Broadband microwave absorption and mechanical properties of CB-CIP@SiO2-GF/PA6 composites
-
摘要: 本工作以拓宽结构型吸波复合材料的吸收频带为目的,在玻璃纤维增强尼龙复合材料中同时引入磁损耗型吸波剂羰基铁粉(carbonyl iron powder, CIP)和电阻损耗型吸波剂炭黑(Carbon black, CB),采用热压成型工艺制备了CB-CIP@SiO2/玻璃纤维/尼龙6(CB-CIP@SiO2-GF/PA6)吸波复合材料。重点研究了CIP表面包覆SiO2薄膜及其加入量对复合材料微波吸收和力学性能的影响。研究结果表明:SiO2薄膜包覆不仅解决了CIP氧化问题,同时改善了复合材料的阻抗匹配特性,使得CIP与CB协同提升了复合材料的吸波性能。在保障复合材料具有良好吸波性能前提下,CIP的负载量从70 wt.%降低至30 wt.%左右,大大减轻了复合材料的质量。其中,掺量为1 wt.%CB和30 wt.%CIP@SiO2的吸波复合材料的有效吸收带宽在材料厚度为1.91-1.95 mm时超过了5.6 GHz,且覆盖了整个Ku波段。这种方法一方面拓宽了吸波复合材料的有效吸收带宽,实现了宽带吸波。另一方面,CIP@SiO2颗粒与GF的纤维实现共同增强,提升了复合材料的整体力学性能。当CIP@SiO2的含量为40 wt.%时,复合材料的力学性能最佳,弯曲强度为212.8±9.8 MPa,剪切强度为21.0±1.4 MPa,摆锤冲击强度为64.4±6.2 kJ/m2。Abstract: With the aim of broadening the absorption band of structural microwave absorbing composites, a magnetic loss absorber carbonyl iron powder (CIP) and the resistive loss absorber carbon black (CB) were simultaneously introduced into glass fiber reinforced polyamide 6 composites, and CB-CIP@SiO2-GF/PA6 composites were prepared by the hot press molding process. Focusing on the effect of CIP surface coated SiO2 film and its incorporation on the microwave absorption and mechanical properties of composites. The results show that SiO2 coating not only prevents the oxidation of CIP, but also improves the impedance matching of the composites, so that CIP and CB synergistically enhance the microwave absorbing properties of the composites. Under the premise of guaranteeing good microwave absorbing properties, the loading of CIP is reduced from 70 wt.% to about 30 wt.%, which greatly lightens the mass of the composites. The effective absorption bandwidth of the composites with 1 wt.% CB and 30 wt.% CIP@SiO2 exceeds 5.6 GHz at a thickness of 1.91-1.95 mm and covers the entire Ku-band. On the one hand, this method broadens the effective absorption bandwidth of the composites and realizes broadband absorption. On the other hand, the particle reinforcement of CIP@SiO2 has a co-enhancing effect with GF. When the content of CIP@SiO2 was 40 wt.%, the mechanical properties of the composites were optimal, with a flexural strength of 212.8±9.8 MPa, a shearing strength of 21.0±1.4 MPa, and a pendulum impact strength of 64.4±6.2 kJ/m2.
-
Key words:
- Microwave absorbing material /
- glass fiber /
- carbon black /
- carbonyl iron powder /
- mechanical properties
-
图 2 SiO2包覆CIP前后的SEM图像:(a)包覆前;(b)包覆后。EDS点扫描谱图:(c)点1;(d)点2。面扫描元素分布图像:(e) CIP@SiO2电子图像;(f) Fe元素分布图像;(g) O元素分布图像;(h) Si元素分布图像。
Figure 2. SEM images before and after SiO2 coated CIP: (a) before coating; (b) after coating. EDS spectrum: (c) point 1; (d) point 2. Element distribution maps: (e) CIP@SiO2 image; (f) Fe distribution map; (g) O distribution map; (h) Si distribution map.
图 3 复合材料的电磁参数:(a)介电常数的实部ε';(b)介电常数的虚部ε'';(c)磁导率的实部μ';(d)磁导率的虚部μ''。
Figure 3. Electromagnetic parameters of composites: (a) the real part ε' of dielectric constant; (b) the imaginary part ε'' of dielectric constant; (c) the real part μ' of magnetic permeability; (d) the imaginary part μ'' of magnetic permeability.
