留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

再生碳纤维毛毡纤维取向与克重多目标优化研究

刘锐 陈宏达 胡海晓 李书欣 王继辉 曹东风 张宇 李瑞奇 王洪荣 卢立哲

刘锐, 陈宏达, 胡海晓, 等. 再生碳纤维毛毡纤维取向与克重多目标优化研究[J]. 复合材料学报, 2024, 42(0): 1-20.
引用本文: 刘锐, 陈宏达, 胡海晓, 等. 再生碳纤维毛毡纤维取向与克重多目标优化研究[J]. 复合材料学报, 2024, 42(0): 1-20.
LIU Rui, CHEN Hongda, HU Haixiao, et al. Multi-objective optimization of fiber orientation and grammage of recycled carbon fiber felt[J]. Acta Materiae Compositae Sinica.
Citation: LIU Rui, CHEN Hongda, HU Haixiao, et al. Multi-objective optimization of fiber orientation and grammage of recycled carbon fiber felt[J]. Acta Materiae Compositae Sinica.

再生碳纤维毛毡纤维取向与克重多目标优化研究

基金项目: 湖北省自然科学基金(NO.20231j0223 陈宏达);国家自然科学基金(Grant No.52273080 曹东风);湖北省重点项目(JD)(2023BAA028 胡海晓)
详细信息
    通讯作者:

    陈宏达,博士,副研究员,硕士生导师,研究方向为复合材料结构设计-成型工艺一体化设计 E-mail: hongdachen@whut.edu.cn

    胡海晓,博士,副教授,硕士生导师,研究方向为复合材料材料-工艺-结构一体化应用 E-mail: yiming9008@126.com

  • 中图分类号: TB332

Multi-objective optimization of fiber orientation and grammage of recycled carbon fiber felt

Funds: Natural Science Foundation of Hubei Province of China (NO.20231j0223CHEN Hongda); National Natural Science Foundation of China (Grant No.52273080CAO Dongfeng); Key Program of Hubei Province of China (JD) (2023BAA028HU Haixiao)
  • 摘要: 废弃复合材料的回收再利用具有重要意义,传统回收方法能耗高且易损伤材料结构,回收纤维取向杂乱,无法进行高价值利用。本文采用团队研发的新型可回收环氧树脂制备Ⅳ型储氢气瓶废弃复合材料为对象,研究碳纤维的高效回收方法。自主搭建纤维湿法取向装置制备纤维毡,探究湿法取向过程各工艺对再生纤维毡制备效果包括取向度及克重的影响;利用响应面法(RSM)建立取向度和克重目标模型并进行可靠性分析,结合非支配排序遗传算法Ⅱ(NSGA-Ⅱ)对湿法取向工艺参数进行多目标优化;采用优劣解距离法(TOPSIS)决策选择最优解,实验验证多目标优化结果。结果表明:各工艺条件对纤维毡取向度影响大小为纤维长度>纤维含量>分散剂含量>滤网孔径;对纤维毡克重影响大小为纤维含量>分散剂含量>滤网孔径>纤维长度。目标函数模型具有较高的准确性;多目标优化纤维毡制备最佳工艺为纤维长度3 mm、纤维含量6.37 g/L、分散剂含量13.37 g/L、滤网孔径0.75 mm;验证实验制备纤维毡取向度81.08%,与遗传算法预测取向度(81.84%)误差0.94%;实验制备纤维毡克重42.86 g/m2,与遗传算法预测克重(42.57 g/m2)误差0.68%。

     

  • 图  1  可回收Ⅳ型复合材料储氢气瓶制造-回收-再利用全流程

    Figure  1.  Recyclable type IV composite hydrogen storage cylinder manufacturing - recovery - recycle process

    图  2  主要原材料

    Figure  2.  main raw material

    图  3  复合材料储氢气瓶及爆破后待回收储氢气瓶

    Figure  3.  Composite hydrogen storage cylinder and hydrogen storage cylinder to be recovered after blasting

    图  4  可回收复合材料降解过程

    Figure  4.  Recyclable composite degradation process

    图  5  再生纤维湿法取向装置及原理示意图

    Figure  5.  Regenerated fiber wet orientation device and schematic diagram of principle

    图  6  再生纤维毡制备三阶段

    Figure  6.  Three stages of preparation of recycled fiber felt

    图  7  纤维图像拍摄、前处理及取向定性定量分析

    Figure  7.  Fiber image shooting, pre-processing and orientation qualitative and quantitative analysis

