Research progress of green and low consumption preparation method of cellulose nanocrystal and its application
-
摘要: 纳米纤维素是地球上最为丰富的生物质资源,具有易降解、可再生、无毒性且廉价易得等优点,纤维素纳米晶(CNC)是纳米纤维素的主要产品之一,因其高结晶度、高抗拉强度、高刚度、高比表面积等优异的理化特性,近年来受到了广泛的研究和关注。对比了传统无机酸水解法和近年来有利于节约能耗、环境友好的几种CNC新型制备方法的优缺点,介绍了CNC各新型制备方法及其优化工艺的最新研究进展,综述了CNC复合材料在食品包装、造纸行业助留助滤和纸张性能提升、固定化酶技术以及废水处理等领域的最新应用研究进展,最后,对CNC的制备方法和应用研究进行了讨论,旨在为促进CNC及其复合材料的规模化生产和推广应用提供理论参考。
-
关键词:
- 纤维素纳米晶(CNC) /
- 绿色 /
- 制备方法 /
- 应用 /
- 研究进展
Abstract: Nanocellulose is the most abundant biomass resources on the earth, with the advantages of easy degradation, renewable, non-toxic, cheap and easy to obtain.Cellulose nanocrystal (CNC) is one of the main products of nanocellulose. Due to its excellent physical and chemical properties such as high crystallinity, high tensile strength, high stiffness and high specific surface area, it has been widely studied and received extensive attention in recent years. In this paper, the advantages and disadvantages of traditional inorganic acid hydrolysis CNC preparation method and several CNC preparation methods in recent years which are beneficial to save energy consumption and be friendly to environment are compared. The latest research progress of CNC preparation methods and its optimization process is introduced. In addition, the research process of CNC composites in the field of food packaging, retention and filtration, paper performance improvement, immobilized enzyme technology and wastepaper treatment are reviewed. At last, the preparation methods and application research of CNC were discussed, aiming to provide theoretical reference for promoting the production and application scale of CNC and its composites.-
Key words:
- cellulose nanocrystal(CNC) /
- green /
- preparation method /
- application /
- research progress
-
表 1 CNC基本特性的最新研究
Table 1. Latest research on basic performance of CNC
Name/parameters Type/value Material source wood[15] cotton fiber[16,17] agricultural waste[18,19] microcrystalline cellulose[20] tunicate[21] waste paper[23] Mean length/nm 93±26[36] 168±71[37] 260±180[16,19,20,23] 370±150[33] Length-diameter ratio 5~55[20,34,36] Mean diameter/nm 3~5[35] 5.72[20] 19±11[37] 34±9[16] 30±20[32,33] 53.9[23] Zeta potential of the aqueous suspension/mV −38.6[19] 49.3[16] 53.5[20] Surface charge density/e·nm−2 0.29±0.01[35] Crystallinity/% 54~88[25] 73[23] 76.7[32] 78.00[31] 79.00[30] 84.02[26] 89.9[16] 91.8~97.8[36] Tensile strength/MPa 7500 [27]Transverse elastic moduli/GPa 18~50[38] Longitudinal elastic moduli/GPa 140~220[23,28] 表 2 BmimCl和AmimCl的基本性能特点
Table 2. Basic performance characteristics of BmimCl and AmimCl
Name Parameter BmimCl AmimCl Synthesis time/h 48 80%(3 h conversion rate)
100%(6 h conversion rate)Initial decomposition temperature/℃ 254 273 Viscosity at 30℃/(mPa·s) 685 11000 -
[1] 杨淑蕙. 植物纤维化学[M]. 北京: 中国轻工业出版社, 2009: 163.YANG Shuhui. Plant fiber chemistry[M]. Beijing: China light industry press, 2009: 163 (in Chinese). [2] FAROOQ A, JIANG S, FAROOQ A, et al. Structure and properties of high quality natural cellulose nano fibrils from a novel material Ficus natalensis barkcloth[J]. Journal of Industrial Textiles, 2021, 51(4): 664-680. doi: 10.1177/1528083719887533 [3] NAEEM M A, LV P F, ZHOU H M, et al. A novel in situ self-assembling fabrication method for bacterial cellulose-electrospun nanofiber hybrid structures[J]. Polymers, 2018, 10(7): 712. doi: 10.3390/polym10070712 [4] DYLAN L, SANDEEP A, KAMAL K. Nanocellulose-based polymer composites for energy applications-A review[J]. Journal of Applied Polymer Science, 2020, 137(27): 48959. doi: 10.1002/app.48959 [5] JU S, LEE A, SHIN Y, et al. Preventing the Collapse behavior of polyurethane foams with the addition of cellulose nanofiber[J]. Polymers, 2023, 15(6): 1499. doi: 10.3390/polym15061499 [6] TURBAK A, SNYDER F, SANDBERG K. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential[J]. Journal of Applied Polymer Science, 1983, 37: 815-827. [7] WANG Q Q, YAO Q, LIU J, et al. Processing nanocellulose to bulk materials: a review[J]. Cellulose, 2019, 26(13-14): 7585-7617. doi: 10.1007/s10570-019-02642-3 [8] DO T V V, TRAN N B A, NGUYEN-THAI N U. Preparation of spherical nanocellulose from Gai bamboo and mechanical properties of chitosan/nanocellulose composite Preparation of spherical nanocellulose from Gai bamboo and mechanical properties of chitosan/nanocellulose composite[J]. Polymer Composites, 2023, 44(4): 2287-2295. doi: 10.1002/pc.27243 [9] HEMATH M, SELVAN V A M. Effect of Al-SiC nanoparticles and cellulose fiber dispersion on the thermomechanical and corrosion characteristics of polymer nanocomposites[J]. Polymer Composites, 2020, 41(5): 1878-1899. doi: 10.1002/pc.25505 [10] SAKOVICH G V, SKIBA E A, GLADYSHEVA E K, et al. Miscanthus as a feedstock for the production of bacterial nanocellulose[J]. Doklady Chemistry, 2020, 495(2): 205-208. doi: 10.1134/S0012500820120034 [11] LANGARI M M, NIKZAD M, GHOREYSHI A A, et al. Isolation of nanocellulose from broomcorn stalks and its application for nanocellulose/xanthan film preparation[J]. Chemistryselect, 2019, 4(41): 11987-11994. doi: 10.1002/slct.201902533 [12] ZHANG F R, SHEN R, LI N, et al. Nanocellulose: An amazing nanomaterial with diverse applications in food science[J]. Carbohydrate Polymers, 2023, 304(1): 120497. [13] GÓMEZ C, SERPA A, VELÁSQUEZ-COCK J, et al. Vegetable nanocellulose in food science: A review[J]. Food Hydrocolloids, 2016, 57: 178-186. doi: 10.1016/j.foodhyd.2016.01.023 [14] 朱迎澳, 陈倩, 孔保华, 等. 生物基纳米复合食品包装材料的抗菌性研究进展[J]. 中国食品学报, 2024, 24(1): 465-474.ZHU Yingao, CHEN Qian, KONG Baohua, et al. Research progress on antibacterial properties of bio-based nanocomposite food packaging materials[J]. Journal of Chinese Institute of Food Science and Technology, 2024, 24(1): 465-474 (in Chinese). [15] GOMRI C, CRETIN M, SEMSARILAR M. Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-A comprehensive review[J]. Carbohydrate Polymers, 2022, 294(7): 119790. [16] LAGHAEI R, HEJAZI S M, FASHANDI H, et al. Reinforcement contribution of cellulose nanocrystals (CNCs) to tensile properties and fracture behavior of triaxial E-glass fabric/epoxy composites[J]. Composites Part A, 2023, 164(1): 107258. [17] TORLOPOV M A, MARTAKOV I S, MIKHAYLOV V I, et al. Synthesis and properties of thiol-modified CNC via surface tosylation[J]. Carbohydrate Polymers, 2023, 319(47): 121169. [18] SHEIKH M S, RAHMAN M M, RAHMAN M S, et al. Fabrication of nano composite membrane filter from graphene oxide (GO) and banana rachis cellulose nano crystal(CNC) for industrial effluent treatment[J]. Journal of Industrial and Engineering Chemistry, 2023, 128(2): 196-208. [19] KHATUN M A, SULTANA S, ISLAM Z, et al. Extraction of crystalline nanocellulose (CNC) from date palm mat fibers and its application in the production of nanocomposites with polyvinyl alcohol and polyvinylpyrrolidone blended films[J]. Results in Engineering, 2023, 17: 101031. doi: 10.1016/j.rineng.2023.101031 [20] CHUESIANG P, KIM J T, SHIN