Effect of Bubble Defects on Fracture Toughness of Zirconia Ceramics
-
摘要:
氧化锆陶瓷因其极佳的力学性能、优越的美观性及较好的生物相容性,逐步成为口腔修复领域的理想材料,目前已经在种植体、基台、冠修复、全牙弓种植修复等方面得到实际应用。然而,由于氧化锆陶瓷在坯体制备过程中不可避免的会引入缺陷,降低材料的力学性能,使得其应用推广存在一定的局限性。本文旨在研究氧化锆陶瓷的气泡缺陷在烧结前后的变化规律,并探究气泡缺陷对3 mol%、4 mol%、5 mol%氧化钇掺量的氧化锆陶瓷(3Y-TZP、4Y-TZP、5Y-TZP)断裂韧度的影响。研究结果表明:烧结作用可修复氧化锆陶瓷的气泡缺陷,修复率约为74.12%,且随气泡缺陷直径的增大而减小,当直径小于10 μm时,修复率高达97.22%,当直径大于40 μm时,修复率仅为20%,烧结后80%以上的气泡缺陷直径不超过20 μm;氧化锆陶瓷的弯曲强度随氧化钇掺量的增加而降低,引入体缺陷显著降低了氧化锆陶瓷的弯曲强度,其中4Y-TZP陶瓷稳定性最佳,强度仅降低8.64%,5Y-TZP陶瓷对体缺陷最为敏感,强度降低22.58%;断裂韧度随氧化钇掺量的增加而降低,且引入体缺陷的深度(a)和半宽度(c)会影响氧化锆陶瓷的断裂韧度,断裂韧度随a/c的增大,先增大后减小,在a/c≈1.5时达到峰值。 Y-TZP陶瓷弯曲强度威布尔分布图 Y-TZP陶瓷a/c值与断裂韧度相关性图 Abstract: To study the change law of bubble defects before and after the sintering of yttria-stabilized tetragonal zirconia (Y-TZP) ceramics and the influence of bubble defects on fracture toughness of materials, the flaws of 3Y-TZP ceramic before and after sintering were observed by X-ray microscope, and the variation law of defects was obtained. Then, testing the bending strength of 3Y-TZP, 4Y-TZP, and 5Y-TZP ceramic with different yttrium oxide content under the condition of natural defects or artificially introduced volume defects, and calculating the Weibull modulus and fracture toughness. The failure modes of each group were observed under SEM. The results show that sintering can repair the bubble defects of zirconia ceramics, and the repair rate is about 74.12%. When the diameter is less than 10 μm, the repair rate is up to 97.22%. When the diameter is more than 40 μm, the repair rate is only 20%. The diameter of more than 80% of bubble defects after sintering shall not exceed 20 μm. The bending strength of zirconia ceramics decreases with the increase of yttrium oxide content. The introduction of volume defects significantly reduce the bending strength of zirconia ceramics, of which 4Y-TZP ceramic has the best stability, and the strength decreased by only 8.64%. 5Y-TZP ceramic is the most sensitive to defects, and the strength decreased by 22.58%. The fracture toughness decreases with the increase of yttrium oxide content. The depth (a) and half-width (c) of the introduced volume defect will affect the fracture toughness of zirconia ceramics. The fracture toughness increases first and then decreases with the increase of a/c, reaching a peak value when a/c≈1.5.-
Key words:
- Ceramics /
- Zirconia /
- Y-TZP /
- Defect /
- Flexural strength /
- Fracture toughness
-
表 1 Y-TZP陶瓷组成成分
Table 1. Y-TZP ceramic composition
Material Manufacturer Y2O3/mol% Y2O3/wt% 3 Y-TZP UPCERA 3 5.60±0.20 4 Y-TZP 4 7.55±0.25 5 Y-TZP 5 9.45±0.30 表 2 试样A烧结前后不同直径区间内气泡缺陷数量分布情况
Table 2. Quantity of the number of bubble defects in different diameters of sample A before and after sintering
d/μm A-1 A-2 A-3 A-4 A-5 Before After Before After Before After Before After Before After 0-10 5 4 5 3 13 6 6 2 7 0 10-20 2 1 11 1 10 0 5 0 7 1 20-30 1 0 0 1 0 0 2 2 2 0 30-40 0 1 1 0 2 0 1 0 0 0 40-50 3 0 1 0 1 0 0 0 0 0 Total 11 6 18 5 26 6 14 4 16 1 Notes: d means defect diameter; before means before sintering; after means after sintering. 表 3 试样F弯曲强度和断裂韧度Fig.3 Bending strength and fracture toughness of sample F