图 4 吸波复合材料的RL三维图:(a) 30 wt.%CIP@SiO2的CIP@SiO2-GF/PA6;(b) 40 wt.%CIP@SiO2的CIP@SiO2-GF/PA6;(c) 50 wt.%CIP@SiO2的CIP@SiO2-GF/PA6;(d) 60 wt.%CIP@SiO2的CIP@SiO2-GF/PA6;(e) 70 wt.%CIP@SiO2的CIP@SiO2-GF/PA6;(f)70 wt.%CIP的CIP-GF/PA6。
Figure 4. RL 3 D plots of composites: (a) 30 wt.% CIP@SiO2 of CIP@SiO2-GF/PA6; (b) 40 wt.% CIP@SiO2 of CIP@SiO2-GF/PA6; (c) 50 wt.% CIP@SiO2 of CIP@SiO2-GF/PA6; (d) 60 wt.% CIP@SiO2 of CIP@SiO2-GF/PA6; (e) 70 wt.% CIP@SiO2 of CIP@SiO2-GF/PA6; (f) 70 wt.%CIP of CIP-GF/PA6.
图 7 不同CIP@SiO2含量的CB-CIP@SiO2-GF/PA6吸波复合材料的电磁参数:(a)介电常数的实部ε';(b)介电常数的虚部ε'';(c)磁导率的实部μ';(d)磁导率的虚部μ'';(e)介电损耗角正切tanδε;(f)磁损耗角正切tanδμ。
Figure 7. Electromagnetic parameters of different contents of CIP@SiO2 of CB-CIP@SiO2-GF/PA6 composites: (a) real part ε' of dielectric constant; (b) imaginary part ε'' of dielectric constant; (c) real part μ' of magnetic permeability; (d) imaginary part μ'' of magnetic permeability; (e) dielectric loss angle tangent tanδε; (f) magnetic loss angle tangent tanδμ.
图 8 CB-CIP@SiO2-GF/PA6吸波复合材料的Zin/Z0:(a) 20 wt.% CIP@SiO2;(b) 30 wt.% CIP@SiO2;(c) 35 wt.% CIP@SiO2;(d) 40 wt.% CIP@SiO2;(e) 50 wt.% CIP@SiO2;(f)不同含量的CB-CIP@SiO2-GF/PA6吸波复合材料的衰减常数ɑ。
Figure 8. Zin/Z0 of CB-CIP@SiO2-GF/PA6 composite: (a) 20 wt.% CIP@SiO2; (b) 30 wt.% CIP@SiO2; (c) 35 wt.% CIP@SiO2; (e) 40 wt.% CIP@SiO2; (e) 50 wt.% CIP@SiO2; (f) Attenuation constant ɑ of CB-CIP@SiO2-GF/PA6 composite with different content.
图 9 CB-CIP@SiO2-GF/PA6吸波复合材料的RL三维图:(a, b)20 wt.% CIP@SiO2;(c, d)30 wt.% CIP@SiO2;(e, f)35 wt.% CIP@SiO2;(g, h)40 wt.% CIP@SiO2;(i, j)50 wt.% CIP@SiO2。
Figure 9. RL of CB-CIP@SiO2-GF/PA6 composite: (a, b) 20 wt.% CIP@SiO2; (c, d) 30 wt.% CIP@SiO2; (e, f) 35 wt.% CIP@SiO2; (g, h) 40 wt.% CIP@SiO2; (i, j) 50 wt.% CIP@SiO2.
