留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CB-CIP@SiO2-GF/PA6复合材料的制备及其宽带微波吸收和力学性能

胡婉欣 尹洪峰 任小虎 汤云 魏英 袁蝴蝶

胡婉欣, 尹洪峰, 任小虎, 等. CB-CIP@SiO2-GF/PA6复合材料的制备及其宽带微波吸收和力学性能[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 胡婉欣, 尹洪峰, 任小虎, 等. CB-CIP@SiO2-GF/PA6复合材料的制备及其宽带微波吸收和力学性能[J]. 复合材料学报, 2024, 42(0): 1-15.
HU Wanxin, YIN Hongfeng, REN Xiaohu, et al. Broadband microwave absorption and mechanical properties of CB-CIP@SiO2-GF/PA6 composites[J]. Acta Materiae Compositae Sinica.
Citation: HU Wanxin, YIN Hongfeng, REN Xiaohu, et al. Broadband microwave absorption and mechanical properties of CB-CIP@SiO2-GF/PA6 composites[J]. Acta Materiae Compositae Sinica.

CB-CIP@SiO2-GF/PA6复合材料的制备及其宽带微波吸收和力学性能

详细信息
    通讯作者:

    尹洪峰,博士,教授,博士生导师,研究方向为结构功能一体化复合材料 E-mail: yinhongfeng@xauat.edu.cn

  • 中图分类号: TB333

Broadband microwave absorption and mechanical properties of CB-CIP@SiO2-GF/PA6 composites

  • 摘要: 本工作以拓宽结构型吸波复合材料的吸收频带为目的,在玻璃纤维增强尼龙复合材料中同时引入磁损耗型吸波剂羰基铁粉(carbonyl iron powder, CIP)和电阻损耗型吸波剂炭黑(Carbon black, CB),采用热压成型工艺制备了CB-CIP@SiO2/玻璃纤维/尼龙6(CB-CIP@SiO2-GF/PA6)吸波复合材料。重点研究了CIP表面包覆SiO2薄膜及其加入量对复合材料微波吸收和力学性能的影响。研究结果表明:SiO2薄膜包覆不仅解决了CIP氧化问题,同时改善了复合材料的阻抗匹配特性,使得CIP与CB协同提升了复合材料的吸波性能。在保障复合材料具有良好吸波性能前提下,CIP的负载量从70 wt.%降低至30 wt.%左右,大大减轻了复合材料的质量。其中,掺量为1 wt.%CB和30 wt.%CIP@SiO2的吸波复合材料的有效吸收带宽在材料厚度为1.91-1.95 mm时超过了5.6 GHz,且覆盖了整个Ku波段。这种方法一方面拓宽了吸波复合材料的有效吸收带宽,实现了宽带吸波。另一方面,CIP@SiO2颗粒与GF的纤维实现共同增强,提升了复合材料的整体力学性能。当CIP@SiO2的含量为40 wt.%时,复合材料的力学性能最佳,弯曲强度为212.8±9.8 MPa,剪切强度为21.0±1.4 MPa,摆锤冲击强度为64.4±6.2 kJ/m2

     

  • 图  1  羰基铁粉(CIP)和CIP@SiO2热处理前后的XRD图谱。

    Figure  1.  XRD patterns of carbonyl iron powder (CIP) and CIP@SiO2 before and after heat treatment.

    图  2  SiO2包覆CIP前后的SEM图像:(a)包覆前;(b)包覆后。EDS点扫描谱图:(c)点1;(d)点2。面扫描元素分布图像:(e) CIP@SiO2电子图像;(f) Fe元素分布图像;(g) O元素分布图像;(h) Si元素分布图像。

    Figure  2.  SEM images before and after SiO2 coated CIP: (a) before coating; (b) after coating. EDS spectrum: (c) point 1; (d) point 2. Element distribution maps: (e) CIP@SiO2 image; (f) Fe distribution map; (g) O distribution map; (h) Si distribution map.