G H. Observation of curcumin-encapsulated Pickering emulsion stabilized by cellulose nanocrystals-whey protein isolate (CNCs-WPI) complex under in vitro lipid digestion through INFOGEST model[J]. International Journal of Biological Macromolecules, 2023, 234(8): 123679. [21] BABAEI-GHAZVINI A, ACHARYA B. The effects of aspect ratio of cellulose nanocrystals on the properties of all CNC films: Tunicate and wood CNCs[J]. Carbohydrate Polymer Technologies and Applications, 2023, 5(6): 100311. [22] AW Y Z; LIM H P, LOW L E, et al. Cellulose nanocrystal (CNC)-stabilized Pickering emulsion for improved curcumin storage stability[J]. LWT-Food Science and Technology, 2022, 159(2): 113249. [23] BORUAH P, GUPTA R, KATIYAR V. Fabrication of cellulose nanocrystal (CNC) from waste paper for developing antifouling and high-performance polyvinylidene fluoride (PVDF) membrane for water purification[J]. Carbohydrate Polymer Technologies and Applications, 2023, 5(2): 100309. [24] XU Y J, GAO M L, ZHANG Y Q, et al. Cellulose hollow annular nanoparticles prepared from high-intensity ultrasonic treatment[J]. ACS Nano, 2022, 16(6): 8928-8938. doi: 10.1021/acsnano.1c11167 [25] PHANTHONG P, REUBROYCHAROEN P, HAO X G, et al. Nanocellulose: Extraction and application[J]. Carbon Resources Conversion, 2018, 1(1): 32-43. doi: 10.1016/j.crcon.2018.05.004 [26] CHEN R, MA Z H, SUN D Y, et al. Cellulose I nanocrystals (CNCs I) prepared in mildly acidic lithium bromide trihydrate (MALBTH) and their application for stabilizing Pickering emulsions[J] International Journal of Biological Macromolecules, 2022, 201(5): 59-66. [27] GRISHKEWICH N, MOHAMMED N, TANG J, et al. Recent advances in the application of cellulose nanocrystals [J] Current Opinion in Colloid & Interface Science, 2017, 29: 32-45. [28] LAM E, MALE K B, CHONG J H, et al. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose [J] Trends in Biotechnology, 2012, 30(5): 283-290. [29] 宿晓天, 陈继飞 陈文刚, 等. 3D打印纳米纤维素凝胶材料[J]. 上海纺织科技, 2023, 51(12): 65-67,92.SU Xiaotian, CHEN Jifei, CHEN Wengang, et al. 3D printing nano cellulose gel material[J]. SHANGHAI TEXTILE SCIENCE & TECHNOLOGY, 2023, 51(12): 65-67,92 (in Chinese). [30] MORADI E, FATHI M. Production of cellulose nanocrystals from tomato pomace as a food waste and their application for stabilizing of Pickering emulsions [J] Bioactive Carbohydrates and Dietary Fibre, 2023, 30: 100378. [31] HADDIS D Z, CHAE M, ASOMANING J, et al. Evaluation of steam explosion pretreatment on the cellulose nanocrystals (CNCs) yield from poplar wood[J]. Carbohydrate Polymers, 2023, 323(7): 121460. [32] ZHANG Q H, LU Z H, SU C, et al. High yielding, one-step mechano-enzymatic hydrolysis of cellulose tocellulose nanocrystals without bulk solvent[J]. Bioresource Technology, 2021, 331(5): 125015. [33] YAN Y F, LIANG X B, FENG Y L, et al. Manipulation of crystallization nucleation and thermal degradation of PLA films by multi-morphologies CNC-ZnO nanoparticles[J]. Carbohydrate Polymers, 2023, 320(11): 121251. [34] MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011, 40(7): 3941-3994. doi: 10.1039/c0cs00108b [35] ATAEIAN P, SHI Q Y, IOANNIDIS M, et al. Effect of hydrophobic modification of cellulose nanocrystal (CNC) and salt addition on Pickering emulsions undergoing phase-transition[J]. Carbohydrate Polymer Technologies and Applications, 2022, 3(1): 100201. [36] 王瑞, 李盼盼, 朱文祥, 等. 利用纤维素工业废丝/胶高效制备再生纤维素纳米晶[J]. 