微波加热诱导硅酸钙合成过程中固碳的实验研究

付瑞杰, 关莉, 杨守磊, 张新月, 董宾宾, 赵彪, 范冰冰, 闵志宇, 张锐

付瑞杰, 关莉, 杨守磊, 等. 微波加热诱导硅酸钙合成过程中固碳的实验研究[J]. 复合材料学报, 2025, 44(0): 1-10.
引用本文: 付瑞杰, 关莉, 杨守磊, 等. 微波加热诱导硅酸钙合成过程中固碳的实验研究[J]. 复合材料学报, 2025, 44(0): 1-10.
FU Ruijie, GUAN Li, YANG Shoulei, et al. Experimental study on carbon sequestration during the synthesis of calcium silicate induced by microwave heating[J]. Acta Materiae Compositae Sinica.
Citation: FU Ruijie, GUAN Li, YANG Shoulei, et al. Experimental study on carbon sequestration during the synthesis of calcium silicate induced by microwave heating[J]. Acta Materiae Compositae Sinica.

微波加热诱导硅酸钙合成过程中固碳的实验研究

基金项目: 国家自然科学基金(U21 A2064, 52202064); 河南省国际科技合作项目(241111520800); 河南省留学人员科研择优资助项目(38); 河南省研究生教育改革质量提升工程项目(YJS2023 JD56); 河南省航空材料与应用技术重点实验室开放基金(ZHKF-230110, ZHKF-230101, ZHKF-240103); 河南省重点研发专项(241111231600); 河南省科技攻关项目(232102230158); 郑州航空工业管理学院科研团队计划(23 ZHTD01002); 郑州航院研究生质量提升工程——优质课程项目-材料分析方法与原理(2024 YJSKC01)
详细信息
    通讯作者:

    关莉, 博士, 副教授, 硕士生导师, 研究方向为先进陶瓷微波制备与电磁性能研究 E-mail: guan_de@zua.edu.cn

  • 中图分类号: TQ172;TB332

Experimental study on carbon sequestration during the synthesis of calcium silicate induced by microwave heating

Funds: National Natural Science Foundation of China(U21 A2064, 52202064); International Science and Technology Cooperation Project of Henan Province (241111520800); Henan Province Scholarship Program for Excellence Research of Overseas Chinese (38); the Postgraduate Education Reform Quality and Improvement Project of Henan Province (YJS2023 JD56); the Henan Key Laboratory of Aeronautical Material and Technology Open Foundation (ZHKF-230110, ZHKF-230101, ZHKF-240103); the Key Research and Development Program of Henan Province (241111231600); the Henan Science and Technology Research Project (232102230158); Scientific Research Team Plan of Zhengzhou University of Aeronautics (23 ZHTD01002); Postgraduate Education Reform and Quality Improvement Project of ZUA (2024 YJSKC01)
  • 摘要:

    硅酸盐水泥熟料制备过程中CaCO3分解会产生大量CO2,显著加剧温室效应。降低CO2排放已成为“双碳”目标背景下水泥工业发展亟待解决的关键技术难题。本文以CaCO3、石英砂为原料,α-SiC和Si作为诱导介质,采用微波加热诱导技术固化CO2,制备原位β-SiC-石墨碳/硅酸钙复合粉。结果表明:当微波合成温度由1150℃增加至1250℃时,合成产物中SiO2、CaO含量逐渐降低,硅酸二钙(Ca2SiO4,C2S)及硅酸三钙(Ca3SiO5,C3S)含量增加。进一步增加合成温度至1350℃,产物中硅酸二钙(C2S)及硅酸三钙(C3S)组成无显著变化。此外,微波合成温度为1250℃时,产物中硅(Si)的残余量最低,且含有β-SiC及石墨化碳。调控微波加热过程中温(650~750℃)温度及保温时间可以控制反应过中的CO2固化效果。当中温温度从650℃上升至750℃,保温时间从10 min延长至30 min时,微波加热过程中CO2固化效果呈现先增高后降低的趋势。当微波加热中温温度为700℃,保温时间为20 min,CO2固化效果最好,固碳量达到理论CO2排放量的39.79%。微波原位合成β-SiC-石墨碳/硅酸钙能有效减少水泥熟料生产过程中CO2的排放。

     

    Abstract:

    During the preparation of Portland cement clinker, the decomposition of calcium carbonate(CaCO₃) releases a significant amount of CO₂, substantially exacerbating the greenhouse effect. Reducing CO₂ emissions has become a critical technological challenge that urgently needs to be addressed by the cement industry in the context of achieving the "dual carbon" goals. This study employs calcium carbonate(CaCO₃) and quartz sand as raw materials, with α-SiC and silicon(Si) serving as induction media. Utilizing microwave heating-induced technology, CO₂ is fixed to prepare in-situ β-SiC-graphitic carbon/calcium silicate composite powders. The results indicate that as the microwave synthesis temperature increases from 1150℃ to 1250℃, the concentrations of SiO₂ and CaO in the synthesized products gradually decrease, while the contents of dicalcium silicate(Ca2SiO4, C₂S) and tricalcium silicate(Ca3SiO5, C₃S) increase. Further increasing the synthesis temperature to 1350℃ results in no significant changes in the composition of dicalcium silicate(C₂S) and tricalcium silicate(C₃S) in the products. Additionally, at a microwave synthesis temperature of 1250℃, the residual amount of silicon(Si) in the product is minimized, and the product contains β-SiC along with graphitic carbon. During the microwave heating process, the solidification effect of carbon in the CO2 produced during the reaction can be controlled by adjusting the temperature and holding time in the medium temperature stage(650-750℃). It was found that when the medium holding temperature increases from 650℃ to 750℃ and the holding time extends from 10 to 30 minutes, the amount of carbon sequestration first increases and then decreases. When the holding temperature is controlled at 700℃ and the holding time is 20 minutes, the carbon fixation reaches maximum theoretical value, which is 39.79%. Microwave-assisted in-situ synthesis of β-SiC-graphitic carbon/calcium silicate can effectively reduce CO₂ emissions during the production of cement clinker.

     

  • 聚对苯二甲酸乙二醇酯(PET)是全球用量最大的高分子材料之一,其纤维制品俗称涤纶,是全球第一大化纤品种[1]。但PET属于易燃材料,且其燃烧时还伴有严重的熔滴现象,极易导致火灾蔓延和二次伤害,这为PET的应用带来了极大的安全隐患,也使其在军事、工业等诸多领域的应用受到限制[2]。目前PET阻燃改性的主流方法是引入含磷阻燃剂,但含磷聚酯的阻燃性主要是通过熔体滴落带走燃烧区域的热量和火焰来实现的[3-4],未能解决PET的熔滴问题。因此,同时赋予PET阻燃和抗熔滴特性是目前PET阻燃改性面临的一大难点。

    相关研究表明,提高聚合物高温下的熔体黏度和炭化能力是实现阻燃和抗滴落的关键[5-6]。但由于PET分子链的线性结构,其在高温下具有较低的熔融黏度,这一特性在赋予其可纺性的同时,也导致其在燃烧过程中表现出严重的熔滴行为,并难以形成连续的炭层[7]。在PET中引入可交联结构单元是提高熔体黏度的一个有效途径[6, 8]。例如,Wu等[9]合成了一种芳香族席夫碱5-(亚苄基-氨基)-间苯二甲酸二甲酯,并将其用作PET的共聚单体;研究结果显示,芳族席夫碱可以在PET的熔融温度和分解温度之间形成稳定的交联网络,并在燃烧中进一步转变为致密的炭层,因而使得PET共聚酯显示出优异的自熄和抗滴落行为。但尽管上述共聚酯表现出较为理想的阻燃性和抗滴落性能,问题仍然存在。除了工艺复杂、成本高、工业化困难之外,共聚法往往会破坏分子链的规整性,从而损害PET的力学性能和可纺性。