-
[1] CHOI W H, KIM C G. Broadband microwave-absorbing honeycomb structure with novel design concept[J]. Composites Part B-Engineering, 2015, 83: 14-20. doi: 10.1016/j.compositesb.2015.08.027 [2] HUANG H M, WANG W, CAO T S, et al. Broadband radar absorbing performance of corrugated structure[J]. Composite Structures, 2020, 253: 112809. doi: 10.1016/j.compstruct.2020.112809 [3] MARRA F, LECINI J, TAMBURRANO A, et al. Broadband Electromagnetic Absorbing Structures Made of Graphene/Glass-Fiber/Epoxy Composite[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(2): 590-601. doi: 10.1109/TMTT.2019.2950223 [4] 张明伟, 曲冠达, 庞梦瑶, et al. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.ZHANG Mingwei, QU Guanda, PANG Mengyao, et al. Research Progress of Electromagnetic Shielding Mechanism and Coated /Structural Absorbing Composite Materials[J]. Mterials reports, 2021, 35(Z1): 62-70 (in Chinese). [5] CHOI W H, JANG H K, SHIN J H, et al. Wideband radar absorbing structure with low density material and load-bearing MWCNT added composite material[J]. Electronics Letters, 2013, 49(9): 620-621. doi: 10.1049/el.2013.0645 [6] LIANG C B, GU Z J, ZHANG Y L, et al. Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review[J]. Nano-Micro Letters, 2021, 13(1): 181. doi: 10.1007/s40820-021-00707-2 [7] 熊健, 李志彬, 刘惠彬. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6): 1628-1650.XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1628-1650 (in Chinese). [8] HU W X, YIN H F, YUAN H D, et al. Microwave absorption and mechanical properties of glass fiber/polyamide 6 composites containing carbon black by microstructural design[J]. Composites Science and Technology, 2023, 233: 109927. doi: 10.1016/j.compscitech.2023.109927 [9] DONG J, ZHOU W C, QING Y C, et al. Dielectric and microwave absorption properties of CB doped SiO2f/PI double-layer composites[J]. Ceramics International, 2018, 44(12): 14007-14012. doi: 10.1016/j.ceramint.2018.04.252 [10] DONG J, ZHOU W C, DUAN S C, et al. Mechanical, dielectric and microwave absorption properties of carbon black (CB) incorporated SiO2f/PI composites[J]. Journal of Materials Science-Materials in Electronics, 2018, 29(20): 17100-17107. doi: 10.1007/s10854-018-9860-z [11] 胡婉欣, 尹洪峰, 袁蝴蝶, et al. 纤维增强树脂基吸波复合材料的研究进展[J]. 中国塑料, 2022, 36(10): 178-189.HU Wanxin, YIN Hongfeng, YUAN Hudie, et al. Research status of fiber reinforced resin matrix microwave absorbing composite[J]. China Plastics, 2022, 36(10): 178-189 (in Chinese). [12] HUANG Y X, WU D, CHEN M J, et al. Evolutionary optimization design of honeycomb metastructure with effective mechanical resistance and broadband microwave absorption[J]. Carbon, 2021, 177: 79-89. doi: 10.1016/j.carbon.2021.02.066 [13] ZHOU D, HUANG X Z, DU Z J. Analysis and Design of Multilayered Broadband Radar Absorbing Metamaterial Using the 3-D Printing Technology-Based Method[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 133-136. doi: 10.1109/LAWP.2016.2560904 [14] YUCHANG Q, WANCHENG Z, SHU J, et al. Microwave electromagnetic property of SiO2-coated carbonyl iron particles with higher oxidation resistance[J]. Physica B: Condensed Matter, 2011, 406(4): 777-780. doi: 10.1016/j.physb.2010.11.079 [15] ZHANG J X, FENG Y B, QIU T, et al. Preparation and characterization of carbonyl iron powder/millable polyurethane elastomer microwave absorbing patch[J]. Polymer Composites, 2014, 35(7): 1318-1324. doi: 10.1002/pc.22782 [16] GAO Y, GAO X Y, LI J, et al. Improved microwave absorbing property provided by the filler's alternating lamellar distribution of carbon nanotube/carbonyl iron/poly (vinyl chloride) composites[J]. Composites Science and Technology, 2018, 158: 175-185. doi: 10.1016/j.compscitech.2017.11.029 [17] HUANG L X, DUAN Y P, YANG X, et al. Ultra-flexible composite metamaterials with enhanced and tunable microwave absorption performance[J]. Composite Structures, 2019, 229: 111469. doi: 10.1016/j.compstruct.2019.111469 [18] LI W P, ZHU L Q, GU J, et al. Microwave absorption properties of fabric coated absorbing material using modified carbonyl iron power[J]. Composites