    图  8  多目标优化方法框架

    Figure  8.  Multi-objective optimization method framework

    图  9  NSGA-Ⅱ遗传算法优化过程

    Figure  9.  NSGA-Ⅱ optimization process

    图  10  不同工艺条件对纤维毡取向度的影响

    Figure  10.  Influence of different process conditions on orientation of fiber felt

    图  11  不同工艺条件对纤维毡取向度的影响

    Figure  11.  Influence of different process conditions on grammage of fiber felt

    图  12  取向度相关回归模型$ {Y}_{1} $可靠性分析

    Figure  12.  Reliability analysis of regression model $ {Y}_{1} $ related to the orientation

    图  13  不同工艺条件对纤维毡取向度相关函数$ {Y}_{1} $的交互影响

    Figure  13.  Interaction effect of different process conditions on the function $ {Y}_{1} $ related to the orientation of fiber felt

    图  14  克重相关回归模型$ {Y}_{2} $可靠性分析

    Figure  14.  Reliability analysis of regression model $ {Y}_{2} $ related to grammage

    图  15  不同工艺条件对纤维毡克重相关函数$ {Y}_{2} $的交互影响

    Figure  15.  Interaction effect of different process conditions on the function $ {Y}_{2} $ related to the grammage of fiber felt

    图  16  Pareto最优解集

    Figure  16.  Pareto solution set

    图  17  次序为1的解在Pareto前沿所处位置

    Figure  17.  The position of the first ranked solution on the Pareto front

    图  18  验证实验制备纤维毡及其取向分布图

    Figure  18.  Fiber felts for verification experiments and its fiber orientation distribution.

    表  1  EzCiclo RB240环氧树脂混合物基本属性

    Table  1.   The basic properties of EzCiclo RB240 epoxy resin mixtures

    Property quantitative value
    Blending ratio of A and B (weight ratio) 100∶100(±2)
    Viscosity-25℃/cps 800~1200
    Viscosity-40℃/cps 200~400
    Liquid state density-25℃/(g·cm−3) 1.10~1.20
    Density after curing-25℃/(g·cm−3) 1.15~1.25
    Operable time-30℃/h >8
    下载: 导出CSV

    表  2  单因素实验方案设计及结果

    Table  2.   Single factor experimental scheme design and experimental results

    $ {X}_{1} $/mm $ {X}_{2} $/(g·L−1) $ {X}_{3} $/(g·L−1) $ {X}_{4} $/mm $ {y}_{1} $/% $ {y}_{2} $/(g·m−2)
    1 2 5 13 0.8 84.54 38.91
    2 3 5 13 0.8 86.38 39.23
    3 4 5 13 0.8 85.79 39.45
    4 5 5 13 0.8 83.22 39.66
    5 6 5 13 0.8 76.53 39.83
    6 7 5 13 0.8 65.87 39.97
    7 8 5 13 0.8 56.62 40.03
    8 5 3 13 0.8 86.45 35.1
    9 5 4 13 0.8 86.02 37.32
    10 5 6 13 0.8 77.96 42.09
    11 5 7 13 0.8 71.42 44.8
    12 5 5 10 0.8 83.65 38.16
    13 5 5 11 0.8 84.16 38.74
    14 5 5 12 0.8 84.2 39.26
    15 5 5 14 0.8 81.74 39.98
    16 5 5 15 0.8 79.81 40.13
    17 5 5 16 0.8 77.26 40.2
    18 5 5 17 0.8 74.36 40.31
    19 5 5 13 0.4 79.62 39.81
    20 5 5 13 0.6 81.79 39.82
    21 5 5 13 1.0 83.25 39.09
    22 5 5 13 1.2 81.58 38.11
    Notes:$ {X}_{1} $ is the length of the regenerated fiber; $ {X}_{2} $ is the content of fibers in the dispersing solution; $ {X}_{3} $ is the content of dispersant in the dispersing solution; $ {X}_{4} $ is the size of the filter mesh hole; $ {y}_{1} $ is the ratio of fiber orientation within ±10°; $ {y}_{2} $ is the grammage of the fiber felt
    下载: 导出CSV

    表  3  再生纤维毡质量主要影响工艺参数取值范围

    Table  3.   The value range of process parameters which mainly affect the quality of recycled fiber felt