    近年来,碳基阻燃剂作为一种新型阻燃剂表现出巨大的发展潜力。研究表明,碳纳米管[10]、富勒烯[11]、纳米炭黑[12]、石墨烯[13]、碳微球[14]等碳基阻燃剂在改善聚合物的成炭质量、降低热释放速率、提高热稳定性等方面表现突出。与传统阻燃剂相比,往往少量碳基阻燃剂的引入即可显著提高聚合物的阻燃性,除此之外,引入碳基阻燃剂还能不同程度地改善聚合物的力学、热学以及电学等性能[15]。其中,碳纳米球(Carbon nanospheres,CNSs)具有无卤环保、粒径小、热稳定性高等优势,能满足PET高温加工和熔融纺丝的理论要求,但迄今为止,将碳基阻燃剂应用于PET的研究较少。

    基于此,本文以CNSs为基体,在其表面接枝芳香席夫碱4-苯亚甲基氨基苯酚(4-phenyl-methyleneamino-phenol,BA)制备了一种新型碳纳米球基复合阻燃剂(CNSs-BA),旨在将CNSs和BA的优势有机结合,使阻燃剂同时具备“智能自交联”特性,从而在燃烧时在PET基体中形成三维交联网络,进而改善熔滴。重点研究了CNSs-BA/PET复合材料的阻燃性及其阻燃机制。

    蒸馏水,使用XY-ZL-20型蒸馏水器自制。碳纳米球(CNSs),纯度99.99%,宁波金雷纳米材料科技有限公司;30%过氧化氢,优级纯,上海沃凯生物技术有限公司;硫酸,分析纯,华东医药股份有限公司;二氯甲烷(DCM),分析纯,华东医药股份有限公司;4-苯亚甲基氨基苯酚(BA),纯度98%,东京化成工业株式会社;4-二甲氨基吡啶(DMAP),纯度99%,阿拉丁试剂(上海)有限公司;无水乙醇,分析纯,嘉兴市甬宏化工有限公司;PET切片,半消光型SD500,中国石化仪征化纤股份有限公司。

    首先采用酸化法[16]制备羧基化碳纳米球(CNSs-COOH);在DCM中加入适量氯化钙,常温振荡12 h以去除其中的水分,使用时用吸管吸取上层液体用。在三口烧瓶中加入一定量的无水DCM (50~100 mL)作为反应溶剂。搅拌状态下加入3 g CNSs-COOH,再加入1 g BA和DMAP (作为碱性催化剂,DMAP的用量为BA用量的1/10),升温至30℃,之后在搅拌状态下反应2 h,反应完成后抽滤除去液体。将反应所得固体依次用乙醇和蒸馏水洗涤,100℃下干燥6 h后研磨均匀,即得CNSs-BA阻燃剂,CNSs-BA的制备示意图见图1

    图  1  碳纳米球(CNSs)-芳香席夫碱4-苯亚甲基氨基苯酚(BA)制备示意图
    Figure  1.  Schematic diagram of the preparation of carbon nanospheres (CNSs)-Schiff bases 4-phenyl-methyleneamino-phenol (BA)

    首先将纯PET切片和制备的CNSs-BA阻燃剂分别在120℃下真空干燥12 h后冷却至室温备用,然后分别按CNSs-BA占PET的质量分数为0.5wt%、1.0wt%、2.0wt%、3.0wt% 的比例将CNSs-BA与PET切片混合均匀后喂入BP-8188型转矩流变仪(东莞市宝品精密仪器有限公司)中,转矩流变仪各区的温度依次为150、255、273、275℃,转速为35~60 r/min,熔体依次经过熔融共混、挤出、切粒工序得到CNSs-BA/PET复合材料。

    CNSs-BA阻燃剂的测试与表征:用JSM-6510LA型场发射扫描电镜(SEM,日本电子株式会社)和EM420型透射电子显微镜(赛默飞世尔科技)观察阻燃剂的微观形貌,加速电压3 kV 和20 kV。用Perkin Elmer Frontier型傅里叶变换红外光谱仪(FTIR),溴化钾压片法分析测定阻燃剂表面性质和化学结构,光谱记录范围4000~400 cm−1。用Perkin Elmer TG4000型热重分析仪(TG),在N2气氛下测试阻燃剂的热稳定性,气体流速20 mL/min,程序设定为:30℃恒温1 min后以20℃/min的升温速率升温至800℃。

    CNSs-BA/PET复合材料的测试与表征:用TM606 数显氧指数测试仪(青岛睿新杰仪器有限公司),按照GB/T 2406.2—2009[17]测试PET及其阻燃复合材料的极限氧指数(LOI),样条尺寸为120 mm×6.5 mm×3 mm。用CZF-5水平垂直燃烧仪(沧州冀路试验仪器有限公司),按照 GB/T 2408—2008[18]判定PET及其阻燃复合材料的UL-94垂直燃烧等级,样品尺寸为130 mm×13 mm×3 mm。用C-1087型锥形量热仪(英国FTT),按照ISO 5660-1: 2015[19]测试PET及其阻燃复合材料的燃烧热释放(HRR)等参数,样品尺寸:100 mm×100 mm×3 mm,辐射照度50 kW/m2。用Perkin Elmer TG4000型热重分析仪(TG),在N2气氛下测试PET及其阻燃复合材料(阻燃剂含量2wt%)的热稳定性,气体流速20 mL/min,程序设定为:30℃恒温1 min后以20℃/min的升温速率升温至800℃。用Netzsch STA449F5型同步热分析仪(TG-DSC)研究PET及其阻燃复合材料(阻燃剂含量2.0wt%)的交联行为,氩气做保护气,空气气氛,气体流速20 mL/min,升温速率为10℃/min,测试温度范围为30~800℃。用气相Agilent 6980N色谱仪,Agilent 5975质谱仪,采用HP-5MS色谱柱对PET及其阻燃复合材料(阻燃剂含量2.0wt%)进行裂解-气相色谱-质谱联用(Py-GC-MS)测试。裂解条件:裂解温度750℃,时间20 s,升温速率200℃/s。色谱条件:柱温在50℃保持5 min,然后以10℃/min升温至260℃,在260℃保持10 min;进样温度220℃,传输温度280℃,He做载气,流量1.0 mL/min;裂解产物经色谱柱分离后进入质谱仪,电子能量为70 eV。

    残炭的测试与表征:采用SEM观察PET及其阻燃复合材料(阻燃剂含量2.0wt%)燃烧后残炭的形貌,并用其配套的EDS能谱设备对残炭进行元素分析。采用TG在N2气氛下测试残炭的热稳定性,气体流速20 mL/min,程序设定为:30℃恒温1 min后以20℃/min的升温速率升温至800℃。

    图2为原CNSs (图2(a))和CNSs-BA (图2(b))的SEM、TEM和EDS能谱图。可知:CNSs和CNSs-BA二者均呈规则的球形颗粒状。不同的是,原始CNSs表面光滑,平均粒径约45 nm。而经BA接枝后,CNSs-BA的表面变得粗糙,平均粒径增大到50 nm左右,由EDS谱图可知:纯CNSs中的主要成分为C元素,与CNSs相比,CNSs-BA的表面增加了N元素,源自其表面接枝的BA中的氨基。

    图  2  CNSs (a)和CNSs-BA (b)的SEM图像和EDS能谱图
    Figure  2.  SEM and EDS images of CNSs (a) and CNSs-BA (b)