    图  3  复合材料的电磁参数:(a)介电常数的实部ε';(b)介电常数的虚部ε'';(c)磁导率的实部μ';(d)磁导率的虚部μ''

    Figure  3.  Electromagnetic parameters of composites: (a) the real part ε' of dielectric constant; (b) the imaginary part ε'' of dielectric constant; (c) the real part μ' of magnetic permeability; (d) the imaginary part μ'' of magnetic permeability.

    图  4  吸波复合材料的RL三维图:(a) 30 wt.%CIP@SiO2的CIP@SiO2-GF/PA6;(b) 40 wt.%CIP@SiO2的CIP@SiO2-GF/PA6;(c) 50 wt.%CIP@SiO2的CIP@SiO2-GF/PA6;(d) 60 wt.%CIP@SiO2的CIP@SiO2-GF/PA6;(e) 70 wt.%CIP@SiO2的CIP@SiO2-GF/PA6;(f)70 wt.%CIP的CIP-GF/PA6。

    Figure  4.  RL 3 D plots of composites: (a) 30 wt.% CIP@SiO2 of CIP@SiO2-GF/PA6; (b) 40 wt.% CIP@SiO2 of CIP@SiO2-GF/PA6; (c) 50 wt.% CIP@SiO2 of CIP@SiO2-GF/PA6; (d) 60 wt.% CIP@SiO2 of CIP@SiO2-GF/PA6; (e) 70 wt.% CIP@SiO2 of CIP@SiO2-GF/PA6; (f) 70 wt.%CIP of CIP-GF/PA6.

    图  5  (a) CIP@SiO2的微波损耗示意图。复合材料的Zin/Z0值:(b) 70 wt.% CIP的CIP-GF/PA6;(c) 70 wt.% CIP@SiO2的CIP@SiO2-GF/PA6。

    Figure  5.  (a) Schematic diagram of microwave loss for CIP@SiO2. Zin/Z0 of composites: (b) 70 wt.% CIP of CIP-GF/PA6; (c) 70 wt.% CIP@SiO2 of CIP@SiO2-GF/PA6.

    图  6  1 wt.%CB的CB-GF/PA6复合材料的RL三维图。

    Figure  6.  RL 3D plots of CB-GF/PA6 composite with 1 wt.%CB.

    图  7  不同CIP@SiO2含量的CB-CIP@SiO2-GF/PA6吸波复合材料的电磁参数:(a)介电常数的实部ε';(b)介电常数的虚部ε'';(c)磁导率的实部μ';(d)磁导率的虚部μ'';(e)介电损耗角正切tanδε;(f)磁损耗角正切tanδμ

    Figure  7.  Electromagnetic parameters of different contents of CIP@SiO2 of CB-CIP@SiO2-GF/PA6 composites: (a) real part ε' of dielectric constant; (b) imaginary part ε'' of dielectric constant; (c) real part μ' of magnetic permeability; (d) imaginary part μ'' of magnetic permeability; (e) dielectric loss angle tangent tanδε; (f) magnetic loss angle tangent tanδμ.

    图  8  CB-CIP@SiO2-GF/PA6吸波复合材料的Zin/Z0:(a) 20 wt.% CIP@SiO2;(b) 30 wt.% CIP@SiO2;(c) 35 wt.% CIP@SiO2;(d) 40 wt.% CIP@SiO2;(e) 50 wt.% CIP@SiO2;(f)不同含量的CB-CIP@SiO2-GF/PA6吸波复合材料的衰减常数ɑ

    Figure  8.  Zin/Z0 of CB-CIP@SiO2-GF/PA6 composite: (a) 20 wt.% CIP@SiO2; (b) 30 wt.% CIP@SiO2; (c) 35 wt.% CIP@SiO2; (e) 40 wt.% CIP@SiO2; (e) 50 wt.% CIP@SiO2; (f) Attenuation constant ɑ of CB-CIP@SiO2-GF/PA6 composite with different content.