    $ {X}_{1} $/mm $ {X}_{2} $/(g·L−1) $ {X}_{3} $/(g·L−1) $ {X}_{4} $/mm
    Value range 2~8 3~7 10~16 0.4~1.2
    Notes:$ {X}_{1} $ is the length of the regenerated fiber; $ {X}_{2} $ is the content of fibers in the dispersing solution; $ {X}_{3} $ is the content of dispersant in the dispersing solution; $ {X}_{4} $ is the size of the filter mesh hole.
    下载: 导出CSV

    表  4  取向工艺四因素三水平正交实验方案

    Table  4.   The orthogonal experiment scheme with four factors and three levels of orientation technology

    $ {X}_{1} $/mm $ {X}_{2} $/(g·L−1) $ {X}_{3} $/(g·L−1) $ {X}_{4} $/mm $ {Y}_{1} $ $ {Y}_{2} $
    1 2 5 13 0.8 11.722 29.155
    2 3 5 13 0.8 16.375 28.498
    3 4 5 13 0.8 13.101 23.052
    4 5 5 13 0.8 20.421 23.047
    5 6 5 13 0.8 12.500 26.281
    6 7 5 13 0.8 13.523 25.342
    7 8 5 13 0.8 12.195 26.802
    8 5 3 13 0.8 13.048 25.615
    9 5 4 13 0.8 12.115 25.641
    10 5 6 13 0.8 18.702 25.510
    11 5 7 13 0.8 12.449 26.157
    12 5 5 10 0.8 17.544 25.773
    13 5 5 11 0.8 11.737 29.700
    14 5 5 12 0.8 13.680 23.629
    15 5 5 14 0.8 12.191 28.329
    16 5 5 15 0.8 15.181 23.105
    17 5 5 16 0.8 12.585 26.738
    18 5 5 17 0.8 16.807 26.344
    19 5 5 13 0.4 12.167 25.714
    20 5 5 13 0.6 19.350 25.602
    21 5 5 13 1.0 12.165 28.612
    22 5 5 13 1.2 14.599 22.847
    Notes:$ {X}_{1} $ is the length of the regenerated fiber; $ {X}_{2} $ is the content of fibers in the dispersing solution; $ {X}_{3} $ is the content of dispersant in the dispersing solution; $ {X}_{4} $ is the size of the filter mesh hole; $ {Y}_{1} $ is the regression function related to orientation ratio of fiber orientation within ±10°; $ {Y}_{2} $ is the regression function related to grammage of the fiber felt.
    下载: 导出CSV

    表  5  取向度相关回归模型$ {Y}_{1} $方差分析

    Table  5.   Analysis of variance of the regression model $ {Y}_{1} $ related to the orientation

    Source Sum of Squares df Mean Square F-value p-value
    Model 172.09 14 12.29 957.31 < 0.0001
    $ {X}_{1} $ 102.43 1 102.43 7976.99 < 0.0001
    $ {X}_{2} $ 19.51 1 19.51 1519.59 < 0.0001
    $ {X}_{3} $ 2.96 1 2.96 230.20 < 0.0001
    $ {X}_{4} $ 0.4233 1 0.4233 32.97 < 0.0001
    $ {X}_{1}{X}_{2} $ 1.78 1 1.78 138.48 < 0.0001
    $ {X}_{1}{X}_{3} $ 2.19 1 2.19 170.72 < 0.0001
    $ {X}_{1}{X}_{4} $ 0.5562 1 0.5562 43.31 < 0.0001
    $ {X}_{2}{X}_{3} $ 0.2746 1 0.2746 21.38 0.0006
    $ {X}_{2}{X}_{4} $ 0.0015 1 0.0015 0.1155 0.7399
    $ {X}_{3}{X}_{4} $ 0.0072 1 0.0072 0.5611 0.4683
    $ {X}_1^2 $ 39.78 1 39.78 3098.24 < 0.0001
    $ {X}_{2}^2 $ 2.80 1 2.80 218.21 < 0.0001
    $ {X}_{3}^2 $ 1.01 1 1.01 78.41 < 0.0001
    $ {X}_{4}^2 $ 1.00 1 1.00 78.00 < 0.0001
    Residual 0.1541 12 0.0128
    Lack of Fit 0.1488 10 0.0149 5.61 0.1607
    Pure Error 0.0053 2 0.0027
    Cor Total 172.25 26
    R2 0.9991
    R2Adj 0.9981
    Notes:df is the degree of freedom; F is ratio between interclass variance and intraclass variance; p is used to evaluate the significance of the model and is related to F.
    下载: 导出CSV