Group Grain size/nm σf/MPa KIc/(MPa·m1/2) E/Gpa FC-3Y 494.22±39.73 1405.56±201.15 - - FE-3Y 1129.04±157.82 11.29±2.23 123.39±3.44 FC-4Y 506.76±13.11 1012.50±81.18 - - FE-4Y 925.01±162.36 8.95±2.08 115.91±5.19 FC-5Y 610.61±9.51 748.06±117.66 - - FE-5Y 579.13±233.15 5.13±0.86 109.72±6.61 Notes: σf is the bending strength; KIc is the fracture toughness; E is the modulus of elasticity. -
[1] 马晴, 施丽燕, 黄思雪, 等. 氧化锆陶瓷在牙体修复领域的研究现状及展望[J]. 中国组织工程研究, 2021, 25(22):3597-3602.MA Qing, SHI Liyan, HUANG Sixue, et al. Research status and prospect of zirconia ceramics in dental prosthesis[J]. Chinese Journal of Tissue Engineering Research,2021,25(22):3597-3602(in Chinese). [2] RAGHAVENDRA S S, JADHAV G R, GATHANI K M I, et al. Bioceramics in endodontics-a review[J]. Jpurnal of Istanbul University Faculty of Dentistry,2017,51:S128-S137. [3] 俎明杰, 穆森, 张瑞敏. 氧化锆在口腔种植修复中临床应用效果研究进展[J]. 口腔医学, 2022, 42(10):956-960. doi: 10.13591/j.cnki.kqyx.2022.10.018ZU Mingjie, MU Sen, ZHANG Ruimin. Research progress of clinical application efficacy of zirconia in oral implant restoration[J]. Stomatology,2022,42(10):956-960(in Chinese). doi: 10.13591/j.cnki.kqyx.2022.10.018 [4] 李皓鹏, 李宁, 颜家振, 等. 多层陶瓷结构Al2O3-Fe2O3/3 Y-TZP梯度复合陶瓷的制备及性能[J]. 复合材料学报, 2019, 36(3):685-692.LI Haopeng, LI Ning, YAN Jiazhen, et al. Preparation and properties of Al2O3-Fe2O3/3 Y-TZP gradient composite ceramics with multilayer ceramic structure[J]. Acta Materiae Compositae Sinica,2019,36(3):685-692(in Chinese). [5] 韩耀. 高性能结构陶瓷的振荡压力烧结与机理研究 [D]. 北京: 清华大学, 2018.HAN Yao. Research on high quality structural ceramics fabricated by oscillatory pressure sintering and corresponding mechanisms [D]. Beijing: Tsinghua University, 2018(in Chinese). [6] RICHERSON D W. Modern ceramic engineering [M]. Marcel Dekker Inc, New York, 1992. [7] CESAR P F, YOSHIMURA H N, MIRANDA W G J, et al. Relationship between fracture toughness and flexural strength in dental porcelains[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials,2006,78B:265-273. doi: 10.1002/jbm.b.30482 [8] 刘家臣, 杜海燕, 杨正方. 喷雾造粒粉制备ZTM陶瓷的结构缺陷与强度研究[J]. 硅酸盐学报, 2000, 03:219-222. doi: 10.14062/j.issn.0454-5648.2000.03.005LIU Jiachen, DU Haiyan, YANG Zhengfang. Structure defect and strength of ZTM ceramics made from spray-dried powder[J]. Journal of the Chinese Ceramic Society,2000,03:219-222(in Chinese). doi: 10.14062/j.issn.0454-5648.2000.03.005 [9] ALFORD N M, BIRCHALL J D and KENDALL K. High-strength ceramics through colloidal control to remove defects[J]. Nature,1987,330:51-53. doi: 10.1038/330051a0 [10] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society A,1921,221:163-198. [11] LANGE F F and GUPTA T K. Crack healing by heat treatment[J]. Journal of The American Ceramic Society,1970,53:54-55. doi: 10.1111/j.1151-2916.1970.tb12002.x [12] HOUJOU K, Ando K and TAKAHASHI K. Crack-healing behaviour of ZrO2/SiC composite ceramics[J]. International Journal of Structural Integrity,2010,1(1):73-84. doi: 10.1108/17579861011023810 [13] KELLY J R, DENRY I. Stabilized zirconia as a structural ceramic: an overview[J]. Dental Materials,2008,24(3):289-298. doi: 10.1016/j.dental.2007.05.005 [14] BELLI R, WENDLER M, ZORZIN J I, et al. Practical and theoretical considerations on the fracture toughness testing of dental restorative