棉纺织技术, 2024, 52(4): 46-53. doi: 10.3969/j.issn.1001-7415.2024.04.009WANG Rui, LI Panpan, ZHU Wenxiang, et al. Efficient preparation of regenerated cellulose nanocrystals with industrial cellulose scrap filament/gel[J]. Cotton Textile Technology, 2024, 52(4): 46-53 (in Chinese). doi: 10.3969/j.issn.1001-7415.2024.04.009 [37] 张涛, 郭红, 赵晓婉, 等. 基于废旧棉织物的CNCs制备及增强应用研究[J]. 棉纺织技术, 2024, 52(8): 87-92. doi: 10.3969/j.issn.1001-7415.2024.08.019ZHANG Tao, GUO Hong, ZHAO Xiaowan, et al. Efficient preparation of regenerated cellulose nanocrystals with industrial cellulose scrap filament/gel[J]. Cotton Textile Technology, 2024, 52(8): 87-92 (in Chinese). doi: 10.3969/j.issn.1001-7415.2024.08.019 [38] LAHIJI R R, XU X, REIFENBERGER R, et al. Atomic force microscopy characterization of cellulose nanocrystals[J]. Langmuir, 2010, 26(6): 4480-4488. doi: 10.1021/la903111j [39] 2023年纤维素纳米晶体(CNC)行业发展新态势调研报告[EB]. (2023-06-16). https://www.shangyexinzhi.com/article/8927447.html.Cellulose nanocrystals (CNC) industry development situation research report of 2023[EB]. (2023-06-16). https://www.shangyexinzhi.com/article/8927447.html (in Chinese). [40] DUMONT P J J, GUPTA S, MARTOÏA F, et al. Elongational behaviour of electrostatically stabilised and concentrated CNF and CNC hydrogels: Experiments and modelling[J]. Carbohydrate Polymers, 2023, 299(4): 120168. [41] ZAKANI B, GRECOV D. Effect of ultrasonic treatment on yield stress of highly concentrated cellulose nano-crystalline (CNC) aqueous suspensions[J]. Carbohydrate Polymers, 2022, 291(1): 119651. [42] HEMRAZ U D, LAM E, SUNASEE R. Recent advances in cellulose nanocrystals-based antimicrobial agents[J]. Carbohydrate Polymers, 2023, 315(11): 120987. [43] 刘文丽, 贾凌云, 王清硕, 等. 纤维素纳米球的制备及应用研究进展[J]. 中国造纸学报, 2023, 38(4): 134-139.LIU Wenli, JIA Lingyun, WANG Qingshuo, et al. Progress in preparation and application of cellulose nanospheres[J]. Transactions of China Pulp and Paper, 2023, 38(4): 134-139 (in Chinese). [44] 汪昭奇, 黄金田. 超声协同TEMPO氧化纳米纤维素膜的制备及表征[J]. 内蒙古农业大学学报(自然科学版), 2022, 43(4): 68-75.WANG Zhaoqi, HUANG Jintian. Preparation and Characterization of Ultrasonic and TEMPO Oxidized Nanocellulose Films[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2022, 43(4): 68-75 (in Chinese). [45] NADUPARAMBATH S, JINITHA T V, SHANIBA V, et al. Isolation and characterization of cellulose nanocrystals from sago seed shells[J]. Carbohydrate polymers, 2018, 180(4): 13-20. [46] TRACHE D, HUSSIN M H, HAAFIZ M K M, et al. Recent progress in cellulose nanocrystals: sources and production[J]. Nanoscale, 2017, 9(5): 1763-1786. doi: 10.1039/C6NR09494E [47] YANG T T, LI X Z, GUO Y J, et al. Effect of endoglucanases from different glycoside hydrolase families on enzymatic preparation of cellulose nanocrystal[J]. Industrial Crops and Products, 2020, 155(2): 112755. [48] AN X Y, WEN Y B, CHENG D, et al. Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis[J]. Cellulose, 2016, 23(4): 2409-2420. doi: 10.1007/s10570-016-0964-4 [49] TANG T J, SHEN X C, ZHANG J H, et al. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication[J]. Carbohydrate Polymers, 2015, 125(2): 360-366. [50] MA T, HU X N, LU S Y, et al. Cellulose nanocrystals produced using recyclable sulfuric acid as hydrolysis media and their wetting molecular dynamics simulation[J]. International Journal of Biological Macromolecules, 2021, 184: 405-414. doi: 10.1016/j.ijbiomac.2021.06.094 [51] WANG Y C, LIU H B, WANG Q, et al. Recent advances in sustainable preparation of cellulose nanocrystals via solid acid hydrolysis: A mini-review[J]. International Journal of Biological Macromolecules, 2023, 253(10): 127353. [52] 白辰雨, 王天卉, 户昕娜, 等. 