    表  6  克重相关回归模型$ {Y}_{2} $方差分析

    Table  6.   Analysis of variance of the regression model $ {Y}_{2} $ related to the grammage

    Source Sum of Squares df Mean Square F-value p-value
    Model 119.37 14 8.53 1489.50 < 0.0001
    $ {X}_{1} $ 1.54 1 1.54 269.04 < 0.0001
    $ {X}_{2} $ 107.97 1 107.97 18861.72 < 0.0001
    $ {X}_{3} $ 5.14 1 5.14 898.25 < 0.0001
    $ {X}_{4} $ 2.58 1 2.58 450.13 < 0.0001
    $ {X}_{1}{X}_{2} $ 0.0123 1 0.0123 2.14 0.1688
    $ {X}_{1}{X}_{3} $ 0.0372 1 0.0372 6.49 0.0256
    $ {X}_{1}{X}_{4} $ 0.0750 1 0.0750 13.11 0.0035
    $ {X}_{2}{X}_{3} $ 0.1231 1 0.1231 21.50 0.0006
    $ {X}_{2}{X}_{4} $ 0.0229 1 0.0229 4.00 0.0687
    $ {X}_{3}{X}_{4} $ 0.0005 1 0.0005 0.0828 0.7784
    $ {X}_{1}^2 $ 0.0786 1 0.0786 13.73 0.0030
    $ {X}_{2} ^2$ 0.6247 1 0.6247 109.13 < 0.0001
    $ {X}_{3}^2 $ 0.5321 1 0.5321 92.95 < 0.0001
    $ {X}_{4}^2 $ 1.56 1 1.56 272.64 < 0.0001
    Residual 0.0687 12 0.0057
    Lack of Fit 0.0458 10 0.0046 0.3999 0.8684
    Pure Error 0.0229 2 0.0115
    Cor Total 119.44 26
    R2 0.9994
    $R_{{\rm{Adj}}}^2 $ 0.9988
    Notes:df is the degree of freedom; F is ratio between interclass variance and intraclass variance; p is used to evaluate the significance of the model and is related to F.
    下载: 导出CSV

    表  7  不同评估指标专家打分值

    Table  7.   Expert scores for different evaluation indicators

    Expert number Indicator 1
    (orientation)
    Indicator 2
    (grammage)
    1 5 4
    2 5 3
    3 4 4
    4 4 3
    5 5 4
    6 5 3
    7 5 3
    8 4 3
    9 5 4
    10 4 3
    下载: 导出CSV

    表  8  Pareto最优解集中次序前10的解

    Table  8.   The top 10 solutions in the Pareto solution set

    Ranking Process parameters Evaluation indicators $ {R}_{m} $
    Fiber
    Length/mm
    Fiber
    content/(g·L−1)
    Dispersant
    content/(g·L−1)
    Filter mesh
    hole size/mm
    Fiber orientation
    ratio within ±10°/%
    Grammage/
    (g·m−2)
    1 3 6.37 13.37 0.75 81.84 42.57 0.85192
    2 3 6.46 13.37 0.75 81.28 42.77 0.85157
    3 3 6.46 13.71 0.75 81.01 42.87 0.85115
    4 3 6.2 13.98 0.7 82.29 42.37 0.85072
    5 3 6.2 13.37 0.75 82.88 42.18 0.85002
    6 3 6.58 13.37 0.7 80.43 43.07 0.84926
    7 3 6.47 13.07 0.8 81.37 42.64 0.84921
    8 3 6.2 13.98 0.8 82.37 42.29 0.84906
    9 3 6.1 13.71 0.75 83.22 42.05 0.84880
    10 3 6.1 13.37 0.75 83.46 41.95 0.84747
    Notes:$ {R}_{m} $ is the proximity index of each non-dominated solution to the optimal level.
    下载: 导出CSV

    表  9  最优工艺参数实验验证结果

    Table  9.   Experimental verification results of optimal process parameters

    Predicted value Fiber felt #1 Fiber felt #2 Fiber felt #3 Experimental mean Average error /%
    Fiber orientation ratio within ±10° /% 81.84 82.01 80.52 80.71 81.08 0.94%
    Grammage /(g·m−2) 42.57 41.85 43.57 43.16 42.86 0.68%
    下载: 导出CSV
  • [1] 李美琪, 李晓飞, 王瑞涛, 等. 碳纤维增强聚合物基复合材料界面特性研究进展[J]. 材料导报, 2023, 37(20): 229-240.