    图3是CNSs和CNSs-BA的红外图谱。对比CNSs和CNSs-BA的FTIR曲线可知,在CNSs-BA的红外曲线中,3330 cm−13380 cm−1处对应N—H的伸缩振动峰,2925 cm−12850 cm−1处为亚甲基的伸缩振动峰,1450 cm−1处的特征峰是芳环骨架的伸缩振动峰,1269 cm−1处的特征峰是酯基C(O)—O的伸缩振动峰,1045 cm−1处的特征峰是芳环上1, 4位取代的振动峰,以上特征峰源自CMSs表面接枝的BA。

    图  3  CNSs和CNSs-BA的红外图谱
    Figure  3.  Infrared spectra of CNSs和CNSs-BA

    图4为CNSs和CNSs-BA的TG曲线。可知:纯CNSs的初始分解温度(Tonset,定义为热失重5wt%时的温度)大于800℃,经BA接枝后Tonset降低到483.1℃,该温度远高于PET的加工温度和热分解温度。纯CNSs和CNSs-BA的最高热分解速率的温度(Tmax)分别为158.4℃和177.4℃,说明CNSs经BA接枝后热分解速率减慢。CNSs在30~800℃之间表现出3个较为明显的失重阶段,338.7℃之前对应CNSs中的少量结晶水和无定形碳的分解,338.7~544.1℃之间对应CNSs主体的热分解,544.1℃之后对应热分解产物的再分解。而CNSs-BA可划分为4个失重阶段:前两个阶段分别对应结晶水、无定形碳、小分子产物的分解以及CNSs-BA主体的分解,值得注意的是,544.1℃之后,CNSs-BA出现一个较为明显的失重峰,而CNSs的DTG曲线上并无该峰,该失重峰的出现证明CNSs表面接枝的BA在第二阶段(PET的熔融温度和分解温度之间)形成了一个较为稳定的交联网络结构,这将十分有助于燃烧时保护炭层的形成。

    图  4  CNSs和CNSs-BA的TG (a)和DTG (b)曲线
    Figure  4.  TG (a) and DTG (b) curves of CNSs and CNSs-BA
    Tonset—Initial weightlessness temperature; Tmax—Maximum weightlessness temperature

    表1是CNSs-BA/PET复合材料的LOI和UL-94垂直燃烧测试结果。可知,与CNSs/PET相比,CNSs-BA/PET复合材料的LOI进一步提高,二者LOI规律变化一致,即随着阻燃剂含量的增大,LOI先提高后降低,当CNSs-BA含量为2.0wt%时,CNSs-BA/PET的LOI指数达到最大值28.1%,此时与纯PET相比,CNSs-BA/PET的LOI提高了33.8%。UL-94垂直燃烧测试结果表明,CNSs-BA/PET复合材料的抗熔滴性能较CNSs/PET也有明显提高,两次施加火焰后的余焰时间明显缩短,当CNSs-BA的添加量超过2.0wt%时,CNSs-BA/PET复合材料的阻燃等级可达到V-0级。

    表  1  复合材料的极限氧指数(LOI)和UL-94垂直燃烧测试结果
    Table  1.  Limiting oxygen index (LOI) and UL-94 vertical burning test results of composites
    Sample Flame retardant content/wt% LOI/% UL-94 vertical combustion test results
    t1/s t2/s t3/s Ignite cotton? Rate
    PET 21.0 Burn out Yes NR
    CNSs/PET 0.5 23.2 2.6 2.5 0 Yes V-2
    1.0 25.0 2.4 2.4 0 Yes V-2
    2.0 26.2 2.4 2.8 0 Yes V-2
    3.0 24.6 3.1 2.2 0 Yes V-2
    CNSs-BA/PET 0.5 24.0 1.5 2.3 0 Yes V-2
    1.0 26.9 1.2 2.1 0 Yes V-2
    2.0 28.1 0.5 2.2 0 No V-0
    3.0 27.5 0.6 1.9 0 No V-0
    Notes: PET—Polyethylene terephthalate; t1—Afterglow time after the first application of flame; t2—Afterglow time after the second application of flame; t2—Afterglow time; NR—No rate.
    下载: 导出CSV 
    | 显示表格

    锥形量热仪测试结果见图5表2。热释放速率(HRR)是表征材料火灾危险性的主要依据。结合图5表2可知,纯PET被点燃后热释放速率急剧增大,其峰值热释放速率(pk-HRR)为810.45 kW/m2,总热释放(THR)为150.27 MJ/m2。与之相比,CNSs-BA/PET的THR与之接近,但HRR曲线却明显变平缓。值得注意的是,CNSs-BA/PET的HRR曲线表现出两个明显的热释放阶段,即在热释放速率达到峰值之后又出现了一个较为平缓的放热平台(当CNSs-BA含量为0.5wt%时表现为放热峰),这意味着CNSs-BA/PET在燃烧过程中的热释放受到抑制,这是由燃烧时炭层的形成或可燃气体减少导致的[20]。此外,表2表明,与CNSs/PET相比,CNSs-BA/PET复合材料的pk-HRR进一步降低。当CNSs-BA 含量为2.0wt%时,CNSs-BA/PET的pk-HRR最小,为435 kW/m2,该值与相同阻燃剂含量的CNSs/PET相比降低了7.6%,较纯PET降低了46.3%,说明CNSs经BA接枝后对PET的燃烧抑制作用进一步增强,阻燃效果进一步提高。

    图  5  CNSs-BA/PET的热释放速率(HRR) (a)和总热释放(THR) (b)曲线
    Figure  5.  Curves of heat release rate (HRR) (a) and total heat release (THR) (b) of CNSs-BA/PET
    表  2  复合材料的锥形量热仪测试数据
    Table  2.  Data of cone calorimeter test of composites
    Sample FR content/wt% TTI/s Time to pk-HRR/s pk-HRR/(kW·m−2) THR/(MJ·m−2)
    PET 0 47 104 810.45 150.27
    CNSs/PET 0.5 44 34 528.96 151.64
    1 34 34 503.44 148.03
    2 40 41 470.72 146.06
    3 30 29 501.49 143.19
    CNSs-BA/PET 0.5 35 39 485.54 146.54
    1 31 55 469.98 156.04
    2 34 39 435.00 146.54
    3 30 39 466.05 156.69
    Notes: TTI—Time to ignition; pk-HRR—Peak heat release rate; FR—Flame retardant.
    下载: 导出CSV 
    | 显示表格

    为了研究阻燃剂的引入对PET的热降解行为的影响,对PET、CNSs/PET和CNSs-BA/PET在氮气气氛下的TG-DTG曲线作了对比分析,并计算了CNSs/PET和CNSs-BA/PET在500℃时残炭量的理论值,如图6表3所示。由图6可知:在氮气气氛下,PET、CNSs/PET和CNSs-BA/PET三者的TG曲线和DTG曲线基本重合,说明加入少量(2.0wt%)的CNSs和CNSs-BA均不会对PET的无氧降解行为造成明显影响。由表4可知,PET、CNSs/PET和CNSs-BA/PET三者的TonsetTmax均较为接近,但三者在高温(500℃)下的残余质量有所不同。经计算发现CNSs/PET和CNSs-BA/PET二者在高温下残炭量的实际值(CR500℃,exp)均大于理论值(CR500℃,cal),这说明阻燃剂CNSs和CNSs-BA对PET均有促进成炭作用。其中,CNSs-BA/PET在500℃下残炭量的实际值与理论值的差值(∆CR500℃)大于CNSs/PET,这说明CNSs经BA接枝后对PET的促进成炭作用加强。聚合物在高温下形成的残炭越多,燃烧时发生热分解的部分就越少[21],这便是阻燃复合材料热释放速率降低的主要原因之一。