纤维素纳米化处理技术研究现状[J]. 食品工业科技, 2023, 44(14): 465-473.BAI Chenyu, WANG Tianhui, HU Xinna, et al. Research progress on preparation of nanocellulose[J]. Science and Technology of Food Industry, 2023, 44(14): 465-473 (in Chinese). [53] JIA W, LIU Y. Two characteristic cellulose nanocrystals (CNCs) obtained from oxalic acid and sulfuric acid processing[J]. Cellulose, 2019, 26(15): 8351-8365. doi: 10.1007/s10570-019-02690-9 [54] JIA C, CHEN L H, SHAO Z Q, et al. Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources[J]. Cellulose, 2017, 24(490): 2483-2498. [55] CHEN L, ZHU J Y, BAEZ C, et al. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids[J]. Green Chemistry, 2016, 18(13): 3835. doi: 10.1039/C6GC00687F [56] BONDANCIA T J, DE AGUIAR J, BATISTA G, et al. Production of nanocellulose using citric acid in a biorefinery concept: effect of the hydrolysis reaction time and techno-economic analysis[J]. Industrial & Engineering Chemistry Research, 2020, 59(25): 11505-11516. [57] 岑钰, 汪力生, 项舟洋, 等. 催化和机械辅助柠檬酸水解法高得率制备纤维素纳米晶体[J]. 中国造纸, 2023, 42(2): 1-10.CEN Yu, WANG Lisheng, XIANG Zhouyang, et al. High-yield Preparation of Cellulose Nanocrystals by Citric Acid Hydrolysis Combined with Catalyst and Mechanical Assistance[J]. China Pulp & Paper, 2023, 42(2): 1-10 (in Chinese). [58] LUO Y C. , SONG T, JI H, et al. Preliminary Investigations of the Mechanisms Involved in the Ultrasonication-assisted Production of Carboxylic Cellulose Nanocrystals with Different Structural Carboxylic Acids[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(12): 4531-4542. [59] LI D, HENSCHEN J, EK M. Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield[J]. Green Chemistry, 2017, 19(23): 5564. doi: 10.1039/C7GC02489D [60] SWATLOSKI R P, SPEAR S K, HOLBREY J D, et al. Dis-solution of cellulose with ionic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975. doi: 10.1021/ja025790m [61] LIU Z S, SHENG Z Z, BAO Y Q, et al. Ionic liquid directed spinning of cellulose aerogel fibers with superb toughness for weaved tthermal insulation and transient impact protection[J]. ACS Nano, 2023, 17(18): 18411-18420. doi: 10.1021/acsnano.3c05894 [62] ISKAK N A M, JULKAPLI N M, HAMID S B A. Understanding the effect of synthesis parameters on the catalytic ionic liquid hydrolysis process of cellulose nanocrystals[J]. Cellulose, 2017, 24(6): 2469-2481. doi: 10.1007/s10570-017-1273-2 [63] PANG Z Q, WANG P Y, DONG C H. Ultrasonic pretreatment of cellulose in ionic liquid for efficient preparation of cellulose nanocrystals[J]. Cellulose, 2018, 25(12): 7053-7064. doi: 10.1007/s10570-018-2070-2 [64] SIKDER M H, RASHID S S, RAHIM M H A, et al. Enzymatic cellulose nanocrystal production from pretreated palm oil empty fruit bunch fibers[J]. Materials Today: Proceedings, 2023-11-22. [65] CHEN X Q, DENG X Y, SHEN W H, et al. Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers[J]. Carbohydrate Polymers, 2018, 181(3): 879-884. [66] XU J T, LIAO Q Y, REN H M, et al. A new facile and efficient strategy for high-yield preparation of spherical cellulose nanocrystals via enzymolysis-mechanical synergy[J]. Cellulose, 2023, 30(14): 8909-8927. doi: 10.1007/s10570-023-05423-1 [67] PENG Y Y, GUO J X, GAO Y F, et al. Facile preparation of Pickering emulsion-based coatings for hydrophobic, oil-resistant, biodegradable green paper-based packaging[J]. Food Hydrocolloids, 2024, 149(2): 109624. [68] NGUYEN S V, LEE B K. PVA/CNC/TiO2 nanocomposite for food-packaging: Improved mechanical, UV/water vapor barrier, and antimicrobial properties[J]. Carbohydrate Polymers, 2022, 298(8): 120064. [69] LIU K, NASRALLAH J, CHEN L H, et al. Preparation of CNC-dispersed Fe3O4 nanoparticles and their application in conductive paper[J]. Carbohydrate Polymers, 2015, 126: 175-178. doi: 10.1016/j.carbpol.2015.03.009 [70] 李明霞. 