materials[J]. Dental Materials,2018,34(1):97-119. doi: 10.1016/j.dental.2017.11.016 [15] DANZER R, LUBE T, SUPANCIC P, et al. Fracture of ceramics[J]. Advanced Engineering Materials,2008,10(4):275-98. doi: 10.1002/adem.200700347 [16] GARCIA J C and SCOLFARO L M R. Structural, electronic, and optical properties of ZrO2 from ab initio calculations[J]. Journal of Applied Physics,2006,100:104103. doi: 10.1063/1.2386967 [17] ZHANG F, INOKOSHI M, BATUK M, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations[J]. Dental Materials,2016,32:327-37. doi: 10.1016/j.dental.2016.09.025 [18] EVA J, NINA L, MARLIS E, et al. Evaluation of translucency, Marten’s hardness, biaxial flexural strength and fracture toughness of 3 Y-TZP, 4 Y-TZP and 5 Y-TZP materials[J]. Dental materials,2021,37:212-222. doi: 10.1016/j.dental.2020.11.007 [19] JANSEN J U, LÜMKEMANN N, LETZ I, et al. Impact of high-speed sintering on translucency, phase content, grain size, and flexural strength of 3 Y-TZP and 4 Y-TZP zirconia materials[J]. The Journal of Prosthetic Dentistry,2019,122:396-403. doi: 10.1016/j.prosdent.2019.02.005 [20] International Organization for Standardizatio-n. Dentistry—Ceramic materials: ISO/FDIS 6872-2015[S]. Switzerland: American National Standards Institution, 1989. [21] International Organization for Standardization. Fine ceramics(advanced ceramics, advanced technical ceramics)—Weibull statistic for strength data: ISO 20501-2019[S]. Switzerland: Japanese Industrial Standards Committee, 1992. [22] 艾云龙, 刘长虹, 李玲艳, 等. SiC-ZrO2纳米颗粒协同强韧化MOSi2陶瓷的组织与性能[J]. 复合材料学报, 2010, 27(4):31-37.AI Yunlong, LIU Changhong, LI Lingyan, te al. Microstructures and properties of nano-SiC-ZrO2 particles synergistically strengthening and toughening MOSi2 ceramics[J]. Acta Materiae Compositae Sinica,2010,27(4):31-37(in Chinese). [23] SUSANNE S S, LOHBAUER U, DELLA Bona A, et al. ADM guidance—Ceramics: guidance to the use of fractography in failure analysis of brittle materials[J]. Dental Materials,2017,33:599-620. doi: 10.1016/j.dental.2017.03.004 [24] RICE R W. Fractographic identification of strength-controlling flaws and microstructures [G]. Fracture Mechanics of Ceramics: Concepts, flaws, and fractography. MA: Springer, 1974. Vol 1: 323-345. [25] HOLLY D C, JOHN W E, DENNIS C F, et al. Laser notching ceramics for reliable fracture toughness testing[J]. Journal of the European Ceramic Society,2016,36:227-234. doi: 10.1016/j.jeurceramsoc.2015.08.021 [26] 龚江宏. 陶瓷材料脆性断裂的显微结构效应[J]. 现代技术陶瓷, 2021, 42(Z2):287-428. doi: 10.16253/j.cnki.37-1226/tq.2021.05.001GONG Jianghong. Microstructural effects in brittle fracture of ceramics[J]. Advanced Ceramics,2021,42(Z2):287-428(in Chinese). doi: 10.16253/j.cnki.37-1226/tq.2021.05.001 [27] ZHAO W, PENG C, LV M, et al. Effect of notch depth on fracture toughness of Y-TZP and determination of its actual value[J]. Ceramics International,2015,41:869-872. doi: 10.1016/j.ceramint.2014.08.130 [28] ZHAO W, RAO P G and LING Z Y. A new method for the preparation of ultra-sharp V-notches to measure fracture toughness in ceramics[J]. Journal of The European Ceramic Society,2014,34:4059-4062. doi: 10.1016/j.jeurceramsoc.2014.05.021 -

计量
- 文章访问数: 82
- HTML全文浏览量: 60
- 被引次数: 0