    图  6  CNSs、CNSs-BA以及PET、CNSs/PET、CNSs-BA/PET的TG (a)和DTG (b)曲线
    Figure  6.  TG (a) and DTG (b) curves of CNSs, CNSs-BA, PET, CNSs/PET and CNSs-BA/PET
    表  3  CNSs、CNSs-BA以及PET、CNSs/PET、CNSs-BA/PET在氮气气氛下的TG-DTG数据
    Table  3.  TG-DTG data of CNSs, CNSs-BA, PET, CNSs/PET and CNSs-BA/PET under nitrogen atmosphere
    Sample Tonset/℃ Tmax/℃ CR500℃/% CR500℃/%c
    exp.a/cal.b
    CNSs >800 96.88/—
    CNSs-BA 476.4 94.92/—
    PET 379.1 419.1 10.09/—
    CNSs/PET 380.1 421.4 13.97/11.52 2.45
    CNSs-BA/PET 382.0 420.1 15.68/11.79 3.89
    Notes: a CR500℃,exp. is the experimental value of char residue; b CR500℃,cal. is the calculated value of char residue; cCR500℃=CR500℃,exp.CR500℃,cal..
    下载: 导出CSV 
    | 显示表格
    表  4  PET、CNSs/PET和CNSs-BA/PET在空气气氛下的TG-DTG数据
    Table  4.  TG-DTG data of PET, CNSs/PET and CNSs-BA/PET under air atmosphere
    Sample Tonset/℃ Tmax-1/℃ Tmax-2/℃
    PET 397.3 433.4 585.1
    CNSs/PET 359.1 438.4 567.5
    CNSs-BA/PET 391.0 439.7 563.3
    Notes: Tmax-1—Maximum weightlessness temperature in the first stage; Tmax-2—Maximum weightlessness temperature of the second stage.
    下载: 导出CSV 
    | 显示表格

    对纯PET、CNSs/PET和CNSs-BA/PET锥形量热仪测试后的残炭做了SEM和TG分析以进一步研究阻燃机制。

    炭层的形貌结构和稳定性对于提高聚合物的阻燃性能至关重要,有效的炭层可通过阻止聚合物内部与可燃气体、氧气的接触来实现阻燃目的。图7为纯PET、CNSs/PET和CNSs-BA/PET炭层的SEM图像。可见,纯PET燃烧生成的炭层稀薄空且松散,表面存在大量气体逸出形成的气孔,显然这种形貌的炭层无法形成有效的屏障作用。与纯PET相比,CNSs/PET的炭层的致密性明显提高,气孔明显变小,意味着炭层有效性的提高。值得注意的是,与CNSs/PET相比,CNSs-BA/PET炭层的致密性和连续性得到了进一步改善,表面气孔也明显变少和变小,另外还存在大量鼓起的未破裂气泡,这种形貌的炭层在燃烧时一方面能有效地阻隔热量的传递,另一方面还能有效地阻隔PET燃烧降解生成的气态可燃物的逸出,起到隔热和隔氧的作用[22-23]。除此之外,CNSs-BA受热分解生成的CO2、氨气、氮气等难燃性气体能够稀释燃烧区域可燃气体的浓度,抑制燃烧的发展,这便是CNSs-BA/PET阻燃性提高的重要原因。

    图  7  PET (a)、CNSs/PET (b)和CNSs-BA/PET (c)残炭的SEM图像
    Figure  7.  SEM images of the char residues of PET (a), CNSs/PET (b)和CNSs-BA/PET (c)

    图8是PET、CNSs/PET和CNSs-BA/PET炭层的TG曲线。可知,纯PET炭层的Tonset较低,为215.08℃,其中100℃前失重为4.36wt%,这主要是由于纯PET的炭层结构松散、孔洞较多,容易吸收水分和储存小分子气体所致,其800℃时的残余质量为87.2wt%。在整个升温过程中,纯PET的炭层表现出3个失重阶段,第一个失重阶段发生在100℃之前,主要对应炭层中贮存的水分以及气态小分子的降解;第二个失重阶段发生在100~530℃之间,对应炭层主体部分的降解;第三个失重阶段发生在530℃之后,对应炭层热降解产物的再降解。与之相比,CNSs/PET炭层的Tonset提高到615.37℃,800℃时的残余质量提高到89.1wt%,这主要是由于CNSs/PET的炭层的致密性提高所致,其TG曲线基本保持了纯PET炭层的3个失重阶段。与PET和CNSs/PET的炭层相比,CNSs-BA/PET炭层的Tonset提高到800℃以上,意味着炭层在燃烧时能耐受更高的温度,从而更持久有效地起到凝聚相阻燃作用。值得注意的是,其炭层在热分解过程中只有一个较为明显的失重平台,并未像PET和的CNSs/PET的炭层一样经历3个失重阶段,说明阻燃剂CNSs-BA能使PET燃烧生成结构稳定的炭层,该炭层在燃烧过程中能耐受较高的火焰温度,从而对内部的基体起到持久有效的保护作用。

    图  8  残炭的TG曲线
    Figure  8.  TG curves of the char residues

    聚合物的交联直接影响其热性能、流变性、成炭性、熔滴和自熄行为,并有助于聚合物的芳香化或炭化[24]图9是PET、CNSs/PET和CNSs-BA/PET在热氧降解过程中的TG-DSC曲线,相关数据见表4。由图9可以看出,PET、CNSs/PET和CNSs-BA/PET在空气中均有两个失重阶段,说明PET及其复合材料发生的是两步降解反应[25]。第一个失重阶段是PET的主要失重阶段,发生在360~470℃之间。第二个失重阶段发生在470~590℃之间,该阶段对应第一个降解阶段生成的降解产物的进一步降解。值得注意的是,纯PET的Tonset为397.3℃,而PET的燃点通常在420℃左右,这说明PET在燃烧之前,首先会发生一定程度的降解并生成一些可燃性的气体或挥发性产物,以此来维持燃烧的进行。与纯PET相比,在第一个失重阶段,CNSs/PET和CNSs-BA/PET的热失重曲线稍向低温方向移动,但二者在第一个降解阶段结束时的剩余质量却大于PET,且该阶段的最大失重率所对应温度(Tmax-1)大于PET,说明阻燃剂的存在使PET的主体降解提前,但在该阶段却重组生成了热稳定性较高的物质。DSC曲线表明,CNSs-BA/PET在熔融峰和分解峰之间出现了明显的放热峰,该峰是PET的交联峰[26],而在PET和CNSs/PET的DSC曲线上交联峰却不明显,这说明CNSs经BA接枝改性后促进了PET的交联,这是由于阻燃剂表面接枝的芳香族席夫碱(BA)可以在PET的熔融温度和分解温度之间形成稳定的交联网络。

    图  9  PET、CNSs/PET和CNSs-BA/PET的TG-DSC曲线
    Figure  9.  TG-DSC curves of PET, CNSs/PET and CNSs-BA/PET