基于纤维素纳米晶的气体阻隔涂层制备及其对芒果保鲜效果评价[D]. 重庆: 西南大学, 2023.LI Mingxia. Preparation of gas barrier coating based on cellulose nanocrystal and its evaluation on mango preservation [D]. Chongqing: Southwest University, 2023 (in Chinese). [71] ULAGANATHAN R K, MOHAMAD SENUSI N A, MOLD AMIN M A, et al. Effect of cellulose nanocrystals (CNC) on PVA/CNC bio-nanocompositefilm as potential food packaging application[J]. Materials Today: Proceedings, 2022, 66(1): 3150-3153. [72] CHEN C, WANG L, ES-HAGHI S S, et al. Biodegradable and recyclable bio-based laminated films of poly (lactic acid) and cellulose nanocrystals for food barrier packaging[J]. Food Packaging and Shelf Life, 2024, 42: 101244. doi: 10.1016/j.fpsl.2024.101244 [73] ALGHAMDI H M, ABUTALIB M M, MANNAA M A, et al. Modification and development of high bioactivities and environmentally safe polymer nanocomposites doped by Ni/ZnO nanohybrid for food packaging applications[J]. Journal of Materials Research and Technology, 2022, 19: 3421-3432. doi: 10.1016/j.jmrt.2022.06.077 [74] EL GOHARY H G, ALHAGRI I A, QAHTAN T F, et al. Reinforcement of structural, thermal and electrical properties and antibacterial activity of PVA/SA blend filled with hybrid nanoparticles (Ag and TiO2 NPs): Nanodielectric for energy storage and food packaging industries[J]. Ceramics International, 2023, 49(12): 20174-20184. doi: 10.1016/j.ceramint.2023.03.141 [75] VAEZI K, ASADPOUR G, SHARIFI S H. Effect of coating with novel bionanocomposites of cationic starch/cellulose nanocrystals on the fundamental properties of the packaging paper[J]. Polymer Testing, 2019, 80: 106080. doi: 10.1016/j.polymertesting.2019.106080 [76] ARRIETA M P, PELTZER M A, LÓPEZ J, et al. PLA-Based Nanocomposites Reinforced with CNC for Food Packaging Applications: From Synthesis to Biodegradation[J]. Industrial Applications of Renewable Biomass Products, 2017, 265-300. [77] ZHANG Y, HAQUE A M A, NAEBE M. UV-functional flexible nanocomposite film with high lignin-cellulose nanocrystals content[J]. Journal of Materials Research and Technology, 2023, 26(29): 5990-6000. [78] HEIDARBEIGI J, AFSHARI H, BORGHEI A M. Study of physical and mechanical properties of PE/CNC nanocomposite for food packaging applications[J]. Journal of Thermoplastic Composite Materials, 2021, 34(3): 396-408. doi: 10.1177/0892705719835902 [79] HE Y Q, LI H, FEI X, et al. Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications[J]. Carbohydrate Polymers, 2021, 252(3): 117156. [80] LIU K, LIANG H N, NASRALLAH J, et al. Preparation of the CNC/Ag/beeswax composites for enhancing antibacterial and water resistance properties of paper[J]. Carbohydrate Polymers, 2016, 142: 183-188. doi: 10.1016/j.carbpol.2016.01.044 [81] RUI Z, YU D H, ZHANG F S, et al. Novel cellulose nanocrystal/metal-organic framework composites: Transforming ASA-sized cellulose paper for innovative food packaging solutions[J]. Industrial Crops and Products, 2024, 207(1): 117771. [82] LENZE C J, PAKSA C A, SUN W M, et al. Intact and broken cellulose nanocrystals as model nanoparticles to promote dewatering and fine-particle retention during papermaking[J]. Cellulose, 2016, 23(6): 3951-3962. doi: 10.1007/s10570-016-1077-9 [83] 王营超, 贺会利, 王强, 等. 