    图  9  CB-CIP@SiO2-GF/PA6吸波复合材料的RL三维图:(a, b)20 wt.% CIP@SiO2;(c, d)30 wt.% CIP@SiO2;(e, f)35 wt.% CIP@SiO2;(g, h)40 wt.% CIP@SiO2;(i, j)50 wt.% CIP@SiO2

    Figure  9.  RL of CB-CIP@SiO2-GF/PA6 composite: (a, b) 20 wt.% CIP@SiO2; (c, d) 30 wt.% CIP@SiO2; (e, f) 35 wt.% CIP@SiO2; (g, h) 40 wt.% CIP@SiO2; (i, j) 50 wt.% CIP@SiO2.

    图  10  CB-CIP@SiO2-GF/PA6复合材料C0随频率的变化曲线。

    Figure  10.  C0 versus frequency for CB-CIP@SiO2-GF/PA6 composites with different contents of CIP@SiO2.

    图  11  (a,b)CB-CIP@SiO2-GF/PA6吸波复合材料断口的微观形貌。CB-CIP@SiO2-GF/PA6吸波复合材料的力学性能:(c)弯曲强度;(d)剪切强度;(e)冲击强度。

    Figure  11.  (a, b) SEM images of CB-CIP@SiO2-GF/PA6 composite fracture. Mechanical strength of CB-CIP@SiO2-GF/PA6 composites: (c) flexural strength; (d) shearing strength; (e) impact strength.

  • [1] CHOI W H, KIM C G. Broadband microwave-absorbing honeycomb structure with novel design concept[J]. Composites Part B-Engineering, 2015, 83: 14-20. doi: 10.1016/j.compositesb.2015.08.027
    [2] HUANG H M, WANG W, CAO T S, et al. Broadband radar absorbing performance of corrugated structure[J]. Composite Structures, 2020, 253: 112809. doi: 10.1016/j.compstruct.2020.112809
    [3] MARRA F, LECINI J, TAMBURRANO A, et al. Broadband Electromagnetic Absorbing Structures Made of Graphene/Glass-Fiber/Epoxy Composite[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(2): 590-601. doi: 10.1109/TMTT.2019.2950223
    [4] 张明伟, 曲冠达, 庞梦瑶, et al. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.

    ZHANG Mingwei, QU Guanda, PANG Mengyao, et al. Research Progress of Electromagnetic Shielding Mechanism and Coated /Structural Absorbing Composite Materials[J]. Mterials reports, 2021, 35(Z1): 62-70 (in Chinese).
    [5] CHOI W H, JANG H K, SHIN J H, et al. Wideband radar absorbing structure with low density material and load-bearing MWCNT added composite material[J]. Electronics Letters, 2013, 49(9): 620-621. doi: 10.1049/el.2013.0645
    [6] LIANG C B, GU Z J, ZHANG Y L, et al. Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review[J]. Nano-Micro Letters, 2021, 13(1): 181. doi: 10.1007/s40820-021-00707-2
    [7] 熊健, 李志彬, 刘惠彬. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6): 1628-1650.

    XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1628-1650 (in Chinese).
    [8] HU W X, YIN H F, YUAN H D, et al. Microwave absorption and mechanical properties of glass fiber/polyamide 6 composites containing carbon black by microstructural design[J]. Composites Science and Technology, 2023, 233: 109927. doi: 10.1016/j.compscitech.2023.109927
    [9] DONG J, ZHOU W C, QING Y C, et al. Dielectric and microwave absorption properties of CB doped SiO2f/PI double-layer composites[J]. Ceramics International, 2018, 44(12): 14007-14012. doi: 10.1016/j.ceramint.2018.04.252
    [10] DONG J, ZHOU W C, DUAN S C, et al. Mechanical, dielectric and microwave absorption properties of carbon black (CB) incorporated SiO2f/PI composites[J]. Journal of Materials Science-Materials in Electronics, 2018, 29(20): 17100-17107. doi: 10.1007/s10854-018-9860-z
    [11] 胡婉欣, 尹洪峰, 袁蝴蝶, et al. 纤维增强树脂基吸波复合材料的研究进展[J]. 中国塑料, 2022, 36(10): 178-189.