    裂解-气相色谱-质谱联用(Py-GC-MS)是目前研究聚合物高温裂解产物的常用方法[27]。为了研究阻燃剂的引入对PET的热裂解行为及其高温裂解产物的影响,对PET、CNSs/PET和CNSs-BA/PET做了Py-GC-MS分析,三者的高温裂解产物对比见表5。可知,与纯PET的裂解产物相比,CNSs/PET和CNSs-BA/PET的裂解产物中都包含更多的杂环、稠环、共轭芳环类化合物,这些裂解产物具有较高的热稳定性,是难燃性的保护炭层形成的物质基础[28]。而CNSs-BA/PET的裂解产物中出现了诸如二甲基胺、偶氮苯等含氮产物,这是由于阻燃剂CNSs-BA表面接枝的苯亚甲基氨基苯酚所致。另外,与PET和CNSs/PET相比,CNSs-BA/PET的裂解产物中菲、萘、苊、芴等稠环芳烃类以及联苯类产物明显增多,佐证了CNSs-BA促进了PET降解过程中的交联,该交联一方面通过增大熔体黏度改善了熔滴现象,另一方面提高了炭层的致密性和热稳定性,这就是CNSs-BA/PET阻燃性和抗熔滴性提高的主要原因。

    表  5  PET、CNSs/PET和CNSs-BA/PET裂解产物
    Table  5.  Pyrolysis products of PET, CNSs/PET and CNSs-BA/PET
    Pyrolysis products which found only in PET Tetrahydropyran; 2,2-dimethylpropanal; 4,8,12-trimethyl-tridecanoic acid methyl ester; 2,2-dimethoxybutane; 2-methyl-1,5-hexadien-3-yne; 1,6-heptadiyne; p-xylene; Decane; Methyl benzoate; Dodecylethyl ketone; 1-(3-methylphenyl)benzyl(2-methyl-1-methylenepropylidene); 4-methylphenyl-1-pentyn-3-ol phenol; Dimethyl 1,3-benzenedicarboxylate; Vinylmethyl terephthalate; Diphenylacetylene; Biphenyl-4-ylacetophenone; 1-(5,5-dimethyl-1,3-dioxocyclohexan-2-ylidene)-2-(N-ethylbenzothiazol-2-ylidene)-ethanes; Phthalic acid 4-formylphenyl ester; o-tertiaryl tricyclic [8.2.2.2(4,7)]hexadeca-2,4,6,8,10,12,13,15-octene; 4-(diethylaminomethyl)-2,5-dimethylphenol
    Pyrolysis products which found only in CNSs/PET Phenol; 1,2-dihydro-indene; 1-(4-methylphenyl)-ethanone; Stilbene; 1H-cyclopropyl[l]phenanthrene; Dihydro-p-terphenyl; 1-naphthol; Fluorene-9-methanol; 2-ethyl-1,1'-biphenyl; 1,1-diphenylethene; 4-(2-benzoyl-5-phenyl-3-thienyl)-1,2-dihydrophenanthrene; 2-phenylnaphthalenyl benzoate; 1,1-dihydro-2-phenylnaphthalenyl benzoate; 3-chlorobenzylnonyl; 1-(2,5-dimethylphenyl)ethanone; 1-(2,5-dimethylphenethyl) ethanone; Dimethyl-1H-indene; Diethylmalonic acid; 3-chlorobenzylnonyl ester
    Pyrolysis products which found only in CNSs-BA/PET 1,5-hexadiyne; Dimethylamine; Nitrous oxide; 1,1'-(1,4-phenylene)bis-acetophenone; 2-methylindene; Azobenzene; Benzene; (1-methyl-2-cyclopropen-1-yl)-2-methylindene; Stilbene; Ethylketone; 1-(3,4-dimethylphenyl); 1-(4-methylphenyl); 1-ethenyl-4-methylbenzene; Dibenzofuran; 2-naphthol; 4-hydroxy-1,2,3,4-tetrahydrophenanthrene; 9,10-dihydrophenanthrene; Benzopropiophenone; Fluorene; 4-vinylbiphenyl; 1,2,3,4-tetrahydrofil; 9,10-dihydrofil; 4-vinylbiphenyl; 1,4-vinylbiphenyl; Phenylacetone; 1,3,5-cycloheptatriene; 2-phenylnaphthalene; 1-acrylbenzene; 2-methylnaphthalene; 4-(2-benzoyl-5-phenyl-3-thienyl)-methylbenzoic acid; 1,3-dimethyl-1H-indene; Tricyclohexen-8-ol; Hexaethylcyclohexane; 9-phenyl-9-fluorenol; Ethylene oxide; Methoxyphenyltricyclohexadecen-5-ylmethanol; 4-benzylbiphenyl; Tritylbenzene; 9-phenylanthracene; 3-(1-phenylethoxy)-3H-isobenzofuran-1-one; 4-phenyl-3,4-dihydroisoquinoline; Oxetane; 2-phenyl; 3-phenylethynyl; Tetraphenyl; 1-[4-(2-phenylethenyl)phenyl]-ethanone; Acenaphthene; 1,2,3,5-tetraisopropyl-cyclohexane; 6,9-dimethoxy-phenazine-1-carboxylic acid; [1,1'-biphenyl]-4-yl-phenylmethanone; 1,1':4',1''-3'-methyltriphenylene
    Pyrolysis products which found both in PET and CNSs/PET Acetophenone; Benzoic acid; Biphenyl; 2-methyl-1,1'-biphenyl; 1,1'-(1,4-phenylene)bisacetophenone; p-terphenyl
    Pyrolysis products which found both in PET and CNSs-BA/PET Styrene; Acetophenone; Benzoic acid; Biphenyl; 2-ethyl-1,1'-biphenyl; Benzophenone; 9H-fluoren-9-one; p-terphenyl
    Pyrolysis products which found both in CNSs/PET and CNSs-BA/PET Benzene; Biphenyl; Acetophenone; Naphthalene; Toluene; Phenanthrene; Indene; 6,6-diphenylfulvene; p-terphenyl; Methylstyrene; Biphenylacetophenone; 4-ethylbiphenyl; Diphenylmethane
    Pyrolysis products found in PET, CNS/PET and CNSs-BA/PET Acetophenone; Benzoic acid; Biphenyl; p-terphenyl
    下载: 导出CSV 
    | 显示表格

    图10为PET阻燃复合材料的抗拉强度和断裂伸长率图。可知,随着阻燃剂含量的增加,CNSs/PET和CNSs-BA/PET复合材料的抗拉强度和断裂伸长率均呈下降趋势。尤其是当阻燃剂含量超过2.0wt%时,PET复合材料的抗拉强度和断裂伸长率大幅度下降。这是由于高含量的阻燃剂在PET基体中形成了较大的团聚体,破坏了基体的连续性,阻碍了应力的传递所致,后续研究中应重点关注材料力学性能的改善。

    图  10  PET复合材料的抗拉强度(a)和断裂伸长率(b)
    Figure  10.  Tensile strength (a) and elongation at break (b) of PET composites

    (1)为同时改善聚对苯二甲酸乙二醇酯(PET)的阻燃性和抗熔滴性,在碳纳米球表面接枝4-苯亚甲基氨基苯酚制备了一种新型碳基复合阻燃剂(CNSs-BA)。CNSs-BA为粒径约50 nm的球形颗粒,热稳定性良好。

    (2) CNSs-BA的引入可显著提高PET的阻燃性和抗熔滴性。当CNSs-BA添加量为2.0wt%时,CNSs-BA/PET复合材料的极限氧指数(LOI)从PET的21.0%提高至28.1%,阻燃等级达到V-0级,热释放速率峰值降低了46.3%。

    (3) CNSs-BA/PET表现出典型的凝聚相阻燃机制。CNSs-BA的引入能促进PET成炭,CNSs-BA/PET的高温残炭量(CR500℃)比PET提高了55.4%,且成炭量的实际值大于理论值。与纯PET的炭层相比,CNSs-BA/PET燃烧生成的炭层的致密性、连续性以及热稳定性都显著提高。这是由于CNSs-BA的引入促进了PET的高温交联,使其高温降解生成了更多的难燃性焦炭物质。