纤维素纳米晶体提高箱纸板强度性能的研究[J]. 中国造纸, 2020, 39(12): 18-25. doi: 10.11980/j.issn.0254-508X.2020.12.003WANG Yingchao, HE Huili, WANG Qiang, et al. Improving the strength properties of liner board by cellulose nanocrystal[J]. China Pulp & Paper, 2020, 39(12): 18-25 (in Chinese). doi: 10.11980/j.issn.0254-508X.2020.12.003 [84] YANG S Y, JEONG K M, WON J M, et al. Application of CNC as a Coating Additive[J]. Journal of Korea TAPPI, 2019, 51(1): 114-120. doi: 10.7584/JKTAPPI.2019.02.51.1.114 [85] BROCHMAN A C, HUBBE M A. Charge reversal system with cationized cellulose nanocrystals to promote dewatering of a cellulosic fiber suspension[J]. Cellulose, 2017, 24(1): 4821-4830. [86] CRISTINA C, NOEMÍ M, ANA B, et al. Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper[J]. Cellulose, 2018, 25(1): 269-280. doi: 10.1007/s10570-017-1552-y [87] ELMETWALY T E, DARWISH S S, ATTIA N F, et al. Cellulose nanocrystals and its hybrid composite with inorganic nanotubes as green tool for historical paper conservation[J]. Progress in Organic Coatings, 2022, 168: 106890. doi: 10.1016/j.porgcoat.2022.106890 [88] YOUNIS A A, MOHAMED S A A, EL-SAKHAWY M. Fire resistant and mechanical properties of bagasse packaging paper coated with hexachlorocyclodiphosph(V)azane/ starch/NaHCO3/CaCO3/cellulose nanocrystals composite[J]. Egyptian Journal of Petroleum, 2022, 31(3): 55-64. doi: 10.1016/j.ejpe.2022.07.001 [89] HUANG M L, TANG Y J, WANG X Y, et al. Preparation of polyaniline/cellulose nanocrystal composite and its application in surface coating of cellulosic paper[J]. Progress in Organic Coatings, 2021, 159: 106452. doi: 10.1016/j.porgcoat.2021.106452 [90] QIN T, LIU L Q, CAO H B, et al. Polydopamine modified cellulose nanocrystals (CNC) for efficient cellulase immobilization towards advanced bamboo fiber flexibility and tissue softness[J]. International Journal of Biological Macromolecules, 2023, 253: 126734. doi: 10.1016/j.ijbiomac.2023.126734 [91] PATIL P D, SALOKHE S, KARVEKAR A, et al. Microfluidic based continuous enzyme immobilization: A comprehensive review[J]. International Journal of Biological Macromolecules, 2023, 253: 127358. doi: 10.1016/j.ijbiomac.2023.127358 [92] CAO S L, XU P, MA Y Z, et al. Recent advances in immobilized enzymes on nanocarriers[J]. Chinese Journal of Catalysis, 2016, 37(11): 1814-1823. doi: 10.1016/S1872-2067(16)62528-7 [93] BASSI A, KUSHAL K, KOO B H, et al. Cellulose nanocrystals doped silver nanoparticles immobilized agar gum for efficient photocatalytic degradation of malachite green[J]. International Journal of Biological Macromolecules, 2023, 244(13): 125221. [94] ARIAEENEJAD S, MOTAMEDI E, SALEKDEH G H. Immobilization of enzyme cocktails on dopamine functionalized magnetic cellulose nanocrystals to enhance sugar bioconversion: A biomass reusing loop[J]. Carbohydrate Polymers, 2021, 256(2): 117511. [95] KIM H J, PARK S, KIM S H, et al. Biocompatible cellulose nanocrystals as supports to immobilize lipase[J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 122: 170-178. doi: 10.1016/j.molcatb.2015.09.007 [96] RODRIGUES R C, VIRGEN-ORTÍZ J J, DOS SANTOS J C S, et al. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions[J]. Biotechnology Advances, 2019, 37(5): 746-770. doi: 10.1016/j.biotechadv.2019.04.003 [97] SHI X, QIN X L, DAI Y X, et al. Improved catalytic properties of Candida Antarctica lipase B immobilized on cetyl chloroformate-modified cellulose nanocrystals[J]. International Journal of Biological Macromolecules, 2022, 220(42): 1231-1240. [98] MADHUBALA G, ABIRAMASUNDARI S, RUMGIT N P, et al. Chapter 20 - Nano-driven processes toward the treatment of paper and pulp industrial effluent: from the view of resource recovery and circular economy [M]. Nanotechnology in Paper and Wood Engineering, 2022, 471-492. [99] ZHOU Y T, ZHAO H, BAI H L, et al. Papermaking effluent treatment: a new cellulose nanocrystalline/polysulfone composite membrane[J]. Procedia Environmental Sciences, 2012, 16: 145-151. doi: 10.1016/j.proenv.2012.10.020 [100] ISLAM T, REPON M R, ISLAM T, et al. Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions[J]. Environmental Science and Pollution Research, 2023, 30(4): 9207-9242. [101] EL-FATTAH W A, GUESMI A, HAMADI N B, et al. A green synthesis of cellulose nanocrystals biosorbent for remediation of wastewater containing industrial dye[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 681(384): 132729. [102] ABOUZEID R E, KHIARI R, EL-WAKIL N, et al. Current State and New Trends in the Use of Cellulose Nanomaterials for Wastewater Treatment[J]. Biomacromolecules, 2019, 20(2): 573-597. doi: 10.1021/acs.biomac.8b00839 [103] 符金洲, 王汉伟, 李莹莹, 等. 微纳米纤维素功能膜在能源与环境领域的应用[J]. 高等学校化学学报, 2021, 42(5): 1407-1429. doi: 10.7503/cjcu20200870FU Jinzhou, WANG Hanwei, LI Yingying, et al. Micro/nanocellulose functional membranes for energy and environment[J]. Chemical Journal of Chinese Universities, 2021, 42(5): 1407-1429 (in Chinese). doi: 10.7503/cjcu20200870 [104] 李建龙, 孙永峰, 刘宁安, 等. 纤维素纳米晶/二氧化锰球在污水处理中的应用[J]. 青岛科技大学学报(自然科学版), 2022, 43(6): 53-58.LI Jianlong, SUN Yongfeng, LIU Ningan, et al. Application of cellulose nanocrystal/manganese dioxide ball in wastewater treatment[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2022, 43(6): 53-58 (in Chinese). [105] 李娜, 丁姜鑫, 褚特野, 等. 纤维素纳米晶的性能及应用研究进展[J]. 棉纺织技术, 2021, 49(12): 75-79. doi: 10.3969/j.issn.1001-7415.2021.12.021LI Na, DING Jiangxin, CHU Teye, et al. Research progress of cellulose nanocrystal property and application[J]. Cotton Textile Technology, 2021, 49(12): 75-79 (in Chinese). doi: 10.3969/j.issn.1001-7415.2021.12.021 [106] SHARMA R, NATH P C, MOHANTA Y K, et al. Recent advances in cellulose-based sustainable materials for wastewater treatment: An overview[J]. International Journal of Biological Macromolecules, 2024, 256(6): 128517. [107] GRISHKEWICH N, MOHAMMED N, WEI S, et al. Dye removal using sustainable membrane adsorbents produced from melamine formaldehydecellulose nanocrystals and hard wood pulp[J]. Industrial Engineering Chemistry Research, 2020, 59(47): 20854-20865. doi: 10.1021/acs.iecr.0c04033 [108] HOSSAIN S, SHAHRUZZAMAN M, KABIR S F, et al. Jute cellulose nanocrystal/poly (N, N-dimethylacrylamide-co-3-methacryloxypropyltrimethoxysilane) hybrid hydrogels for removing methylene blue dye from aqueous solution[J]. Journal of Science: Advanced Materials and Devices, 2021, 6(2): 254-263. doi: 10.1016/j.jsamd.2021.02.005 [109] BADAWY A A, GHANEM, YASSIN M A, et al. Utilization and characterization of cellulose nanocrystals decorated with silver and zinc oxide nanoparticles for removal of lead ion from wastewater[J]. Environmental Nanotechnology, Monitoring & Management, 2021, 16(5): 100501. [110] SONG Y K, JIANG M, ZHOU L J, et al. Rapidly regenerated CNC/TiO2/MnO2 porous microspheres for high-efficient dye removal[J]. Carbohydrate Polymers, 2022, 292(12): 119644.
计量
- 文章访问数: 73
- HTML全文浏览量: 51
- 被引次数: 0