Part B-Engineering, 2011, 42(4): 626-630. doi: 10.1016/j.compositesb.2011.02.019 [19] TANG J, MA L, HUO Q, et al. The influence of PVP on the synthesis and electromagnetic properties of PANI/PVP/CIP composites[J]. Polymer Composites, 2014, 36(10): 1799-1806. [20] TANG J H, MA L, TIAN N, et al. Synthesis and electromagnetic properties of PANI/PVP/CIP core-shell composites[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2014, 186: 26-32. [21] CHEN X T, ZHANG D, CHEN H Y, et al. Preparation and characterization of CIP@Fe3O4@PANI composites[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2021, 628: 127410. [22] HE Z F, FANG Y, WANG X J, et al. Microwave absorption properties of PANI/CIP/Fe3O4 composites[J]. Synthetic Metals, 2011, 161(5-6): 420-425. doi: 10.1016/j.synthmet.2010.12.020 [23] WANG H Y, ZHU D M, ZHOU W C, et al. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials[J]. Journal of Magnetism and Magnetic Materials, 2015, 375: 111-116. doi: 10.1016/j.jmmm.2014.09.061 [24] LI J, FENG W J, WANG J S, et al. Impact of silica-coating on the microwave absorption properties of carbonyl iron powder[J]. Journal of Magnetism and Magnetic Materials, 2015, 393: 82-87. doi: 10.1016/j.jmmm.2015.05.049 [25] AMIRMAHANI N, MAHDIZADEH H, MALAKOOTIAN M, et al. Evaluating Nanoparticles Decorated on Fe3O4@SiO2-Schiff Base (Fe3O4@SiO2-APTMS-HBA) in Adsorption of Ciprofloxacin from Aqueous Environments[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(9): 3540-3551. doi: 10.1007/s10904-020-01499-5 [26] ZHANG N, WANG Y, CHEN P Z, et al. A rational route towards dual wave-transparent type of carbonyl iron@SiO2@heterogeneous state polypyrrole@paraffin composites for electromagnetic wave absorption application[J]. Journal of Colloid and Interface Science, 2021, 581: 84-95. doi: 10.1016/j.jcis.2020.07.087 [27] 穆锐, 刘元雪, 刘晓英. SiO2气凝胶复合材料及其在航空航天领域的研究进展[J]. 复合材料学报, 2024, 41(7): 3359-3375.MU Rui, LIU Yuanxue, LIU Xiaoying, et al. Advances in silica aerogel composites and their research in aerospace[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3359-3375 (in Chinese). [28] LAI W W, WANG Y, HE J K. Effects of Carbonyl Iron Powder (CIP) Content on the Electromagnetic Wave Absorption and Mechanical Properties of CIP/ABS Composites[J]. Polymers, 2020, 12(8): 1694. doi: 10.3390/polym12081694 [29] ZHENG Y S, WANG Y. Electromagnetic-Wave Absorption Properties of 3D-Printed Thermoplastic Polyurethane/Carbonyl Iron Powder Composites[J]. Polymers, 2022, 14(22): 4960. doi: 10.3390/polym14224960 [30] LYU L H, LIU W D, SUN B Z. Electromagnetic Wave-Absorbing and Bending Properties of Three-Dimensional Honeycomb Woven Composites[J]. Polymers, 2021, 13(9): 1485. doi: 10.3390/polym13091485 [31] WANG H Q, WANG M, ZHANG X C, et al. A new type of catalyst allows carbonyl iron powder to be coated with SiO2 for tuned microwave absorption[J]. Surfaces and Interfaces, 2020, 21: 100755. doi: 10.1016/j.surfin.2020.100755 [32] CHEN Q L, LI L Y, WANG Z L, et al. Synthesis and enhanced microwave absorption performance of CIP@ SiO2@Mn0.6Zn0.4Fe2O4 ferrite composites[J]. Journal of Alloys and Compounds, 2019, 779: 720-727. doi: 10.1016/j.jallcom.2018.11.112 [33] YAN J, HUANG Y, WEI C, et al. Covalently bonded polyaniline/graphene composites as high-performance electromagnetic (EM) wave absorption materials[J]. Composites Part a-Applied Science and Manufacturing, 2017, 99: 121-128. doi: 10.1016/j.compositesa.2017.04.016 [34] WEI C H, HE M K, LI M Q, et al. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption[J]. Materials Today Physics, 2023, 36: 101142. doi: 10.1016/j.mtphys.2023.101142 [35] WU N N, XU D M, WANG Z, et al. Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods[J]. Carbon, 2019, 145: 433-444. doi: 10.1016/j.carbon.2019.01.028 [36] 王子健, 周晓东. 连续纤维增强热塑性复合材料成型工艺研究进展[J]. 复合材料科学与工程, 2021, 10: 120-128.WANG Zijian, ZHOU Xiaodong. Research progress on forming process of continuous fiber reinforced thermoplastic composites[J]. Composites Science and Engineering, 2021, 10: 120-128 (in Chinese).
计量
- 文章访问数: 38
- HTML全文浏览量: 19
- 被引次数: 0