    (4)本文为碳基阻燃剂的发展提供了重要理论补充,对开发无卤、阻燃、抗熔滴的PET材料具有一定的指导意义。

  • 图  1   1150℃, 1250℃, 1350℃微波合成样品XRD图谱

    Figure  1.   XRD patterns of the samples prepared by microwave heating at 1150℃, 1250℃, 1350

    图  2   (a) 1250℃微波合成产物; (b)1250℃传统煅烧合成产物; (c)原料实物图

    Figure  2.   (a) Product synthesized by microwave at 1250℃; (b) product synthesized via conventional calcination at 1250℃; (c) photograph of raw materials

    图  3   1250℃微波与传统加热合成样品及原料混合物拉曼光谱图

    Figure  3.   Raman spectra of samples synthesized by microwave and conventional heating at 1250℃, along with their raw material mixtures

    图  4   1150℃, 1250℃, 1350℃微波合成样品固碳量

    Figure  4.   Carbon fixation amount of the samples prepared by microwave heating at 1150℃, 1250℃, 1350

    图  5   不同微波加热温度样品微观形貌: (a-b)1150℃; (c-d) 1250℃; (e-f) 1350

    Figure  5.   Microstructure of samples heated by microwave at different temperatures: (a-b) 1150℃; (c-d) 1250℃; (e-f) 1350

    图  6   微波煅烧1250℃样品微观形貌

    Figure  6.   Microstructure of samples sintered by microwave at 1250

    图  7   1250℃样品微观形貌: (a) TEM图像; (b-c) HRTEM图像; (d) 选区电子衍射

    Figure  7.   Microstructure of samples sintered at 1250℃: (a) TEM image; (b-c) HRTEM images; (d) Selected area electron diffraction

    图  8   中温段温度为650℃, 700℃, 750℃保温10 min, 高温段温度为1250℃样品的拉曼光谱图

    Figure  8.   Raman spectrum of the samples obtained at medium temperatures from 650℃ to 750℃ for 10 minutes, high temperatures at 1250

    图  9   中温段温度为650℃, 700℃, 750℃保温10 min, 高温段温度为1250℃样品的固碳量

    Figure  9.   Carbon fixation amount of the samples obtained at medium temperatures from 650℃ to 750℃ for 10 minutes, high temperatures at 1250

    图  10   中温段温度700℃保温10 min, 20 min, 30 min, 高温段温度为1250℃ 样品的拉曼光谱图

    Figure  10.   Raman spectrum of the samples obtained at a medium temperatures of 700℃ from 10 min to 30 min, high synthesis temperatures at 1250

    图  11   中温段温度700℃保温10 min, 20 min, 30 min, 高温合成温度为1250℃合成样品的固碳量

    Figure  11.   Carbon fixation amount of the samples obtained at a medium temperatures of 700℃ from 10 min to 30 min, high synthesis temperatures at 1250

    图  12   微波加热固碳反应机制

    Figure  12.   Mechanism of carbon fixation reaction during microwave heating

    表  1   实验原料及组成

    Table  1   Formulation and composition of raw materials

    Experimental materialsCaCO3SiO2Siα-SiC
    Content/wt.%69.888.3811.7410.00
    下载: 导出CSV

    表  2   样品编号及工艺参数

    Table  2   Sample identification and process parameters

    Sample numberCalcination conditionsHigh temperature conditions/°CHolding temperature at intermediate stages/°CHolding time at intermediate stages/min
    W-1Microwave1150----
    W-2Microwave1250----
    W-3Microwave1350----
    W-4Microwave125065010
    W-5Microwave125070010
    W-6Microwave125075010
    W-7Microwave125070020
    W-8Microwave125070030
    M-1Muffle furnace1250----
    下载: 导出CSV

    表  3   中温段温度为650℃, 700℃, 750℃保温10 min, 高温段温度为1250℃样品ID/IG

    Table  3   ID/IG value of the samples obtained at medium temperatures from 650℃ to 750℃ for 10 minutes, high temperatures at 1250

    Holding temperature at intermediate stages/℃650700750
    ID/IG0.770.870.90
    下载: 导出CSV

    表  4   中温段温度700℃保温10 min, 20 min, 30 min, 高温温度为1250℃ 合成样品ID/IG

    Table  4   ID/IG value of the samples obtained at a medium temperatures of 700℃ from 10 min to 30 min, high synthesis temperatures at 1250

    Holding time at intermediate stages/min102030
    ID/IG0.870.960.97
    下载: 导出CSV
  • [1]

    JATIVA W F, DALTON L E, POURGHAZ M. Gas CO2 foaming and intermixing in portland cement paste to sequester CO2[J]. CEMENT, 2024, 16: 100099. DOI: 10.1016/j.cement.2024.100099

    [2]

    YOU X J, HU X, XIAO Z Q, et al. Thermodynamic modelling of CaCO3 polymorphs during CO2 sequestration by cement slurry with the addition of MgCl2[J]. Journal of Cleaner Production, 2023, 410: 137294. DOI: 10.1016/j.jclepro.2023.137294

    [3]

    REN Z C, LIU Y Y, YUAN L W, et al. Optimizing the content of nano-SiO2, nano-TiO2 and nano-CaCO3 in Portland cement paste by response surface methodology[J]. Journal of Building Engineering, 2021: 102073.

    [4]

    KIM G, CHO S, MOON J, et, al. Investigation of the hydrate formation and mechanical performance of limestone calcined clay cement paste incorporating nano-CaCO3 and nano-SiO2 as partial limestone substitutes[J]. Construction and Building Materials, 2024, 418: 135335. DOI: 10.1016/j.conbuildmat.2024.135335

    [5]

    FENNELL P S, DAVIS S J, Aseel MOHAMMED A. Decarbonizing cement production[J]. Joule, 2021, 5(6): 1305-1311. DOI: 10.1016/j.joule.2021.04.011

    [6]

    HAUSFATHER Z, MARVE K, SCHMIDT G A, et al. Climate simulations: recognize the ‘hot model’ problem[J]. Nature, 2022, 605(7908): 26-29. DOI: 10.1038/d41586-022-01192-2

    [7]

    ROCHA J H A, FILHO T R D, CAYO-CHILENO N G. Sustainable alternatives to CO2 reduction in the cement industry: a short review[J]. Materials Today: Proceedings, 2022, 57: 436-439. DOI: 10.1016/j.matpr.2021.12.565

    [8]

    XIANG Q, PAN H Y, MA X H, et al. Impacts of energy-saving and emission-reduction on sustainability of cement production[J]. Renewable and Sustainable Energy Reviews, 2024, 191: 114089. DOI: 10.1016/j.rser.2023.114089

    [9]

    HO H-J, IZUMI Y, IZUKA A. A CO2 removal technology based on mineral carbonation and the stability of product carbon storage in a cement matrix[J]. Environmental Technology & Innovation, 2024, 34: 103623.