    LI Meiqi, LI Xiaofei, WANG Ruitao, et al. Research progress on the interface properties of carbon fiber reinforced polymer matrix composites[J]. Materials Review, 37(20): 229-240(in Chinese).
    [2] LIU L, JIA C, HE J, et al. Interfacial characterization, control and modification of carbon fiber reinforced polymer composites[J]. Composites Science and Technology, 2015, 121: 56-72. doi: 10.1016/j.compscitech.2015.08.002
    [3] 张登科, 王光辉, 方登科, 等. 碳纤维增强树脂基复合材料的应用研究进展[J]. 化工新型材料, 2022, 50(01): 1-5.

    ZHANG Dengke, WANG Guanghui, FANG Dengke, et al. Progress in application and research of carbon fiber reinforced resin matrix composites[J]. New Chemical Materials, 2021, 50(1): 1-5(in Chinese).
    [4] WERKEN N V D, TEKINALP H, KHANBOLOUKI P, et al. Additively manufactured carbon fiber-reinforced composites: State of the art and perspective[J]. Additive Manufacturing, 2020, 31: 100962. doi: 10.1016/j.addma.2019.100962
    [5] MISHNAEVSKY L, BRANNER K, PETERSEN H N, et al. Materials for Wind Turbine Blades: An Overview[J]. Materials, 2017, 10(11): 1285. doi: 10.3390/ma10111285
    [6] 胡侨乐, 端玉芳, 刘志, 等. 碳纤维增强聚合物基复合材料回收再利用现状[J]. 复合材料学报, 2022, 39(1): 64-76.

    HU Qiaole, DUAN Yufang, LIU Zhi, et al. Current status of carbon fiber reinforced polymer composites recycling and re-manufacturing[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 64-76(in Chinese).
    [7] 张亚东. 碳纤维复合材料的回收与再利用技术研究[J]. 广东化工, 2022, 49(10): 26-7+52. doi: 10.3969/j.issn.1007-1865.2022.10.009

    ZHANG Yadong. Study on recycling and reuse technology of carbon fiber reinforced plastic[J]. Guangdong Chemical, 2022, 49(10): 26-7+52(in Chinese). doi: 10.3969/j.issn.1007-1865.2022.10.009
    [8] KIM K-W, LEE H-M, AN J-H, et al. Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method[J]. Journal of Environmental Management, 2017, 203(P3): 872-9.
    [9] 邓建英. 微波热解碳纤维/环氧树脂复合材料回收碳纤维的研究 [D]; 昆明理工大学, 2020.

    DENG Jianying. Study on microwave pyrolysis of carbon fiber/epoxy composites to recover carbon fibers[D]. Kunming: Kunming University of Science and Technology, 2019(in Chinese).
    [10] JIANG J, DENG G, CHEN X, et al. On the successful chemical recycling of carbon fiber/epoxy resin composites under the mild condition[J]. Composites Science and Technology, 2017, 151: 243-251. doi: 10.1016/j.compscitech.2017.08.007
    [11] LIU T, ZHANG M, GUO X, et al. Mild chemical recycling of aerospace fiber/epoxy composite wastes and utilization of the decomposed resin[J]. Polymer Degradation and Stability, 2017, 139: 20-27. doi: 10.1016/j.polymdegradstab.2017.03.017
    [12] CHENG H, HUANG H, ZHANG J, et al. Degradation of carbon fiber-reinforced polymer using supercritical fluids[J]. Fibers and Polymers, 2017, 18(4): 795-805. doi: 10.1007/s12221-017-1151-4
    [13] WANG B, MA S, YAN S, et al. Readily recyclable carbon fiber reinforced composites based on degradable thermosets: a review[J]. Green Chemistry, 2019.
    [14] 上纬新材料科技股份有限公司. 上纬荣获「JEC WORLD 2023 运动休闲领域创新奖」[EB/OL]; (2023-3-3)[2023-10-12]. http://www.swancor.com.cn/news_detail.aspx?id=247.

