287-428. doi: 10.16253/j.cnki.37-1226/tq.2021.05.001

    GONG Jianghong. Microstructural effects in brittle fracture of ceramics[J]. Advanced Ceramics,2021,42(S2):287-428(in Chinese). doi: 10.16253/j.cnki.37-1226/tq.2021.05.001
    [27] ZHAO W, PENG C, LYU M, et al. Effect of Notch depth on fracture toughness of Y-TZP and determination of its actual value[J]. Ceramics International,2015,41(1):869-872. doi: 10.1016/j.ceramint.2014.08.130
    [28] ZHAO W, RAO P G, LING Z Y. A new method for the preparation of ultra-sharp V-notches to measure fracture toughness in ceramics[J]. Journal of the European Ceramic Society,2014,34(15):4059-4062. doi: 10.1016/j.jeurceramsoc.2014.05.021
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  515
  • HTML全文浏览量:  228
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 修回日期:  2023-02-08
  • 录用日期:  2023-02-17
  • 网络出版日期:  2023-02-28
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回