    [10]

    WANG Y H, CHEN H, WANG H T, et al. A novel carbon dioxide capture system for a cement plant based on waste heat utilization[J]. Energy Conversion and Management, 2022, 257: 115426. DOI: 10.1016/j.enconman.2022.115426

    [11]

    LIU X B, FAN Y B, LI C. Carbon pricing for low carbon technology diffusion: A survey analysis of China's cement industry[J]. Energy, 2016, 106: 73-86. DOI: 10.1016/j.energy.2016.03.044

    [12]

    WANG Q, LU X J, LIU Q, et al. Recycle of soda waste sludge as the limestone material for Portland cement: Chemical composition, physical properties and hydration mechanism[J]. Construction and Building Materials, 2024, 422: 135790. DOI: 10.1016/j.conbuildmat.2024.135790

    [13]

    SANTOS T A, CILLA M S, RIBEIRO D V. Use of asbestos cement tile waste (ACW) as mineralizer in the production of Portland cement with low CO2 emission and lower energy consumption[J]. Journal of Cleaner Production, 2022, 335: 130061. DOI: 10.1016/j.jclepro.2021.130061

    [14]

    SANJUÁN M A, FRÍAS M, MONASTERIO M, et al. Volcanic ash from La Palma (Canary Islands, Spain) as Portland cement constituent[J]. Journal of Building Engineering, 2023, 78: 107641. DOI: 10.1016/j.jobe.2023.107641

    [15] 李鹏鹏, 任强强, 吕清刚, 等. 面向双碳的低碳水泥原料/燃料替代技术综述[J]. 洁净煤技术, 2022, 28(8): 35-42

    LI Pengpeng, REN Qiangqiang, LV Qinggang, et al. Review on raw meal and fuel substitution technology for low carbon cement under carbon neutrality[J]. Clean Coal Technology, 2022, 28(8): 35-42(in Chinese).

    [16]

    VERMEIREN J, DILISSEN N, GOOVAERT V, et al. Electrification of clinker and calcination treatments in the cement sector by microwave technology -A review[J]. Construction and Building Materials, 2024, 428: 136271. DOI: 10.1016/j.conbuildmat.2024.136271

    [17]

    QI Y S, SONG B, WANG H L, et al. Investigation on the microwave sintering heating process and mechanism of h-BN/ZrO2/SiC composites[J]. Cerammics International, 2023, 49(12): 20594-20600. DOI: 10.1016/j.ceramint.2023.03.190

    [18]

    DEMIRSKYI D, RAGULYA A. Low-temperature microwave sintering of TiN-SiC Nanocomposites[J]. Journal of Environ Sciences, 2012, 47(8): 3741-3745.

    [19]

    JIANG J-P, WANG C-H, WANG W, et al. Low-temperature sintering of (Co0.35Zn0.65)TiNb2O8 temperature-stable microwave dielectric ceramics with BaCu(B2O5) additions[J]. Journal of the European Ceramic Society, 2024, 44(11): 6384-6389. DOI: 10.1016/j.jeurceramsoc.2024.04.034

    [20]

    XIAO Y H, XUE Y H. A review on application of microwave in cement life cycle[J]. Renewable Sustainable Energy Rev, 2024, 199: 114498. DOI: 10.1016/j.rser.2024.114498

    [21]

    KAEWWICHIT P, JUNSOMBOON J, CHAKARTNARODOM P, et al. Development of microwave-assisted sintering of Portland cement raw meal[J]. Journal of Cleaner Production, 2017, 142: 1252-1258. DOI: 10.1016/j.jclepro.2016.07.009

    [22]

    JING M H, ZHAO P, CHEN T D, et al. Investigation on calcination mechanism of tricalcium silicate by a coupled electric-thermal field[J]. Construction and Building Materials, 2021, 313: 125470. DOI: 10.1016/j.conbuildmat.2021.125470

    [23] 张宁, 胡佳山, 刘飚, 等. 微波煅烧硅酸盐水泥的研究[J]. 硅酸盐通报, 2000, 05: 14-18. DOI: 10.3969/j.issn.1001-1625.2000.05.003

    ZHANG Ning, HU Jiashan, LIU Biao, et al. Microwave Sintering of Portlan Cement[J]. Bulletin of the Chinese Ceramic Society, 2000, 05: 14-18(in Chinese). DOI: 10.3969/j.issn.1001-1625.2000.05.003

    [24]

    LUO S Q, ZHAO M H, JIANG Z Z, et al. Microwave preparation and carbonation properties of low-carbon cement[J]. Construction and Building Materials, 2022, 320: 126239 DOI: 10.1016/j.conbuildmat.2021.126239

    [25] 季尚行, 张雄, 管宗甫, 等. 水泥工艺学[M]. 武汉理工大学出版社, 2017: 36-40.

    JI Shangxing, ZHANG Xiong, GUAN Zongfu, et al. Cement Technology[M], Wuhan University of Technology Press. 2017: 36-40(in Chinese).

    [26] 李杨, 卢红巧, 周灵, 等. 微波烧结温度对ZrO2陶瓷复合材料微观结构及增韧机理研究[J]. 功能材料, 2023, 54(6): 6167-6171+6193. DOI: 10.3969/j.issn.1001-9731.2023.06.021

    LI Yang, LU Hongqiao, ZHOU Ling, et al. Synthesis of Al-doped KIT-6 materials and their adsorption properties for methylene blue[J]. Journal of functional materials, 2023, 54(6): 6167-6171+6193(in Chinese). DOI: 10.3969/j.issn.1001-9731.2023.06.021

    [27] 季文彬, 王子豪, 戴士杰, 等. 微波烧结复杂刃形TiB2基陶瓷刀具的设计制备及力学性能[J]. 复合材料学报, 2024, 41(7): 3777-3789.

    JI Wenbin, WANG Zihao, DAI Shijie, et al. Design, preparation and mechanical properties of microwave sintered TiB2-based ceramic tools with complex edge shape[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3777-3789(in Chinese).

    [28]

    LI X, ZHANG G, OSTROVSKI O et al. Effect of gas atmosphere on the formation of silicon by reaction of SiC and SiO2[J]. Journal of Materrial Science, 2016, 51(2): 876-884. DOI: 10.1007/s10853-015-9413-2

    [29]

    QIAN J, PANTEA C, HUANG J, et al. Graphitization of diamond powders of different sizes at high pressure-high temperature[J]. Carbon, 2004, 42(12-13): 2691-2697. DOI: 10.1016/j.carbon.2004.06.017

    [30]

    QIAO Z J, LI J J, ZHAO N Q, et al. Structural evolution and Raman study of nanocarbons from diamond nanoparticles[J]. Chemical Physics Letters, 2006, 429(4): 479-482.

    [31]

    SONG L M, ZHANG Fan, CHEN Y Q , et al. Multifunctional SiC@SiO2 Nanofiber Aerogel with Ultrabroadband Electromagnetic Wave Absorption[J]. Nano-Micro Letters, 2022, 14: 152.

    [32]

    FEDOSEEVA Y , OKOTRUB A, KOROTEEV V, et al. Graphitization of 13 C enriched fine-grained graphitic material under high-pressure annealing[J]. Carbon, 2019, 141: 323-330.

    [33]

    PENG J J, CHEN N Q, HE R, et al. Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes: A facile and mild graphitization method[J]. Angewandte Chemie, 2017, 129(7): 1777-1781. DOI: 10.1002/ange.201609565

    [34]

    LIANG C, CHEN Y, WU M. Green synthesis of graphite from CO2 without graphitization process of amorphous carbon[J]. Nature Communications, 2021, 12(1): 119. DOI: 10.1038/s41467-020-20380-0

    [35]

    HAO W D, ZHANG X Y, LI G Y, et al. Typical growth of SiC fibers prepared by microwave heating with NiCl2 catalyst[J]. Journal of Alloys and Compounds, 2023, 946: 169437. DOI: 10.1016/j.jallcom.2023.169437

    [36]

    JIN X G, BAO H X, ZHANG Z H, et al. Experimental investigation on thermochemical heat storage using CaO/CaCO3 in a cyclone reactor[J]. Journal of Energy Storage, 2024, 76: 109894. DOI: 10.1016/j.est.2023.109894

    [37] 王迎豪, 郑城, 张逸舟, 等. 氧化石墨烯包覆砂对水泥砂浆性能的影响[J]. 复合材料学报, 2024, 42( ): 1-11.