    Swancor Advanced Materials Co. , Ltd. Swancor won the "JEC WORLD 2023 Sports and Leisure Innovation Award" [EB/OL]; (2023-3-3)[2023-10-12]. http://www.swancor.com.cn/news_detail.aspx?id=247(in Chinese).
    [15] YAMAGUCHI A, HASHIMOTO T, KAKICHI Y, et al. Recyclable carbon fiber-reinforced plastics (CFRP) containing degradable acetal linkages: Synthesis, properties, and chemical recycling[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2015, 53(8): 1052-1059. doi: 10.1002/pola.27575
    [16] YANG P, ZHOU Q, LI X-Y, et al. Chemical recycling of fiber-reinforced epoxy resin using a polyethylene glycol/NaOH system[J]. Journal of Reinforced Plastics and Composites, 2014, 33(22): 2106-2114. doi: 10.1177/0731684414555745
    [17] TUAN L, CHENG H, LIWEI W, et al. Eugenol-Derived Biobased Epoxy: Shape Memory, Repairing, and Recyclability[J]. Macromolecules, 2017, 50(21): 8588-8597. doi: 10.1021/acs.macromol.7b01889
    [18] TAKAHASHI A, OHISHI T, GOSEKI R, et al. Degradable epoxy resins prepared from diepoxide monomer with dynamic covalent disulfide linkage[J]. Polymer, 2016, 82: 319-326. doi: 10.1016/j.polymer.2015.11.057
    [19] VYAKARNAM M N, DRZAL L T. Composite material of aligned discontinuous fibers, US6025285(A) [P/OL].https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMzA5MDESDVVTMTk5NzA4MjYyMTUaCDQycTRremdh.
    [20] MIRONOV V S, PARK M. Electroflocking technique in the fabrication and performance enhancement of fiber-reinforced polymer composites[J]. Composites Science and Technology, 2000, 60(6): 927-933. doi: 10.1016/S0266-3538(99)00142-6
    [21] TIMBRELL V. Alignment of carbon and other man&hyphen;made fibers by magnetic fields[J]. Journal of Applied Physics, 1972, 43(11): 4839-4840. doi: 10.1063/1.1661036
    [22] 杨爱玉. 短纤维复合材料中的纤维取向控制[J]. 固体火箭技术, 1991, (2): 103-110.

    YANG Aiyu. Fiber orientation control in short fiber composites[J]. JOURNAL OF SOLID ROCKET TECHNOLOGY, 1991, (2): 103-110(in Chinese).
    [23] BAGG G, EVANS M, PRYDE A J C. The glycerine process for the alignment of fibres and whiskers[J]. Composites, 1969, 1(2): 97-100. doi: 10.1016/0010-4361(69)90007-X
    [24] YU H, LONGANA M L, JALALVAND M, et al. Pseudo-ductility in intermingled carbon/glass hybrid composites with highly aligned discontinuous fibres[J]. Composites, Part A. Applied science and manufacturing, 2015, 73A: 35-44.
    [25] 冯茜, 李擎, 全威, 等. 多目标粒子群优化算法研究综述[J]. 工程科学学报, 2021, 43(6): 745-753.

    Feng Qian, Li Qing, Quan Wei, et al. Overview of Multiobjective Particle Swarm Optimization Algorithm[J]. Chinese Journal of Engineering, 2021, 43(6): 745-753(in Chinese).
    [26] 王浩杰, 王晓强, 朱其萍, 等. 基于粒子群算法的超声滚挤压工艺参数多目标优化[J]. 塑性工程学报, 2022, 29(12): 47-55.

    WANG Haojie, WANG Xiaoqiang, ZHU Qiping, et al. Multi-objective Optimization of Ultrasonic Rolling Extrusion Process Parameters Based on Particle Swarm Optimization[J]. Journal of Plastic Engineering, 2022, 29(12): 47-55(in Chinese).
    [27] 王秋莲, 魏鹏, 段星皓. 基于响应面法和人工蜂群算法的数控车削工艺参数多目标优化[J]. 工业工程与管理, 2022, 27(3): 117-126.

    WANG Qiulian, WEI Peng, DUAN Xinghao. Multi-Objective Optimization of Computer Numerical Control Turning Process Parameters Based on Response Surface Method and Artificial Bee Colony Algorithm[J]. Industrial Engineering and Management, 2022, 27(3): 117-126(in Chinese).
    [28] 张鑫何, 白海清, 杨思瑞, 等. 基于遗传算法的钛合金SLM多目标优化[J]. 应用激光, 2023, 43(9): 23-31.