    HU Wanxin, YIN Hongfeng, YUAN Hudie, et al. Research status of fiber reinforced resin matrix microwave absorbing composite[J]. China Plastics, 2022, 36(10): 178-189 (in Chinese).
    [12] HUANG Y X, WU D, CHEN M J, et al. Evolutionary optimization design of honeycomb metastructure with effective mechanical resistance and broadband microwave absorption[J]. Carbon, 2021, 177: 79-89. doi: 10.1016/j.carbon.2021.02.066
    [13] ZHOU D, HUANG X Z, DU Z J. Analysis and Design of Multilayered Broadband Radar Absorbing Metamaterial Using the 3-D Printing Technology-Based Method[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 133-136. doi: 10.1109/LAWP.2016.2560904
    [14] YUCHANG Q, WANCHENG Z, SHU J, et al. Microwave electromagnetic property of SiO2-coated carbonyl iron particles with higher oxidation resistance[J]. Physica B: Condensed Matter, 2011, 406(4): 777-780. doi: 10.1016/j.physb.2010.11.079
    [15] ZHANG J X, FENG Y B, QIU T, et al. Preparation and characterization of carbonyl iron powder/millable polyurethane elastomer microwave absorbing patch[J]. Polymer Composites, 2014, 35(7): 1318-1324. doi: 10.1002/pc.22782
    [16] GAO Y, GAO X Y, LI J, et al. Improved microwave absorbing property provided by the filler's alternating lamellar distribution of carbon nanotube/carbonyl iron/poly (vinyl chloride) composites[J]. Composites Science and Technology, 2018, 158: 175-185. doi: 10.1016/j.compscitech.2017.11.029
    [17] HUANG L X, DUAN Y P, YANG X, et al. Ultra-flexible composite metamaterials with enhanced and tunable microwave absorption performance[J]. Composite Structures, 2019, 229: 111469. doi: 10.1016/j.compstruct.2019.111469
    [18] LI W P, ZHU L Q, GU J, et al. Microwave absorption properties of fabric coated absorbing material using modified carbonyl iron power[J]. Composites Part B-Engineering, 2011, 42(4): 626-630. doi: 10.1016/j.compositesb.2011.02.019
    [19] TANG J, MA L, HUO Q, et al. The influence of PVP on the synthesis and electromagnetic properties of PANI/PVP/CIP composites[J]. Polymer Composites, 2014, 36(10): 1799-1806.
    [20] TANG J H, MA L, TIAN N, et al. Synthesis and electromagnetic properties of PANI/PVP/CIP core-shell composites[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2014, 186: 26-32.
    [21] CHEN X T, ZHANG D, CHEN H Y, et al. Preparation and characterization of CIP@Fe3O4@PANI composites[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2021, 628: 127410.
    [22] HE Z F, FANG Y, WANG X J, et al. Microwave absorption properties of PANI/CIP/Fe3O4 composites[J]. Synthetic Metals, 2011, 161(5-6): 420-425. doi: 10.1016/j.synthmet.2010.12.020
    [23] WANG H Y, ZHU D M, ZHOU W C, et al. Electromagnetic property of SiO2-coated carbonyl iron/polyimide composites as heat resistant microwave absorbing materials[J]. Journal of Magnetism and Magnetic Materials, 2015, 375: 111-116. doi: 10.1016/j.jmmm.2014.09.061
    [24] LI J, FENG W J, WANG J S, et al. Impact of silica-coating on the microwave absorption properties of carbonyl iron powder[J]. Journal of Magnetism and Magnetic Materials, 2015, 393: 82-87. doi: 10.1016/j.jmmm.2015.05.049
    [25] AMIRMAHANI N, MAHDIZADEH H, MALAKOOTIAN M, et al. Evaluating Nanoparticles Decorated on Fe3O4@SiO2-Schiff Base (Fe3O4@SiO2-APTMS-HBA) in Adsorption of Ciprofloxacin from Aqueous Environments[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(9): 3540-3551. doi: 10.1007/s10904-020-01499-5
    [26] ZHANG N, WANG Y, CHEN P Z, et al. A rational route towards dual wave-transparent type of carbonyl iron@SiO2@heterogeneous state polypyrrole@paraffin composites for electromagnetic wave absorption application[J]. Journal of Colloid and Interface Science, 2021, 581: 84-95. doi: 10.1016/j.jcis.2020.07.087
    [27] 穆锐, 刘元雪, 刘晓英. SiO2气凝胶复合材料及其在航空航天领域的研究进展[J]. 复合材料学报, 2024, 41(7): 3359-3375.