    WANG Yinghao, ZHENG Cheng, ZHANG Yizhou, et al. Effect of graphene-oxide coated sand on the properties of cement mortar[J]. Acta Materiae Compositae Sinica, 2024, 42( ): 1-11(in Chinese).

    [38]

    KEMANECI E , MITSCHKER F, BENEDIKT J, et al. A numerical analysis of a microwave induced coaxial surface wave discharge fed with a mixture of oxygen and hexamethyldisiloxane for the purpose of deposition[J]. Plasma Sources Science and Technology, 2019, 28(11): 115003-115003.

    [39]

    QIN Y, NIU G H, WANG X, et al. Status of CO2 conversion using microwave plasma[J]. Journal of CO2 Utilization, 2018, 28: 283-291. DOI: 10.1016/j.jcou.2018.10.003

  • 其他相关附件

  • 目的 

    硅酸盐水泥熟料制备过程中CaCO分解会产生大量CO,显著加剧温室效应。传统水泥生产工艺主要为“两磨一烧”。煅烧和所用石灰石分解均会排放大量CO,污染环境。基于水泥行业高能耗、强污染和大需求的特点,减少原材料在制备过程中CO的释放,已成为“双碳”战略背景下我国水泥工业绿色发展亟待解决的关键技术难题。本文以α-SiC粉,Si粉为诱导介质,采用微波加热技术,研究了中温温度及保温时间对微波加热合成硅酸钙过程中CO固化效应的影响,制备了原位β-SiC-石墨碳/硅酸钙复合粉。

    方法 

    本文所用原料为碳酸钙(CaCO,10 μm,分析纯)、二氧化硅(SiO,37 μm,分析纯)、硅粉(Si,10 μm,纯度大于99.96%)和碳化硅粉(α-SiC,5 μm,纯度大于99.90%)。按照配比称量原料,并倒入球磨灌,加入去离子水进行湿混12 h;之后,在110℃干燥24 h,而后将干燥后的粉末研磨,过80 mm筛,在10 MPa下压制成直径Φ=60 mm,高度h=22 mm的生坯。将生坯放入微波烧结炉中进行微波加热。在微波加热过程中,采用红外测温仪对样品进行测温;分别研究了微波合成温度(1150℃,1250℃,1350℃)对产物物相组成和微观形貌的影响;探讨了中温固碳温度(650℃,700℃,750℃)和保温时间(10 min,20 min,30 min)对微波原位固碳作用的影响。固碳量通过反应前后质量差进行评估,采用X射线衍射仪(XRD)对产物物相组成进行分析,通过场发射扫描电子显微镜(SEM)、场发射透射电子显微镜(TEM)表征产物的微观结构。利用拉曼光谱仪表征了产物中的碳材料。

    结果 

    从微波合成温度为1150℃,1250℃,1350℃时的XRD图谱中可以看出:当微波合成温度为1150℃时,产物的物相组成主要为硅酸钙(CaSiO,CS),硅酸二钙(CS),硅酸三钙(CS),α-SiC,β-SiC及Si。随着合成温度上升至1250℃,产物中CS的衍射峰强度降低,CS和CS的衍射峰强度增强。当微波合成温度进一步提高至1350℃,产物中CS,CS的特征峰强度无明显变化。与微波合成温度为1250℃的样品(W-2)相比,传统煅烧法制备的样品(M-1)XRD图谱中CS、CS特征峰强度较低,且仍存在Si、CaO、SiO的特征峰。从微波合成样品W-2,传统固相烧结样品(M-1)和原料的拉曼光普遍图可以看出:原料与传统固相烧结样品(M-1)的拉曼光谱中没有碳材料的特征峰(D峰和G峰);而微波合成样品(W-2)的拉曼光谱在波数为1368 cm和1592 cm处出现了碳材料的D峰和G峰,在波数为2705 cm处出现了2D峰。与原料相比,在波数为792 cm和988 cm处SiC的拉曼特征峰,相较于原料中SiC的拉曼特征峰,样品W-2中SiC的拉曼特征峰峰强高且尖锐。从微波合成温度分别为1150℃,1250℃,1350℃的样品固碳图可以看出:合成温度为1250℃时反应的固碳量最大,为34.74%。通过SEM及TEM观察样品微观形貌发现:不同微波合成温度下样品微观形貌多为不规则的颗粒状。进一步观察发现,熟料矿物表面原位生成了均匀分布的SiC纤维以及片状石墨碳。通过控制中温阶段加热参数发现固碳反应强度可进一步优化,充分利用微波等离子体的热效应可激活CaCO₃分解产生的CO₂参与反应;从不同中温阶段保温温度及保温时间的固碳量图可以看出:中温阶段保温温度为700℃,保温时间20 min时可提高固碳成效至39.79%。

    结论 

    采用微波加热技术,通过添加诱导介质(α-SiC,Si),在合成温度区间为1150℃~1350℃时可合成以硅酸二钙(CS)为主相的硅酸盐水泥熟料矿物。诱导介质(α-SiC,Si)的添加,可以在硅酸钙的合成过程中,将原料CaCO分解出的CO有效利用固化为β-SiC和石墨碳,固碳产物以纤维和片状结构原位合成于硅酸钙表面。对加热的中温阶段进行保温可以使固碳反应充分进行,提高固碳量。当合成温度为1250℃,中温段保温温度为700℃保温20 min可实现最高效固碳,固碳量为39.79%。

  • 硅酸盐水泥熟料制备过程中CaCO3分解会产生大量CO2,显著加剧温室效应。传统水泥生产工艺主要为“两磨一烧”,煅烧和所用石灰石分解均会排放大量CO2,污染环境。基于水泥行业高能耗、强污染和大需求的特点,减少原材料在制备过程中CO2的释放,已成为“双碳”战略背景下我国水泥工业绿色发展亟待解决的关键技术难题。

    本文以CaCO3、石英砂为原料,α-SiC和Si作为诱导介质,采用微波加热诱导技术固化CO2,制备原位β-SiC-石墨碳/硅酸钙复合粉。当微波合成温度由1150℃增加至1250℃时,合成产物中SiO2、CaO含量逐渐降低,硅酸二钙(Ca2SiO4,C2S)及硅酸三钙(Ca3SiO5,C3S)含量增加。进一步增加合成温度至1350℃,产物中硅酸二钙(C2S)及硅酸三钙(C3S)组成无显著变化。此外,微波合成温度为1250℃时,产物中硅(Si)的残余量最低,且含有β-SiC及石墨化碳,固碳产物以纤维和片状结构原位合成于硅酸钙表面。调控微波加热过程中温(650~750℃)温度及保温时间可以控制反应过中的CO2固化效果。当中温温度从650℃上升至750℃,保温时间从10 min延长至30 min时,微波加热过程中CO2固化效果呈现先增高后降低的趋势。当微波加热合成温度为1250℃,中温温度为700℃,保温时间为20 min时,CO2固化效果最好,固碳量达到理论CO2排放量的39.79%。微波原位合成β-SiC-石墨碳/硅酸钙能有效减少水泥熟料生产过程中CO2的排放。

    (a): 1150℃, 1250℃, 1350℃微波合成样品XRD图谱; (b)1250℃微波与传统加热合成样品及原料混合物拉曼光谱图

    (a): XRD patterns of the samples prepared by microwave heating at 1150℃, 1250℃, 1350℃; (b): Raman spectra of samples synthesized by microwave and conventional heating at 1250℃, along with their raw material mixtures

图(12)  /  表(4)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-12
  • 修回日期:  2025-02-18
  • 录用日期:  2025-02-18
  • 网络出版日期:  2025-03-27

目录

/

返回文章
返回