    ZHANG Xinhe, BAI Haiqing, YANG Sirui, et al. Multi-objective optimization of titanium alloy SLM based on Genetic Algorithm[J]. APPLIED LASER, 2023, 43(9): 23-31(in Chinese).
    [29] 邓明, 曹子荷, 王静南, 等. 缠绕张力对干法缠绕复合材料结构残余应力及回弹变形的影响[J]. 复合材料学报, 2023, 40(12): 6884-6896.

    DENG Ming, CAO Zihe, WANG Jingnan, et al. Investigation on the influence of winding tension on residual stress and spring-in deformation of dry wound composite structure[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6884-6896(in Chinese).
    [30] E M E, N T A, J S C, et al. A validated software application to measure fiber organization in soft tissue[J]. Biomechanics and modeling in mechanobiology, 2016, 15(6): 1467-1478. doi: 10.1007/s10237-016-0776-3
    [31] ZSUZSANNA P, MARTIN S, DANIEL S, et al. Transforms and Operators for Directional Bioimage Analysis: A Survey[J]. Advances in anatomy, embryology, and cell biology, 2016, 219: 69-93.
    [32] 肖荣鸽, 庞琳楠, 刘亚龙. 天然气液化与BOG提氦联产工艺的设计与优化[J]. 油气储运, 2023, 42(12): 1352-1361.

    XIAO Rongge, PANG Linnan, LIU Yalong. Design and optimization of co-production process of natural gas liquefaction and BOG helium extraction[J]. Oil & Gas Storage and Transportation, 2023, 42(12): 1352-1361(in Chinese).
    [33] 邓聪颖, 游倩, 赵洋, 等. 多因素影响下基于Bagging-NSGAⅡ的数控铣削稳定性预测与优化研究[J/OL]. 工程科学与技术. https://link.cnki.net/urlid/51.1773.TB.20231204.1340.004.

    DENG Congying, YOU Qian, ZHAO Yang, et al. Research on the Stability Prediction and Optimization of CNC Milling based on Bagging-NSGAⅡ under the Influence of Multiple Factors[J/OL]. Advanced Engineering Sciences. https://link.cnki.net/urlid/51.1773.TB.20231204.1340.004 (in Chinese).
    [34] 田应权, 尹瑞雪, 易望远, 等. 面向表面质量的镍基高温合金铣削参数多目标优化研究[J/OL]. 重庆理工大学学报(自然科学), https://link.cnki.net/urlid/50.1205.T.20231027.1532.002.

    TIAN Yingquan, YIN Ruixue, YI Wangyuan, et al. Research on multi-objective optimization of milling parameters for nickel based high-temperature alloys facing surface quality[J/OL]. Journal of Chongqing University of Technology (Natural Science), https://link.cnki.net/urlid/50.1205.T.20231027.1532.002 (in Chinese).
    [35] 闫倩, 郝春沣, 潘世兵, 等. 基于NSGA-Ⅱ算法的污水处理厂多目标优化模型研究[J]. 地理与地理信息科学, 2023, 39(6): 18-22.

    YAN Qian, HAO Chunfeng, PAN Shibing, et al. Research on multi-objective optimization model of wastewater treatment plant based on NSGA-Ⅱ algorithm[J]. Geography and Geo-Information Science, 2023, 39(6): 18-22(in Chinese).
    [36] 卜康正, 赵勇, 郑先昌. 基于NSGA2遗传算法的地铁隧道上方基坑工程优化设计[J]. 道科学与工程学报, 2021, 18(2): 459-467.

    BU Kangzheng, ZHAO Yong, ZHENG Xianchang. Optimization design for foundation pit above metro tunnel based on NSGA2 genetic algorithm[J]. Journal of Railway Science and Engineering, 2021, 18(2): 459-467(in Chinese).
    [37] 吴平川, 杨壮, 齐虎, 等. 基于组合赋权法与TOPSIS法的砌体结构加固方案优选[J]. 地震研究, 2024, 47(1): 146-155.

    WU Pingchuan, YANG Zhuang, QI Hu, et al. Optimization of masonry structure reinforcement scheme based on the combination weighting and TOPSIS methods[J]. Journal of Seismological Research, 2024, 47(1): 146-155(in Chinese).
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-19
  • 修回日期:  2024-02-15
  • 录用日期:  2024-02-22
  • 网络出版日期:  2024-04-09

目录

    /

    返回文章
    返回