    MU Rui, LIU Yuanxue, LIU Xiaoying, et al. Advances in silica aerogel composites and their research in aerospace[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3359-3375 (in Chinese).
    [28] LAI W W, WANG Y, HE J K. Effects of Carbonyl Iron Powder (CIP) Content on the Electromagnetic Wave Absorption and Mechanical Properties of CIP/ABS Composites[J]. Polymers, 2020, 12(8): 1694. doi: 10.3390/polym12081694
    [29] ZHENG Y S, WANG Y. Electromagnetic-Wave Absorption Properties of 3D-Printed Thermoplastic Polyurethane/Carbonyl Iron Powder Composites[J]. Polymers, 2022, 14(22): 4960. doi: 10.3390/polym14224960
    [30] LYU L H, LIU W D, SUN B Z. Electromagnetic Wave-Absorbing and Bending Properties of Three-Dimensional Honeycomb Woven Composites[J]. Polymers, 2021, 13(9): 1485. doi: 10.3390/polym13091485
    [31] WANG H Q, WANG M, ZHANG X C, et al. A new type of catalyst allows carbonyl iron powder to be coated with SiO2 for tuned microwave absorption[J]. Surfaces and Interfaces, 2020, 21: 100755. doi: 10.1016/j.surfin.2020.100755
    [32] CHEN Q L, LI L Y, WANG Z L, et al. Synthesis and enhanced microwave absorption performance of CIP@ SiO2@Mn0.6Zn0.4Fe2O4 ferrite composites[J]. Journal of Alloys and Compounds, 2019, 779: 720-727. doi: 10.1016/j.jallcom.2018.11.112
    [33] YAN J, HUANG Y, WEI C, et al. Covalently bonded polyaniline/graphene composites as high-performance electromagnetic (EM) wave absorption materials[J]. Composites Part a-Applied Science and Manufacturing, 2017, 99: 121-128. doi: 10.1016/j.compositesa.2017.04.016
    [34] WEI C H, HE M K, LI M Q, et al. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption[J]. Materials Today Physics, 2023, 36: 101142. doi: 10.1016/j.mtphys.2023.101142
    [35] WU N N, XU D M, WANG Z, et al. Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods[J]. Carbon, 2019, 145: 433-444. doi: 10.1016/j.carbon.2019.01.028
    [36] 王子健, 周晓东. 连续纤维增强热塑性复合材料成型工艺研究进展[J]. 复合材料科学与工程, 2021, 10: 120-128.

    WANG Zijian, ZHOU Xiaodong. Research progress on forming process of continuous fiber reinforced thermoplastic composites[J]. Composites Science and Engineering, 2021, 10: 120-128 (in Chinese).
  • 加载中
计量
  • 文章访问数:  57
  • HTML全文浏览量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-03
  • 修回日期:  2024-07-26
  • 录用日期:  2024-08-03
  • 网络出版日期:  2024-08-27

目录

    /

    返回文章
    返回